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Abstract

We examine the performance of forward-looking inflation-forecast-based rules in

open economies. In a New Keynesian two-bloc model, a methodology first employed

by Batini and Pearlman (2002) is used to obtain analytically the feedback parame-

ters/horizon pairs associated with unique and stable equilibria. Three key findings

emerge: first, indeterminacy occurs for any value of the feedback parameter on in-

flation if the forecast horizon lies too far into the future. Second, the problem of

indeterminacy is intrinsically more serious in the open economy. Third, the problem

is compounded further in the open economy when central banks respond to expected

consumer, rather than producer price inflation.
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1 Introduction

Under inflation targeting, the task of the central bank is to alter monetary conditions to

keep inflation close to a pre-announced target. One class of rules widely proposed under

inflation targeting are ‘inflation-forecast-based’ (IFB) rules (Batini and Haldane (1999)).

IFB rules are ‘simple’ rules as in Taylor (1993), but where the policy instrument responds

to deviations of expected, rather than current inflation from target. The horizon in the rule

is a policy parameter, alongside the feedback parameters. In most applications, the infla-

tion forecasts underlying IFB rules are taken to be the endogenous rational-expectations

forecasts conditional on an intertemporal equilibrium of the model. These rules are of spe-

cific interest because similar reaction functions are used in the Quarterly Projection Model

of the Bank of Canada (see Coletti et al. (1996)), and in the Forecasting and Policy System

of the Reserve Bank of New Zealand (see Black et al. (1997)) – two prominent inflation

targeting central banks. As shown in Clarida et al. (2000) – CGG (2000) henceforth–

and Castelnuovo (2003), estimates of IFB-type rules appear to be a good fit to the actual

monetary policy in the US and Europe of recent years.

However, IFB rules have been criticized on various grounds. Svensson (2001, 2003)

criticizes Taylor-type rules in general and argues for policy based on explicit maximization

procedures.1 Much of the literature, however, focuses on a more specific possible problem

with Taylor-type rules – that of equilibrium indeterminacy when they are forward-looking.

Nominal indeterminacy arising from an interest rate rule was first shown by Sargent and

Wallace (1975) in a flexible price model. In sticky-price New Keynesian models this

nominal indeterminacy disappears because the previous period’s price level serves as a

nominal anchor. But now a problem of real indeterminacy emerges with IFB rules taking

two forms: if the response of interest rates to a rise in expected inflation is insufficient, then

real interest rates fall thus raising demand and confirming any exogenous expected inflation

(see CGG (2000) and Batini and Pearlman (2002)). But indeterminacy is also possible

if the rule is overly aggressive (Bernanke and Woodford (1997); Batini and Pearlman

(2002); Giannoni and Woodford (2002)).2 Here we extend this literature by studying the

1We discuss his critique in a longer working paper version of this paper, Batini et al. (2004), BLP

henceforth.
2Both types of real indeterminacy can be illustrated in a very simple closed economy model: consider

a special case of ‘Phillips Curve’ set out in this paper, πt = Et(πt+1) + ayt, where πt denotes inflation
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uniqueness and stability conditions for an equilibrium under IFB rules for various feedback

horizons in open economies, paying particular attention to possible implications for the

US/euro area region.

This paper employs the same root locus methodology employed by Batini and Pearl-

man (2002) in the closed-economy context to identify analytically the feedback parame-

ters/horizon pairs that are associated with unique and stable equilibria in a New Keynesian

sticky-price two-bloc model similar to Benigno and Benigno (2001) – BB henceforth– and

Clarida et al. (2002) – CGG (2002) henceforth. We modify the BB/CGG (2002) model to

include habit formation in consumption and inflation indexing, changes that help to im-

prove the ability of the model to capture the inflation and output dynamics observed in the

euro area and the US. We also generalize the model to allow for the possibility that agents

in the two blocs exhibit home bias in consumption patterns. This produces short-run and

long-run deviations from consumption-based purchasing power parity, and improves the

model’s ability to replicate the large and protracted swings in the real euro/dollar rate

observed since the launch of the euro.

Analyzing a two-bloc model is particularly interesting because it allows us to explore

the implications for rational-expectations equilibria of concurrent monetary policy strate-

gies of the European Central Bank (ECB) and the Federal Reserve. In addition, by

assuming that the two blocs are identical in both fundamental parameters and in policy,

we can use the Aoki (1981) decomposition of the model into sum and differences forms;

we can then examine whether findings in the literature on the stability and uniqueness of

equilibria based on a closed-economy assumption translate to the open-economy case.

Three key findings emerge from this paper. First, we find that indeterminacy occurs for

any value of the feedback parameter on inflation in the forward-looking rule if the forecast

and yt is the deviation of output from its equilibrium level. Close the model with an ad hoc ‘IS’ curve

yt = −b(it − Et(πt+1)) where it is the nominal interest rate which is set according to an IFB-Taylor rule

it = θEt(πt+1) + µyt. Substituting out for yt and it we arrive at Et(πt+1) = 1+bµ

1+bµ−ab(θ−1)
πt which has a

unique rational expectations solution πt = 0 iff 1+bµ

1+bµ−ab(θ−1)
> 1 and a stable trajectory, tending to zero

inflation in the long run, consistent with any initial inflation rate otherwise– that is there is indeterminacy

if θ < 1 or θ > 1 + 2(1+bµ)
ab

. In the latter case, overly aggressive feedback produces cycles of positive

and negative inflation. Thus the inclusion of a feedback on output reduces the region of indeterminacy.

Empirical estimates of µ appear to be small, as discussed in section 2. So, in our subsequent analysis, we

focus exclusively on ‘pure’ IFB rules, i.e. rules without an output gap term.
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horizon lies too far into the future.3 This reaffirms, for the open-economy case, results

found in the literature for the closed-economy case. Second, we find that the problem of

indeterminacy is intrinsically more serious in an open than in a closed economy. Third, we

find the problem is compounded further in the open economy when central banks in the

two blocs respond to expected consumer, rather than expected producer price, inflation.

The plan of the paper is as follows. Section 2 offers an overview of the main related

papers. Section 3 sets out our two-bloc model. Section 4 uses the root locus analysis

technique to investigate the stability and uniqueness conditions for IFB rules based on

producer price or consumer price inflation, allowing for the possibility of home consump-

tion bias. Section 5 offers some concluding remarks.

2 Recent Related Literature

Perhaps the best-known theoretical result in the literature on IFB rules is that to avoid

indeterminacy the monetary authority must respond aggressively, that is with a coefficient

above unity, but not excessively large, to expected inflation in the closed-economy context

(see, among others, CGG (2000) and, in the small-open-economy context, see De Fiore and

Liu (2002)and Zanna (2003)). Bullard and Mitra (2001) reworked this result in a closed-

economy model where private agents form forecasts using recursive learning algorithms.

Empirically, both the Federal Reserve in the post-Volker era and European monetary au-

thorities post 1980 appear to have indeed responded to expected inflation with a cofficient

greater than 1 (see CGG (2000); Castelnuovo (2003); Faust et al. (2001)).4

3 The fact that forward-looking behavior is a source of indeterminacy can again be illustrated using the

simple model of the previous footnote. Consider a rule involving a feedback on current inflation and the

current output gap: it = θπt+µyt. Then re-working the analysis we arrive at Et(πt+1) = 1+bµ+aθ(1+(b+1)µ)
1+bµ+a(1+(b+1)µ)

which has a unique RE solution πt iff θ > 1. For this current-looking rule there is no upper-bound on θ:

all values above 1 ensure determinacy.
4Although empirical evidence seems to lend support to the idea that the US and European central banks

follow IFB-type rules, the Lucas Critique suggests that there is a logical distinction between observing that

a simple reduced-form relationship holds between variables and assuming that such a relation holds as a

structural equation. For example, Tetlow (2000) demonstrates that a Taylor rule may seem to explain

US monetary policy even if monetary policy is set optimally, conditioning on literally hundreds of state

variables.
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The case for an aggressive rule however has been questioned by a number of recent

theoretical studies. First, the result depends entirely on: (a) the way in which money

is assumed to enter preferences and technology; and (b) how flexible prices are. In the

closed-economy context, both Carlstrom and Fuerst (2000) and Benhabib et al. (2001)

showed, for example, that with sticky prices the result is overturned when money enters

the utility function either as in Sidrauski-Brock or via more realistic cash-in-advance timing

assumptions.5 With these assumptions, if the monetary authority responds aggressively

to future expected inflation it makes indeterminacy more likely, whereas if it does so to

past inflation it makes determinacy less likely.

Second, the result rests on the assumption that, in its attempt to look forward, the

central bank responds only to next quarter’s inflation forecast, not to forecasts at later

quarters. However, real-world procedures typically involve stabilizing inflation in the

medium-run, one to two years out. It follows that the above result may not translate

into sound policy prescriptions for inflation targeters. Complementing numerical results

by Levin et al. (2001)–LWW henceforth– Batini and Pearlman (2002) showed analytically

that IFB rules may lead to indeterminacy in the standard IS-AS optimizing forward-

looking model used, for example, by Woodford (1999). Below we build on this work to

study indeterminacy with IFB rules responding beyond one quarter in the context of a

dynamic two-bloc New-Keynesian model. In doing so we consider the impact of various

degrees of openness and price flexibility on our indeterminacy results, but stick to the

conventional timing used in most open-economy optimizing-agents models whereby real

money entering the utility function refers to end-of-period balances.

3 The Model

Our model is essentially a generalization of CGG (2002) and BB to incorporate a bias

for consumption of home-produced goods, habit formation in consumption, and Calvo

price setting with indexing of prices for those firms who, in a particular period, do not

re-optimize their prices. The latter two aspects of the model follow Christiano et al. (2001)

5 De Fiore and Liu (2002) assume this latter type of cash-in-advance assumption and show, in the context

of a small open-economy model, that indeterminacy results are sensitive to the various assumptions on the

timing of transactions.

4



and, as with these authors, our motivation is an empirical one: to generate sufficient inertia

in the model so as to enable it, in calibrated form, to reproduce commonly observed output,

inflation and nominal interest rate responses to exogenous shocks.

There are two equally-sized6 symmetric blocs with the same household preferences and

technologies. In each bloc there is one traded risk-free nominal bond denominated in the

home bloc’s currency. The exchange rate is perfectly flexible. A final homogeneous good

is produced competitively in each bloc using a CES technology consisting of a continuum

of differentiated non-traded goods. Intermediate goods producers and household suppliers

of labor have monopolistic power. Nominal prices of intermediate goods, expressed in the

currency of producers, are sticky.

The monetary policy of the central banks in the two blocs takes the same form; namely,

that of an IFB nominal interest rate rule with identical parameters. The money supply ac-

commodates the demand for money given the setting of the nominal interest rate according

to such a rule. Since the paper is exclusively concerned with the possible indeterminacy

or instability of IFB rules, we confine ourselves to a perfect foresight equilibrium in a

deterministic environment with monetary policy responding to unanticipated transient

exogenous TFP shocks. The decisions of households and firms are as follows:

3.1 Households

A representative household r in the ‘home’ bloc maximizes

E0

∞
∑

t=0

βt







(Ct(r) − Ht)
1−σ

1 − σ
+ χ

(

Mt(r)
Pt

)1−ϕ

1 − ϕ
− κ

Nt(r)
1+φ

1 + φ






(1)

where Et is the expectations operator indicating expectations formed at time t, Ct(r) is

an index of consumption, Nt(r) are hours worked, Ht represents the habit, or desire not

to differ too much from other consumers, and we choose it as Ht = hCt−1, where Ct is

the average consumption index and h ∈ [0, 1). When h = 0, σ > 1 is the risk aversion

parameter (or the inverse of the intertemporal elasticity of substitution)7. Mt(r) are

6The population in each bloc is normalized at unity. It is straightforward to allow for different sized

blocs, as in CGG (2002) and BB. Then in the Aoki decomposition, aggregates must be population-weighted

and differences expressed in per capita terms.
7When h 6= 0, σ is merely an index of the curvature of the utility function.
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end-of-period nominal money balances. An analogous symmetric intertemporal utility is

defined for the ‘foreign’ representative household and the corresponding variables (such as

consumption) are denoted by C∗
t (r), etc.

The representative household r must obey a budget constraint:

PtCt(r) + Dt(r) + Mt(r) = Wt(r)Nt(r) + (1 + it−1)Dt−1(r) + Mt−1(r) + Γt(r) (2)

where Pt is a price index, Dt(r) are end-of-period holdings of riskless nominal bonds

with nominal interest rate it over the interval [t, t + 1]. Wt(r) is the wage and Γt(r)

are dividends from ownership of firms. In addition, if we assume that households’ labour

supply is differentiated with elasticity of supply η, then (as we shall see below) the demand

for each consumer’s labor is given by

Nt(r) =

(

Wt(r)

Wt

)−η

Nt (3)

where Wt =
[

∫ 1
0 Wt(r)

1−ηdr
]

1
1−η

is an average wage index and Nt =
∫ 1
0 Nt(r)dr is aggre-

gate employment.

We assume that the consumption index depends on the consumption of a single type

of final good in each of two identically sized blocs, and is given by

Ct(r) = CHt(r)
1−ωCFt(r)

ω (4)

where ω ∈ [0, 1
2 ] is a parameter that captures the degree of ‘openness’. If ω = 0 we have

autarky, while the other extreme of ω = 1
2 gives us the case of perfect integration. For

ω < 1
2 there is some degree of ‘home bias’.8 If PHt, PFt are the domestic prices of the two

types of good, then the optimal intra-temporal decisions are given by standard results:

PHtCHt(r) = (1 − ω)PtCt(r) ; PFtCFt(r) = ωPtCt(r) (5)

with the consumer price index Pt given by

Pt = kP 1−ω
Ht Pω

Ft (6)

where k = (1 − ω)−(1−ω)ω−ω. Assume that the law of one price holds i.e. prices in home

and foreign blocs are linked by PHt = StP
∗
Ht, PFt = StP

∗
Ft where P ∗

Ht and P ∗
Ft are the

8The effect of home bias in open economies is also studied in Corsetti et al. (2002) and De Fiore and

Liu (2002).
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foreign currency prices of the home and foreign-produced goods and St is the nominal

exchange rate. Let P ∗
t = kP ∗

Ht
ωP ∗

Ft
1−ω be the foreign consumer price index corresponding

to (6). Then it follows that the real exchange rate Et =
StP ∗

t

Pt
and the terms of trade

T = PHt

PFt
are related by the relationship

Et ≡
StP

∗
t

Pt
= T 2ω−1 (7)

Thus (since 2ω − 1 ≤ 0), as the real exchange rate appreciates (i.e., Et falls) the terms of

trade improve, except at the extreme of perfect integration where ω = 1
2 . Then Et = 1

and the law of one price applies to the aggregate price indices.

In a perfect foresight equilibrium, maximizing (1) subject to (2) and (3) and imposing

symmetry on households (so that Ct(r) = Ct, etc) yields standard results:

1 = β(1 + it)

(

Ct+1 − Ht+1

Ct − Ht

)−σ Pt

Pt+1
(8)

(

Mt

Pt

)−ϕ

=
(Ct − Ht)

−σ

χPt

[

it
1 + it

]

(9)

Wt

Pt
=

κ

(1 − 1
η )

Nφ
t (Ct − Ht)

σ (10)

(8) is the familiar Keynes-Ramsey rule adapted to take into account of the consumption

habit. In (9), the demand for money balances depends positively on consumption relative

to habit and negatively on the nominal interest rate. Given the central bank’s setting of

the latter, (9) is completely recursive to the rest of the system describing our macro-model

and will be ignored in the rest of the paper. (10) reflects the market power of households

arising from their monopolistic supply of a differentiated factor input with elasticity η.

Households can accumulate assets in the form of either home or foreign bonds. Un-

covered interest rate parity then gives

1 + it =
St+1

St
(1 + i∗t ) (11)

where i∗t is the interest rate paid on nominal bonds denominated in foreign currency.

3.2 Firms

Competitive final goods firms use a continuum of non-traded intermediate goods according

to a constant returns CES technology to produce aggregate output

Yt =

(
∫ 1

0
Yt(m)(ζ−1)/ζdm

)ζ/(ζ−1)

(12)
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where ζ is the elasticity of substitution. This implies a set of demand equations for each

intermediate good m with price PHt(m) of the form

Yt(m) =

(

PHt(m)

PHt

)−ζ

Yt (13)

where PHt =
[

∫ 1
0 PHt(m)1−ζdm

]
1

1−ζ
. PHt is an aggregate intermediate price index, but

since final goods firms are competitive and the only inputs are intermediate goods, it is

also the domestic price level.

In the intermediate goods sector each good m is produced by a single firm m using

only differentiated labour with another constant returns CES technology:

Yt(m) = At

(
∫ 1

0
Ntm(r)(η−1)/ηdr

)η/(η−1)

(14)

where Ntm(r) is the labour input of type r by firm m and At is an exogenous shock

capturing shifts to trend total factor productivity (TFP) in this sector. Minimizing costs
∫ 1
0 Wt(r)Ntm(r)dr and aggregating over firms leads to the demand for labor as shown in

(3). In a equilibrium of equal households and firms, all wages adjust to the same level Wt

and it follows that Yt = AtNt.

For later analysis it is useful to define the real marginal cost as the wage relative to

domestic producer price. Using (10) and Yt = AtNt this can be written as

MCt ≡
Wt

AtPHt
=

κ

(1 − 1
η )At

(

Yt

At

)φ

(Ct − Ht)
σ

(

PFt

PHt

)ω

(15)

Now we assume that there is a probability of 1 − ξ at each period that the price of

each intermediate good m is set optimally to PO
Ht(m). If the price is not re-optimized,

then it is indexed to last period’s aggregate producer price inflation.9 With indexation

parameter γ ≥ 0, this implies that successive prices with no reoptimization are given by

PO
Ht(m), PO

Ht(m)
(

PHt

PH,t−1

)γ
, PO

Ht(m)
(

PH,t+1

PH,t−1

)γ
, ... . For each intermediate producer m

the objective is at time t to choose PO
Ht(m) to maximize discounted profits

Et

∞
∑

k=0

(

ξ

1 + it

)k

Yt+k(m)

[

PO
Ht(m)

(

PH,t+k−1

PH,t−1

)γ

− Wt+k

At

]

(16)

9Thus we can interpret 1
1−ξ

as the average duration for which prices are left unchanged.
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given it (since firms are atomistic), subject to (13). The solution to this is

Et

∞
∑

k=0

(

ξ

1 + it

)k

Yt+k(m)

[

PO
Ht(m)

(

PH,t+k−1

PH,t−1

)γ

− 1

(1 − 1/ζ)

Wt+k

At

]

= 0 (17)

and by the law of large numbers the evolution of the price index is given by

P 1−ζ
H,t+1 = ξ

(

PHt

(

PHt

PH,t−1

)γ)1−ζ

+ (1 − ξ)(PO
H,t+1)

1−ζ (18)

3.3 The Equilibrium and the Trade Balance

In equilibrium, goods markets, money markets and the bond market all clear. Equating the

supply and demand of the home consumer good and using (5) and its foreign counterpart

we obtain

Yt = ANt = CHt + C∗
Ht =

Pt

PHt
[(1 − ω)Ct + ωEtC

∗
t ] (19)

Given interest rates i, i∗ (expressed later in terms of a IFB rule) the money supply is

fixed by the central banks to accommodate money demand. By Walras’ Law we can

dispense with the bond market equilibrium condition. Then a perfect foresight equilibrium

is defined at t = 0 as sequences Ct, Dt, CHt, CFt, PHt, PFt, Pt, Mt, Wt, Yt, Nt, P 0
Ht, 12

foreign counterparts C∗
t , D∗

t , etc, Et, and St, given past price indices and exogenous TFP

processes.

Combining the Keynes-Ramsey equations with the UIP condition we have that

P ∗
t

Pt

(

Ct − hCt−1

C∗
t − hC∗

t−1

)−σ

=
St+1

St

P ∗
t+1

Pt+1

(

Ct+1 − hCt

C∗
t+1 − hC∗

t

)−σ

(20)

Let zt =
StP ∗

t

Pt

(

Ct−hCt−1

C∗
t −hC∗

t−1

)−σ
. Then (20) implies that zt+1 = zt. We consider a linearization

in the vicinity of a symmetric steady state, z̄ = 1. From the transient nature of the shocks

it follows that this steady state remains unchanged and hence zt = 1 in any stable rational

expectations equilibrium. Therefore10

(

Ct − hCt−1

C∗
t − hC∗

t−1

)−σ

=
Pt

StP ∗
t

=
1

Et
(21)

10In a stochastic setting with complete asset markets, (21) is simply the risk-sharing condition for

consumption, because it equates marginal rate of substitution to relative price, as would be obtained if

utility were being jointly maximized by a social planner (see Sutherland (2002)).
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The model as it stands with habit persistence (h > 0), σ > 1 and ω ∈ [0, 1
2) exhibits

net foreign asset dynamics. This can be shown by writing the trade balance TBt in the

home bloc as exports minus imports denominated its own currency:

TBt = PHtC
∗
Ht − PFtCFt = ω

(

PHt

P ∗
Ht

P ∗
t C∗

t − PtCt

)

= ωPt(EtC
∗
t − Ct) (22)

using (5), the law of one price PHt = StP
∗
Ht, and recalling the definition Et ≡ StP ∗

t

Pt
.

Therefore there are net foreign asset dynamics unless Ct = EtC
∗
t . This is only compatible

with (21) if either ω = 1
2 (no home bias), in which case Et = 1, and we start off with

balanced trade; or if σ = 1 and h = 0 (no habit persistence).

3.4 Linearization

We linearize around a baseline symmetric steady state in which consumption and prices in

the two blocs are equal and constant. Then inflation is zero, Et = Ē = 1 and hence from

(22) trade is balanced. Output is then at its sticky-price, imperfectly competitive natural

rate and from the Keynes-Ramsey condition (8) the nominal rate of interest is given by

ı̄ = 1
β −1. Now define all lower case variables as proportional deviations from this baseline

steady state.11 Home producer and consumer inflation are defined as πHt ≡ PHt−PH,t−1

PH,t−1
≃

pHt − pH,t−1 and πt ≡ Pt−Pt−1

Pt−1
≃ pt − pt−1 respectively. Similarly, define foreign producer

inflation and consumer price inflation. Combining (17) and (18), we can eliminate P 0
Ht to

obtain in linearized form

πHt =
β

1 + βγ
EtπH,t+1 +

γ

1 + βγ
πH,t−1 +

(1 − βξ)(1 − ξ)

(1 + βγ)ξ
mct (23)

The linearized version of the real marginal cost for producers of intermediate goods in the

home bloc, (15), is given by

mct = −(1 + φ)at +
σ

1 − h
(ct − hct−1) + φyt + ω(st + p∗Ft − pHt) (24)

The first term on the right-hand-side of (24) is a TFP shock. The second term is a risk-

sharing effect : a rise in habit-adjusted consumption leads to an increase in the real wage

11That is, for a typical variable Xt, xt = Xt−X̄

X̄
≃ log

(

Xt

X̄

)

where X̄ is the baseline steady state. The

interest rate however is now expressed as an absolute deviation about ī.

10



(see (10)) and hence the marginal cost. The last term is a terms of trade effect, which

implies that marginal costs falls if the terms of trade, pHt − st − p∗Ft in linearized form,

rises.

Linearizing the remaining equations (7), (8), (11), (19) and (21) yields

πt − π∗
t = 2ω(st − st−1) + (1 − 2ω)(πHt − π∗

Ft) (25)

ct −
h

1 + h
ct−1 =

1

1 + h
Etct+1 −

1 − h

(1 + h)σ
(it − Etπt+1) (26)

Et∆st+1 = it − i∗t (27)

yt = (1 − ω)ct + ωc∗t − 2ω(1 − ω)(pHt − st − p∗Ft) (28)

σ(c∗t − ct − h(c∗t−1 − ct−1)) = −et = (1 − 2ω)(pHt − st − p∗Ft) (29)

Note that (28) and its foreign counterpart imply that yt + y∗t = ct + c∗t . Also note that for

the case when there is no home bias, ω = 1/2, then (25) reduces to relative purchasing

power parity for consumer price inflation.

Turning to spillover effects in our linearized form of the model, let us focus on the case

of no home bias, ω = 1/2. Then from (28) and (24) we obtain

mct = −(1 + φ)at +
σ

2(1 − h)

[

yt − hyt−1 + y∗t − hy∗t−1

]

+ φyt +
1

2
[yt − y∗t ] (30)

It follows that the elasticity of marginal cost for intermediate goods home producers with

respect to domestic and foreign current output, given output at time t − 1, are given by

κ0 ≡ ∂mct

∂yt
and κ1 ≡ ∂mct

∂y∗
t

where

κ0 =
σ

2(1 − h)
+

1

2
+ φ ; κ1 =

σ

2(1 − h)
− 1

2
(31)

(31) indicates that the risk-sharing effect exceeds the terms of trade effect and there

is positive spillover from output onto the marginal cost of the second bloc (implying a

negative spillover on output) iff σ
1−h > 1 in the short-run (i.e., given output in period

t − 1).12 Iff σ
1−h = 1, the risk-sharing and terms of trade effect cancel and there are

no spillover effects. Empirical estimates discussed in Appendix C of BLP suggest that

σ > 1, so under this calibration spillover effects on output are negative. The effect of

introducing habit is to enhance the risk-sharing effect and thus increase these negative

short-run spillovers.

12 If h = 0, this replicates the result in CGG (2002).
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3.5 Sum and Difference Systems

Since the economies are symmetric, the easiest way of analyzing them is to use the sum

and difference systems, as introduced by Aoki (1981). We denote all sums of home and

foreign variables with the superscript S, while we denote differences by D. The first thing

to note when inspecting the equations above is that the sum system is independent of

home bias, and can be written as

πS
t =

β

1 + βγ
Etπ

S
t+1 +

γ

1 + βγ
πS

t−1

+
(1 − βξ)(1 − ξ)

(1 + βγ)ξ
[(φ +

σ

1 − h
)yS

t − σh

1 − h
yS

t−1 − (1 + φ)aS
t ] (32)

yS
t =

h

1 + h
yS

t−1 +
1

1 + h
Ety

S
t+1 −

1 − h

(1 + h)σ
(iSt − Etπ

S
t+1) (33)

where πS = πH + π∗
F , yS = y + y∗, and we note that πH + π∗

F = π + π∗.

However the difference system does depend on the home bias parameter, ω, Writing

πD = πH − π∗
F , yD = y − y∗, etc., it can be written as

πD
t =

β

1 + βγ
Etπ

D
t+1 +

γ

1 + βγ
πD

t−1 +
(1 − βξ)(1 − ξ)

(1 + βγ)ξ
mcD

t (34)

mcD
t = −(1 + φ)aD

t +
σ

1 − h
(cD

t − hcD
t−1) + φyD

t + 2ω(st + p∗Ft − pHt) (35)

cD
t = hcD

t−1 +
(2ω − 1)

σ
(pHt − st − p∗Ft) (36)

yD
t = (1 − 2ω)cD

t − 4ω(1 − ω)(pHt − st − p∗Ft) (37)

Et∆st+1 = iDt (38)

For the case of no home consumption bias (ω = 1
2), taking first differences of (37) and

using (38) we have

Ety
D
t+1 − yD

t = iDt − Etπ
D
t+1 (39)

In addition, when there is no home bias, the remainder of the difference system reduces

to

πD
t =

β

1 + βγ
Etπ

D
t+1 +

γ

1 + βγ
πD

t−1 +
(1 − βξ)(1 − ξ)

(1 + βγ)ξ
(1 + φ)(yD

t − aD
t ) (40)

Note, as with other models of the same New Keynesian genre, there is a small long-run

inflation-unemployment trade-off.

The sum and difference systems can now be set up in state-space form given the nominal

interest rate rule. This Aoki decomposition enables us to decompose the open economy

12



into two decoupled dynamic systems; the sum system, that captures the properties of a

closed world economy, and a difference system that instead portrays the contribution of

openness. In principle, we could close the model with a number of different Taylor-type

rules but here we choose to focus on IFB rules that feedback exclusively on expected

inflation. As discussed in BLP, it is possible to design optimal IFB rules within the

constraints defined by the rule. However, the literature on determinacy, to which our

paper contributes, has a more modest objective of providing guidelines to policymakers in

the form of simple criteria for avoiding very bad outcomes that lead to multiple equilibria

or explosive behaviour. In our set-up, these guidelines focus on the choice of feedback,

interest rate smoothing and feedback horizon parameters. We now pursue this objective

by looking at how such guidelines are affected when we proceed from the closed to the

open economy, and by the degree of openness in the latter.

4 The Stability and Determinacy of IFB Rules

This section studies two particular forms of simple rule, IFB rules either of the form

it = ρit−1 + θ(1 − ρ)Etπt+j (41)

where j ≥ 0 is the forecast horizon, which is a feedback on consumer price inflation, or of

the form

it = ρit−1 + θ(1 − ρ)EtπHt+j (42)

which is a feedback on producer price inflation.13 We assume that the foreign bloc has a

similar rule with the same parameters and forecast horizon.

With rules (41) or (42), policymakers set the nominal interest rate so as to respond

to deviations of the inflation term from target. In addition, policymakers smooth rates,

in line with the idea that central banks adjust the short-term nominal interest rate only

partially towards the long-run inflation target, which is set to zero for simplicity in our

set-up.14 The parameter ρ ∈ [0, 1) measures the degree of interest rate smoothing. j

13Both rules are in absolute deviation form about the baseline steady state and could represent the

feedback component of monetary policy that complements a (possibly optimal) open-loop trajectory.
14For instance (41) can be written as ∆it = 1−ρ

ρ
[θEtπt+j − it] which is a partial adjustment to a static

IFB rule it = θEtπt+j .

13



is the feedback horizon of the central bank. When j = 0, the central bank feeds back

from current dated variables only. When j > 0, the central bank feeds back instead from

deviations of forecasts of variables from target. Finally, θ > 0 is the feedback parameter:

the larger is θ, the faster is the pace at which the central bank acts to eliminate the gap

between expected inflation and its target value. We now show that, for given degrees of

interest rate smoothing ρ, the stabilizing characteristics of these rules depend both on the

magnitude of θ and the length of the feedback horizon j.

4.1 Conditions for Uniqueness and Stability

To understand better how the precise combination of the pair (j, θ), IFB rules can lead the

economy into instability or indeterminacy consider the sum form of the model economy

(32) and (33) with interest rate rules of the form (41) with j = 0, 1. Shocks to TFP are

exogenous stable processes and play no part in the stability analysis. We therefore set

aS
t = 0. Write the sum economy and the rule in state space form as





zt+1

Etxt+1



 = A





zt

xt



 + BiS where iS = D





zt

xt



 (43)

where zt = [yS
t−1, π

S
t−1, i

S
t−1, ] is a vector of predetermined variables and xt = [yS

t , πS
t ] are

non-predetermined variables. This gives the system under control as




zt+1

Etxt+1



 = [A + BD]





zt

xt



 (44)

The condition for a stable and unique equilibrium depends on the magnitude of the

eigenvalues of the matrix A + BD. If the number of eigenvalues outside the unit circle

is equal to the number of non-predetermined variables, the system has a unique stable

equilibrium with saddle-path xt = −Nzt where N = N(D). (See Blanchard and Kahn

(1980); Currie and Levine (1993)). In our sum model under control, with j = 0, 1, there are

3 non-predetermined variables in zt and 2 non-predetermined variables in xt. Instability

occurs when the number of eigenvalues of A + BD outside the unit circle is larger than

the number of non-predetermined variables. By contrast, indeterminacy occurs when the

number of eigenvalues of A + BD outside the unit circle is smaller than the number of

non-predetermined variables. This implies that when a shock displaces the economy from
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its steady state, there are an infinite number of possible paths leading back to equilibrium.

With forward-looking rules this can happen when policymakers respond to private sector’s

inflation expectations and these in turn are driven by non-fundamental exogenous random

shocks (i.e. not based on preferences or technology), usually referred to as ‘sunspots’. If

policymakers set the coefficients of the rule so that this accommodates such expectations,

the latter become self-fulfilling. Then the rule is unable to uniquely pin down the behavior

of one or more real and/or nominal variables, making many different paths compatible with

equilibrium (see Chari et al. (1998); CGG (2000); Carlstrom and Fuerst (2000); Svensson

and Woodford (1999); and Woodford (2000)).

In order to gain insight into the stabilizing properties of IFB rules, following Batini and

Pearlman (2002) we analyze their performance by using root locus analysis, a method that

we borrow from the control engineering literature. Appendix A outlines how this method

works. Use of this method allows us to identify analytically, for the most part, the range

of stabilizing parameters (j, θ) in our sticky-price/sticky-inflation models for small values

of parameters h and γ (the habit formation and price indexing parameters respectively)

before indeterminacy sets in. It also proves to be a powerful method for computing

threshold values for the general model. The method produces geometrical representations

that show how system eigenvalues change as a function of the change in any parameter in

the system. The technique involves starting from a polynomial equation and using a set of

topological theorems to track the equation’s roots as this parameter in the system varies.

The locus describing the evolution of the roots when parameters change is called the ‘root

locus’. In our particular case we are interested in detecting how the characteristic roots

of the model economy evolve as we vary the inflation feedback parameter θ, for given

forecast horizons j in the policy rule. As the conditions for stability and determinacy

of the model hinge on the value of these roots, from these diagrams we can infer which

regions of the (j, θ) parameter space are associated with unique and well-behaved rational

expectations equilibria. Since we condition on increasingly distant forecast horizons in the

policy rule, the method entails deriving a separate diagram for each value of j. However,

in the majority of cases a clear pattern emerges quickly, so in what follows we only draw

these diagrams at most for j = 0, 1,...,4.

In the following subsections, we use the Aoki method to analyze separately the sum
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and difference systems of two symmetric blocs pursuing symmetric IFB rules of the form

(41) or (42). For open economies both sum and difference systems must be saddle-path

stable for a stable and unique equilibrium. From the sum system (32) and (33), the central

banks’ choice of responding to consumer or price inflation as well as the existence of a

home bias in consumption patterns are both irrelevant in the case of the sum system. In

the case of the difference system this is no longer true, and so we investigate changes to

these assumptions separately for that case.

4.2 The Sum System

The sum form of the IFB rule is given by

iSt = ρiSt−1 + θ(1 − ρ)Etπ
S
t+j (45)

Let z be the forward operator. Taking z -transforms of (32), (33) and (45), the character-

istic equation for the sum system is given by:

(z − ρ)[(z − 1)(z − h)(βz − 1)(z − γ) − λ

µ
z2(φz + µ(z − h))]

+
λθ

µ
(1 − ρ)(φz + µ(z − h))zj+2 = 0 (46)

where we have defined λ ≡ (1−βξ)(1−ξ)
ξ and µ ≡ σ

1−h . Equation (46) shows that the

minimal state-space form of the sum system has dimension max (5, j + 3). Since there are

3 predetermined variables in the sum system, it follows that the saddle-path condition for

a unique stable rational expectations solution is that the number of roots inside the unit

circle of the complex plane is 3 and the number of outside the unit circle is max (2, j).

To identify values of (j, θ) that involve exactly three roots of equation (46) we graph

the root locus of (θ, z) pairs that traces how the roots change as θ varies between 0 and

∞. All the graphs can be drawn by following the rules set out in Appendix A. Other

parameters in the system, including the feedback horizon parameter j in the IFB rule,

are kept constant. We generate separate charts, each conditioning on a different horizon

assumption. Each chart shows the complex plane (indicated by the solid thin line),15 the

15In this plane, the horizontal axis depicts real numbers, and the vertical axis depicts imaginary numbers.

If a root is complex, i.e. z = x + iy, then its complex conjugate x − iy is also a root. Thus the root locus

is symmetric about the real axis.
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1−1 1−1

(i) low λ/µ (ii) high λ/µ

Figure 1: Possible position of zeroes when θ = 0

unit circle (indicated by the dashed line), and the root locus tracking zeroes of equation

(46) as θ varies between 0 and ∞ (indicated by the solid bold line). The arrows indicate

the direction of the arms of the root locus as θ increases. Throughout we experiment with

both a ‘high’ and a ‘low’ λ
µ , as defined after (46). The economic interpretation of these

cases is that the high λ
µ case corresponds to low ξ (i.e., more flexible prices) and low σ

1−h .

From section 3.4 we have seen that the latter implies small spillover effects and hence low

interdependence between the two blocs. Hence in the high λ
µ case, prices are relatively

flexible and interdependence is relatively weak.

The term inside the square brackets in equation (46) corresponds to no nominal interest

rate feedback rule (i.e., an open-loop interest rate policy). Then rule (41) or (42) is

switched off and so the lagged term iSt−1 disappears from our model; the system now

requires exactly two stable roots for determinacy. Figure 1 plots the root locus in this

case. Since with no policy θ is set to 0, the root locus is just a set of dots: namely, the

roots of equation (46) when θ = 0. Note that depending on the value of λ/µ, the position

of these roots varies, and in the flexible price, low interdependence case where λ
µ is high,

there are complex roots indicating oscillatory dynamics.16 The diagram shows that there

are too many stable roots in both cases (i.e. 3 instead of 2), which implies that with no

interest rate feedback rule, there will always be indeterminacy in the sum system.

If the nominal interest rate rule is switched on and now feeds back on current rather

than expected inflation, i.e. j = 0, then the root locus technique yields a pattern of zeros

as depicted in Figure 2. Interest rate smoothing brings about a lag in the short-term

16How we find the position of these zeros is the main example of Appendix A.
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1−1 1−1

(i) low λ/µ (ii) high λ/µ

ρ ρ

Figure 2: Position of zeroes as θ changes using current inflation

nominal interest rate and the system is now stable if it has exactly three stable roots (as

we now have three predetermined variables in the system). The figure demonstrates that

if θ is sufficiently large, one arm of the root locus starting originally at ρ exits the unit

circle, turning one root from stable to unstable so that there are now three – as required

– instead of four stable roots and the system has a determinate equilibrium. As θ → ∞,

there are roots at ±i∞, two roots at 0, and one at µh/(φ + µ), the latter shown as a

square.

Note that when θ = z = 1, the characteristic equation has the value 0, confirming

that the branch of the root locus moving away from z = ρ crosses the unit circle at a

value θ = 1. Thus we conclude that for a rule feeding back on current inflation, the sum

system exhibits determinacy if and only if θ > 1. For higher values of j ≥ 1 we can draw

the sequence of root locus diagrams shown in Figures 3-6, and so confirm the well-known

‘Taylor Principle’ that interest rates need to react to inflation with a feedback greater

than unity. However for j ≥ 1 our diagrams show that an arm of the root locus re-enters

the unit circle for some high θ > 1 and indeterminacy re-emerges. Therefore θ > 1 is

necessary but not sufficient for stability and determinacy. Our results up to this point are

summarized in proposition 1:

Proposition 1 : In the sum system, for a rule feeding back on current inflation

(j = 0), θ > 1 is a necessary and sufficient condition for stability and deter-

minacy. For higher feedback horizons (j ≥ 1), θ > 1 is a necessary but not

sufficient condition for stability and determinacy.
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1−1 1−1

(i) low λ/µ (ii) high λ/µ

ρ ρ

Figure 3: Position of zeroes as θ changes: 1-period ahead expected inflation

1−1 1−1

(i) low λ/µ (ii) high λ/µ

ρ ρ

Figure 4: Position of zeroes as θ changes: 2-period ahead expected inflation

Now let θS(j) be the upper critical value of θ for the sum system for a feedback

horizon j. Figure 3 shows that for the case j = 1, i.e. one-quarter ahead forecasts which

corresponds to a case studied by CGG (2000), indeterminacy occurs when this portion of

the root locus enters the unit circle at z = −1.17 The critical upper value for θ = θS(1)

when this occurs is obtained by substituting z = −1 and j = 1 into the characteristic

equation (46) to obtain:

θS(1) =
1 + ρ

1 − ρ

[

1 +
2(1 + h)(1 + β)(1 + γ)µ

λ(φ + µ(1 + h))

]

(47)

17Thus Figure 3 portrays diagrammatically the result shown analytically by Woodford (2003), chapter

4, that there is a value of θ = θS say, beyond which there is indeterminacy.
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1−1 1−1

(i) low λ/µ (ii) high λ/µ

ρ ρ

Figure 5: Position of zeroes as θ changes: 3-period ahead expected inflation

1−1 1−1

(i) low λ/µ (ii) high λ/µ

ρ ρ

Figure 6: Position of zeroes as θ changes: 4-period ahead expected inflation

One important thing to note looking at this expression is that the greater is the degree

of smoothing captured by the parameter ρ in the interest rate rule, the larger the maximum

permissible value of θ before indeterminacy sets in. For j ≥ 2, Figures 4-6 show that

indeterminacy occurs when the root locus enters the unit circle at z = cos(ψ) + isin(ψ)

for some ψ ∈ (0, π
2 ). All our results up to this point are analytical using topological

reasoning, but now the threshold θS(j) for j ≥ 2 must be found numerically. Given j,

write the characteristic equation as

max(5,j+3)
∑

k=1

ak(θ)z
k = 0 (48)

noting that some of the ak are dependent on θ. The root locus meets the unit circle at

z = cos(ψ) + isin(ψ). Using De Moivre’s theorem zk = cos(kψ) + isin(kψ) and equating

real and imaginary parts we arrive at two equations which can be solved numerically for

θ and ψ. Results using MATLAB are reported in the next section.

As well as locating an upper threshold θ = θS(j), an even more significant result

concerning indeterminacy emerges from Figures 4, 5 and 6 for j ≥ 2. These have been

drawn in for values of ρ such that the two rightmost poles of the root locus are joined by
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straight lines that meet outside the unit circle. The implication is that for some values of

θ > 1, these yield unstable roots of the system, and therefore the system will have exactly

three stable roots which is what is required for determinacy. (Note that if the arms of the

root locus from ∞ cross the unit circle before these latter meet, then there may anyway be

too many stable roots). However, for a lower value of ρ it could happen that rather than

meeting to the right of z = 1, the two arms instead meet to the left of z = 1, that is inside

the unit circle and then remain within it, as in figure 7. This would imply that for all θ

there are always more than three stable roots, which would entail, in turn, indeterminacy

for all values of θ. We therefore conclude that there is determinacy for θ slightly greater

than 1 if the root locus passes through z = 1 from the left, as in figures 3-6. Conversely,

Figure 7 for the left and middle examples show indeterminacy for all θ if the root locus

passes through z = 1 from the right. However, to be certain that this result is true for all

θ, we need to be able to show that once this arm of the root locus enters the unit circle

it never leaves it, as is not the case in the right hand example of Figure 7. The simplest

case for which this ‘pathological’ behaviour cannot happen is when h = γ = 0. We can

now show:

Proposition 2 : For the general model there is always some lead JS such that

for

j > JS =
1

1 − ρ
+

(1 − β)(1 − γ)σ

λ(φ + σ)
(49)

there is indeterminacy for all values of θ, provided that that the arm of the

root locus from the right is ‘non-pathological’ in the sense that it enters the

unit circle only once. If h = γ = 0 this is true if β > ρ >
√

2 − 1 and λ(φ+σ)
σ >

(1−β)(1+ρ)(1−ρ)2

ρ2+2ρ−1
.

Proof : See Appendix B.

For h, γ > 0 the derivation of sufficient conditions that rule out pathological behaviour

has proved elusive. However for small values of h, γ, the root locus diagrams correspond

to the ‘low λ/µ’ ones of Figures 2-6, with the inner arms that lie off the real axis becoming

vanishingly small as h, γ tend to 0. By a continuity argument therefore, it follows that the

sufficient conditions of Proposition 2 apply in this case as well for small h, γ. Numerical

experiments indicate that pathological behaviour does not occur for all realistic values of
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1−1 1−1

(i) low λ (ii) high λ

ρ ρ 1−1

(iii) very low λ

ρ

Figure 7: Position of zeros as θ changes: 3-period ahead expected inflation, and

low ρ

the parameters.18Indeed it is extremely difficult to numerically produce diagrams such as

that on the right-hand-side of figure 7. For example with other parameters set at central

values the parameter ξ must exceed 0.9, corresponding the price contracts of 10 quarters.

In addition our calibrated values indicate that the sufficient conditions in proposition 2

are easily satisfied.

Propositions 1 and 2 confirm, in a rigorous setting, the possibility of real indeterminacy

for any IFB rule with lead j ≥ 1 when the feedback on producer price inflation is below

unity (the Taylor principle) and above a threshold θS(j). The root locus diagrams in figures

3 and 4 show that θS(1) > θS(2), so that indeterminacy becomes more of a problem as j

increases from j = 1 to j = 2. Table 1 below shows that this deterioration continues for

higher j and eventually, from proposition 2, for high j no IFB rule of the form (42) results

in a unique stable equilibrium. The value of ρ is crucial in determining the critical value

of the lead j beyond which indeterminacy sets in. The lower ρ, the lower the maximum-

permitted inflation horizon the central bank can respond to, and hence, the larger the

region of indeterminacy under IFB rules. Thus the absence of interest rate smoothing has

the same indeterminacy-inducing effect as high j.

18BLP provides calibrated values for parameters mostly based on Smets and Wouters (2003). For the

US central values for parameters are ρ = 0.9, β = 0.99, σ = 2, φ = 0.8, γ = 0.5, ξ = 0.75 and h = 0.6,

assuming a quarterly model. Then λ = 0.086 and µ = 5.
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4.3 The Difference System

In this section we analyze the effect of the IFB rule in the difference system. We shall

see that, in this case, there are important differences in the conditions for determinacy

depending on (i) whether the central banks react to producer or consumer price inflation

and on (ii) the degree of openness of the two economies (as captured by the parameter

ω). We start by considering the case of complete integration (i.e. ω = 1
2 and no home

bias), looking first at IFB rules based on producer price inflation and then at IFB rules

based on consumer price inflation. Then we consider the case when there is home bias,

however restricting ourselves to the case of no habit formation (h = 0) and a unit elasticity

of substitution in the utility function (σ = 1). These more restrictive assumptions imply

no foreign asset dynamics about a balanced trade steady state (since trade is always

balanced), as when we assumed no home bias. Without these restrictions we need to

address the well-known problems associated with Ramsey consumers in open economies

(see, for example, Schmitt-Grohe and Uribe, 2001).19

4.3.1 No Home Bias and IFB Rules Based on Producer Price Inflation

With interest rates feeding back on producer price inflation, the IFB rule in difference

form is given by

iDt = ρiDt−1 + θ(1 − ρ)Etπ
D
t+j (50)

Taking z-transforms of (50), (39) and (40), it is now easy to show that for the difference

system the characteristic equation reduces to

(z − ρ)[(z − 1)(βz − 1)(z − γ) − λ(1 + φ)z2] + λθ(1 − ρ)(1 + φ)zj+2 = 0 (51)

The root locus diagrams for this characteristic equation will have qualitatively the same

features as those for the sum system. So propositions 1 and 2 apply to the difference

system as well. Again numerical results rule out pathological behaviour of the root loci.

By analogy with our earlier results, the critical upper value θD(1) for the difference system

19An alternative way of handling the foreign assets problem is to follow BB and CGG, among others,

and recast the model as stochastic with complete asset markets. The linearized stochastic model has an

identical deterministic component and therefore the stability analysis, which is all that concerns us in this

paper, all goes through as before. Furthermore, in that case the analysis is possible without restrictions

on h and σ for the home bias case.
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when both central banks respond to producer price inflation with a feedback horizon j = 1

is given by

θD(1) =
1 + ρ

1 − ρ

[

1 +
2(1 + β)(1 + γ)

λ(φ + 1))

]

(52)

and a sufficient condition for indeterminacy is now:

j > JD =
1

1 − ρ
+

(1 − β)(1 − γ)

λ(1 + φ)
(53)

It follows from a little algebra that θS(1) > θD(1) iff σ > 1−h
1+h and that JS > JD iff σ > 1.

In our calibration in Appendix C we report estimates for σ well above unity. So for h ≈ 0.5,

we conclude that θS(1) > θD(1) and JS > JD for plausible parameter values. For j ≥ 2,

threshold values must be computed numerically. Figure 8 shows the areas of stability and

determinacy in (j, θ) space for the sum and difference systems. The figure indicates that

the area of indeterminacy is smaller for the difference system case. In our open economy

model, both the sum and difference systems must be stable and determinate for the world

economy to have this property. Our results indicate that in this respect the constraints

on (j, θ) for the difference system are the binding ones. Furthermore our expressions for

θS(1), θD(1), JD and JS indicate that as σ and h increase, the parameter space associated

with determinate equilibria under an IFB rule shrinks in the open-economy relative to the

closed-economy case. We synthesize these results via the following proposition:

Proposition 3. With IFB rules responding to producer price inflation and

with no home bias, if σ > 1 then potential indeterminacy is exacerbated in the

open economy, and it becomes worse as σ and the habit parameter h increase.

To see the intuition behind this result one needs to go back to the spill-over effects of

monetary policy captured by the parameter κ1 defined in (31). There we saw that as σ
1−h

increases, then the negative spillover effects dominate and the stabilizing effect of the IFB

rule in one bloc has the opposite effect in the other bloc. Thus the rule has a beggar-thy-

neighbour character leading to possibly incompatible responses to shocks and the absence

of a unique stable equilibrium, i.e., indeterminacy. Figure 8 illustrates proposition 3 by

showing θS(j) and θD(j). As the proposition suggests, the area of indeterminacy is larger

in the open-economy case (this area now being equivalent to the sum of the dark and
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Figure 8: Areas of Determinacy for the Sum Difference Systems: Feedback on

Producer Price Inflation and No Home Bias.

light grey areas in the diagram) than in the closed-economy case. As σ and h grow in

magnitude, the dark area in the diagram expands, thus increasing the negative output

spillovers between the two blocs. Also from (49) and (53) as interest rate smoothing ρ

increases, both θS(j) and θD(j) shift to the right alleviating the indeterminacy problem

for both closed and open economies alike. Table 1 quantifies numerically upper critical

values for θ in the sum and difference system cases, respectively when we calibrate the

model’s parameters as described in Appendix C of BLP using US data (see footnote 18).

j j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11

θS(j) 369 60.2 12 5.5 3.5 2.62 2.05 1.67 1.40 1.18 1.02

θD(j) 247 38.2 9.6 5.1 3.4 2.57 2.04 1.66 1.39 1.18 1.02

Table 1. Critical upper bounds for θS(j) and θD(j).

4.3.2 No Home Bias and IFB Rules Based on Consumer Price Inflation

With no home bias purchasing power parity applies to the consumer index and therefore

πt − π∗
t = ∆st. Hence using (38) the interest rate rule of the difference system is given by

iDt = ρiDt−1 + θ(1 − ρ)Et∆st+j = ρiDt−1 + θ(1 − ρ)Eti
D
t+j−1 (54)
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where iDt ≡ it − i∗t . With the nominal interest rate (in difference system form) depending

only on leads and a lag of itself, the policy reaction function is completely decoupled from

the rest of the difference system. This leads to the result:.20

Proposition 4 : When IFB rules in the two blocs respond to consumer price

inflation and there is no home bias in consumption, a rule for both blocs feed-

ing off consumer price inflation expected at any time horizon j ≥ 0 leads to

indeterminacy of the equilibrium.

Proof: From (54), iD is completely decoupled from yD and πD. It therefore follows that

the joint determinacy properties of (37) and (40) are completely independent of iD, be-

cause we can treat the latter as an exogenous variable. The relevant characteristic equation

is then given by

(βz − 1)(z − 1)(z − γ) − λ(1 + φ)z2 = 0 (55)

Root locus analysis of this equation for values of λ ranging from 0 to ∞ show that there

are always two stable roots, whereas inspection of (39) and (40) shows that determinacy

requires one stable root. Hence the system is always indeterminate.21 ¤

The intuition behind this results follows from that for IFB rules feeding back on pro-

ducer price inflation, as in proposition 3. Now, since targeting consumer price inflation

in effect adds an nominal exchange rate target, the beggar-thy-neighbour character of the

rules is exacerbated. On bloc’s appreciation to reduce consumer price inflation has the

opposite effect on the second bloc and the conflict between the responses of the two mon-

etary authorities is now incompatible with any saddle-path stable equilibrium. However,

as we show in our final subsection, this extreme result is a consequence of the complete

openness of the two economies.

20See Zanna (2003) for a discussion of how conditions for determinacy are affected by the choice of the

inflation measure to which the central bank responds to in the small-open economy case.
21Note that the decoupled interest rate process has a characteristic equation z − ρ− θ(1− ρ)zj = 0. By

the root locus method it can be shown that this system also has an indeterminate equilibrium for j > 1

and for j = 1 when θ > 1−ρ

1+ρ
. However, for the system as a whole the indeterminacy is determined by that

of the yD, πD system as given in the proof.
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4.3.3 The Effect of Home Bias

As discussed earlier, allowing for home bias in consumption patterns has no implications

for the sum system, and we therefore only need to consider its impact on the difference

system. In this system, we can ignore problems arising from foreign asset dynamics by

focussing on the case σ = 1 and h = 0. Writing τt = pHt − st − p∗Ft in linearized form, this

yields a representation for the difference system:

(2ω − 1)τt = cD
t (56)

yD
t = (1 − 2ω)cD

t − 4ω(1 − ω)τt = −τt (57)

(1 + βγ)πD
t = βEtπ

D
t+1 + γπD

t−1 + λ(−(1 + φ)aD
t + cD

t + φyD
t − 2ωτt)

= βEtπ
D
t+1 + γπD

t−1 − λ(1 + φ)(τt + aD
t ) (58)

Consider first feedback from forward-looking producer price inflation, given for the

difference system by (50). Together with (56) and the UIP condition, which we write in

terms of the terms of trade as

Et(τt+1) − τt = Etπ
D
t+1 − iDt (59)

this generates a characteristic equation identical to that for no home bias, (51). Thus

with h = 0 and σ = 1 and feedback from producer price inflation, the conditions for

indeterminacy are not affected by the existence of home bias.

For the case of feedback from forward-looking consumer price inflation, we can use

(59) to write the difference system for interest rates as

iDt = ρiDt−1 + θ(1 − ρ)(2ωEti
D
t+j−1 + (1 − 2ω)Etπ

D
t+j) (60)

This leads to a characteristic equation given by

(z−ρ)[(βz−1)(z−1)(z−γ)−λ(1+φ)z2]−θ(1−ρ)zj [2ω(βz−1)(z−1)(z−γ)−λ(1+φ)z2] = 0

(61)

Inspection of the system of dynamic equations (58), (59) and (60), shows that determinacy

requires exactly two stable roots. For the case j = 1, the root locus diagram Figure 9

shows that this is the case for a large range of θ > 1. Note that there is a branch point into
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1−1 ρ

Figure 9: Position of zeroes as θ changes, for j = 1 in the home bias difference

system with CPI inflation based IFB rules.

1−1 ρ

Figure 10: Position of zeroes as θ changes, for j = 2 in the home bias difference

system with CPI inflation based IFB rules.

the complex plane, which returns to the real axis for a larger value of θ; as θ approaches a

further critical value, one of the zeroes tends to ∞, and beyond this critical value it heads

along the real axis from −∞. Finally, there is a critical value of θ at which z = −1, and

any higher values of θ yield indeterminacy. For j = 1 we can evaluate the upper bound

on θ as before by putting z = −1 and j = 1 in (61). For the case under consideration

with feedback from consumer price inflation and home bias ω 6= 1
2 , denote this threshold

at j = 1 by θD(CP, ω). Then we obtain:

θD(CP, ω) =
1 + ρ

1 − ρ

[

1 +
2(1 − 2ω)(1 + β)(1 + γ)

4ω(β + 1)(1 + γ) + λ(φ + 1))

]

(62)

For j = 2, from Figure 10 the critical value at which indeterminacy occurs is not

associated with z = −1. Similar root locus diagrams to the ones we have seen earlier can

then be drawn for values of j > 2 we can now show that indeterminacy occurs for all

θ > 1, provided that the derivative of the LHS of (61) at θ = z = 1 is greater than 0. The
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threshold values of j must then satisfy

j >
1

1 − ρ
+

(1 − β)(1 − 2ω)(1 − γ)

λ(1 + φ)
= JD(CP, ω) (63)

where we denote the threshold horizon for the case of feedback from consumer price in-

flation with home bias by JD(CP, ω). Note that these results do not apply when there is

no home consumption bias (ω = 1/2), because this is a knife-edge case in which nominal

relative interest rates are decoupled from the rest of the system.

We can now compare the difference systems with home bias under rules based on

producer price, and on consumer price inflation. Denote the θ-threshold at j = 1 and the

j-threshold for producer price based rules by θD(PP, ω) and JD(PP, ω) respectively. We

have shown that for h = 0 and σ = 1 we obtain θD(PP, ω) = θD and JD(PP, ω) = JD

obtained previously without home bias. Gathering together these results, after some

algebra we arrive at:

θD(PP, ω) − θD(CP, ω) =
4(1 + ρ)(1 + β)(1 + γ)ω[2(1 + β)(1 + γ) + λ(1 + φ)]

(1 − ρ)λ(1 + φ)[4ω(1 + β)(1 + γ) + λ(1 + φ)]
(64)

JD(PP, ω) − JD(CP, ω) =
2ω(1 − β)(1 − γ)

λ(1 + φ)
(65)

Clearly JD(PP, ω) − JD(CP, ω) increases with ω ∈ [0, 1
2 ] as we proceed from autarky to

a complete integration of the two economies. It is easy to show that the same is true for

θD(PP, ω) − θD(CP, ω). By analogy with the reasoning leading up to proposition 3, we

have a proposition that qualifies proposition 4 by considering less that completely open

economies:

Proposition 5. Confining ourselves to the case σ = 1, h = 0, with home con-

sumption bias, the potential indeterminacy of IFB rules is worse when based

on consumer rather than producer price inflation, and becomes increasingly

worse as the degree of openness of the two blocs increases.

5 Conclusions

This paper has examined conditions for a unique stable rational expectations equilibrium

for a symmetric two-bloc world economy where monetary authorities in both blocs pursue
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IFB rules. Most of the literature in this area assumes that the economy is closed. In

the open economy changes to nominal interest rate affect aggregate demand through both

intertemporal substitution effects (as in a closed economy) and terms of trade effects,

working in opposite directions. Given the additional terms of trade effect, it is reasonable

to expect that IFB rules would perform differently in the open economy, and indeed we

find this to be the case.

Our results are best synthesized by focussing on the critical upper bound for the

expected inflation feedback parameter beyond which there is indeterminacy, θS(j) and

θD(j) for the sum and difference systems respectively, where j is the feedback horizon.

The diverse performance of rules in the closed and open economy can be summarized by

the difference θS(j) − θD(j). Consider first the case when there is no home bias and the

degree of openness is at its maximum. For IFB rules based on producer price inflation

this difference is positive, indicating that indeterminacy is a more serious problem for

the open economy. If rules are based on consumer price inflation the problem worsens;

indeed, in the case of no home bias, an IFB rule responding to consumer price inflation

at any horizon j ≥ 0 (i.e., including feedback on current consumer price inflation) leads

to indeterminacy.22 With consumer price inflation feedback and some home bias, the

indeterminacy problem is less severe, but it rapidly deteriorates towards the extreme

case as the bias diminishes and the economies become more open, since in that case the

θS(j) − θD(j) increases. The rationale behind the poorer performance of IFB rules based

on consumer price inflation lies with beggar-thy-neighbour behavior. between two blocs

when central banks simultaneously attempt to lower domestic consumer price inflation,

now including an imported component, by improving their own bloc’s terms of trade.

Although the euro area and the US are not very open, and so they probably do not fall

foul of our worst case scenario, our results are nevertheless an important warning for the

ECB and the Federal Reserve, since they imply that concurrent excessive preemptiveness

in response to shocks may expose both to self-fulfilling sunspot sequences for any feedback

on inflation forecasts. Since both the ECB and the Federal Reserve focus primarily on

consumer price inflation 23 and not on producer price inflation, our results on the poor

22In fact it is straightforward to show that proposition 4 also holds for any backward lag, j < 0.
23As measured respectively by changes in the Harmonized Index of Consumer Prices, HICP; and changes

in the Personal Consumption Expenditure, PCE, in the form of either the chain-weighted index or the
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performance of consumer price based rules also have normative implications.

A A Topological Guide to The Root Locus Technique

Here we present a brief guide to how to use the root locus technique. We start by some

standard ‘rules’ as provided in control theory textbooks, and then apply them to a specific

example.

The idea is to track the roots of the polynomial equation f(z) + θg(z) = 0 as θ moves

from 0 to ∞. Clearly for θ = 0, the roots are those of f(z) = 0, whereas when θ → ∞,

the roots are those of g(z) = 0. The root locus then connects the first set of roots to the

second set by a series of lines and curves. We shall assume without loss of generality that

the coefficient of the highest power of each of f and g is unity.

There are a number of different ways of stating the standard control ‘rules’ that underly

the technique. One popular way (see Evans (1954)) involves just 7 steps:

1(a). Define n(f) = no. of zeros of f(z), n(g) = no. of zeros of g(z).

1(b). Loci start at the zeros of f(z), and end at the zeros of g(z) and at ∞ if

n(f) > n(g).

1(c). Loci start at the zeros of f(z) and at ∞, and end at the zeros of g(z) if n(g) >

n(f).

2. Number of loci must be equal to max(n(f), n(g)).

3. A point on the real axis is on the root locus if the number of zeros of f and g on

the real axis to its right is odd.

4. Loci ending or beginning at ∞ do so at angles to the +ve real axis given by

(2k + 1)π/(n(p) − n(z)), where k goes from 0 to (n(p) − n(z)).

5. Asymptotes at ∞ intersect the real axis at the center of gravity of the zeros of f

and g, i.e. [Sum of zeros of f - Sum of zeros of g]/(n(f) − n(g)).

6. If all coefficients of f and g are real, then the root locus is symmetric about the

real axis.

7. Loci leave the real axis where ∂θ/∂z = 0.

A specific example is provided by (46) without an interest rate rule:

(z − 1)(z − h)(βz − 1)(z − γ) − λ

µ
z2(φz + µ(z − h)) = 0

Consider changes to λ
µ . Then f(z) in the notation above has roots at 1, at h, γ both inside

the unit circle, and at 1
β outside the unit circle, while g(z) has two roots at 0 and one at

µh
φ+µ , which is less than h. Thus by Step 1(b), there will be a root at ∞. The root locus

diagrams in the main text have been drawn for the case γ < µh
φ+µ , so we assume this for

the moment.

deflator.
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1−1 h 1/βγ

Figure 11: Position of zeros for varying λ
µ

By examination of the characteristic equation we see that as λ
µ → ∞, there is a root

at +∞; there is no logical possibility that it could be connected to any of the roots other

than 1
β , otherwise Step 6 would be violated. Secondly we note that there cannot be an

arm of the root locus connecting γ to 0, because it would then be impossible for either

arm starting at 1 or at h to also get to 0, without again violating Step 6. It therefore

follows that there must be an arm connecting γ to µh
φ+µ . In order for the arms starting at

1 and h to then get to 0, they must head towards one another and then branch off into

the complex plane. Logically therefore, there is only one way of drawing the diagram, as

shown.

This diagram explains the position of the zeros as depicted in Figure 11 for low and

high λ
µ . Note that if γ > µh

φ+µ , it is easy to show that the root locus diagram changes

very little. γ will still have an arm connecting it to µh
φ+µ , but the arrow will point in the

opposite direction.

B Proof of Proposition 2

We prove this in several stages. Firstly we find the conditions that ensure that the root

locus crosses the unit circle from the right. Then we derive the sufficient conditions that

ensure that this arm of the root locus never leaves the unit circle.

Write (46) as f + θg = 0. Taking derivatives with respect to θ, and evaluating at

θ = 1, z = 1 yields [f ′(1) + g′(1)]∂z
∂θ + g(1) = 0. By inspection g(1) > 0, so that the

root locus crosses z = 1 from the right if f ′(1) + g′(1) > 0. Substituting from (46) and

rearranging, this is a requirement that (49) is satisfied.

For the next stage of the proof we require the following two results:

Lemma 1 : The arms of the root locus for j and j + 1 never intersect in the

complex plane.

Proof : Suppose that the root loci meet at a value z∗ where the corresponding θ values

for j, j + 1 are given by θj , θj+1. It then follows that θj+1z
∗ = θj , which implies that z∗

must be real and not complex.
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The corollary to this result is that the arms of the root locus that lie on the real line

are common to all j.

Lemma 2 : The arms of the root locus that branch out from the real axis and

then head to 0 for a given j, enclose the the corresponding arms for j + 1.

Proof : From Lemma 1, all we need is to find one point on these arms for which this is

true. Accordingly, we show that this is the case for the branch points into the complex

plane, denoted zj . Such a branch point occurs where the derivative of the characteristic

equation is equal to 0. Denoting the characteristic equation by θzj+1 +h(z) = 0, the value

of θ at the branch point, together with the value zj , is obtained by solving

θjz
j+1
j + h(zj) = 0 (j + 1)θjz

j
j + h′(zj) = 0 (B.1)

To prove the result, we now need to show that zj+1 is to the left of zj . This can be done

by demonstrating that the root locus passes through zj from the right, which is equivalent

to ∂z
∂θ < 0 at zj . This derivative is obtained by total differentiation of the characteristic

equation for j + 1:

[(j + 2)θzj+1 + h′(z)]
∂z

∂θ
+ zj+2 = 0 (B.2)

Since the branch point of interest is positive, all we need to show therefore is that

(j + 2)θzj+1 + h′(z) > 0 at z = zj . But from the proof to Lemma 1, we know that

θzj = θj , so that (j + 2)θzj+1
j + h′(zj) = (j + 2)θjz

j
j + h′(z) = θjz

j
j > 0, using (B.1).

Remainder of Proof of Proposition 2 : The sequence of root locus diagrams cor-

responding to this special case h = γ = 0 of our model is very similar to those of Figures

2-7. The key differences are that the inner arms of the root locus that branch into the

complex plane are absent, while the very short arm that lies along the real axis inside the

unit circle now ends at z = 0. Furthermore, because the only dynamics in this situation

arise from the interest rate rule, there is now only one predetermined variable for the

system. We shall establish a sufficient condition for λ(φ + σ)/σ, which for convenience we

define as Λ. We first note that after setting h = γ = 0 and dividing by z2, (46) can be

rearranged as

Kzj+1 + (z − ρ)[(z − 1)(βz − 1) − Λz] = 0 (B.3)

where K is appropriately defined. We are now interested in the points where the root locus

crosses the unit circle; these are given by z = eiψ, where ψ is the angle measured from the

real axis. Noting that einψ = cos(nψ)+i sin(nψ), we can solve for K and ψ simultaneously

by writing (B.3) as two separate equations, one involving cos and the other sin terms. K

can be eliminated by multiplying the sin equation by cos((j + 1)ψ), and subtracting it

from the cos equation multiplied by sin((j + 1)ψ). This yields an equation of the form

β sin((j−2)ψ)−(β+βρ+1+Λ) sin((j−1)ψ)+(βρ+ρ+1+ρΛ) sin(jψ)−ρ sin((j+1)ψ) = 0

(B.4)
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All the solutions other than ψ = 0, π can in principle be found by dividing this equation

by sinψ, and expressing it as a polynomial equation in cosψ of order j. By drawing two

root locus diagrams in the manner shown in the main text, one for positive values of K

and the other for negative values of K, it is straightforward to account for j − 2 solutions

of (B.4).

A sufficient condition for no further crossings of the unit circle is to have parameter

values such that the last two of the solutions for (B.4) for cos ψ are greater than 1. Now

denote the LHS of (B.4) after division by sinψ by f(cos ψ). Noting that (a) the coefficient

of the highest power of cosψ in f is proportional to the coefficient on sin((j +1)ψ), and is

therefore negative, so f(x) tends to −∞ as x tends to ∞, and (b) f(1) = −(1−ρ)Λ < 0, it

follows that a sufficient condition for two roots of f being greater than 1 is that f ′(1) > 0.

We shall impose this sufficient condition on the critical value of j of the text, which has

the property:

j >
1

1 − ρ
+

1 − β

Λ
> j − 1 (B.5)

To calculate f ′(1), we use the result that d
d(cos ψ)

sin(nψ)
sin ψ

∣

∣

∣

∣

cos ψ=1

= n3−n
3 . Substituting into

(B.4) we obtain

3f ′(1) = −Λ(1−ρ)j3 +3j2(Λ+(1−β)(1−ρ)+ j(9β−3βρ−3−3ρ−2Λ−ρΛ)−6β (B.6)

Now substitute −j > −1− 1
1−ρ −

1−β
Λ to turn the −j3 term into a j2 term; then substitute

j > 1
1−ρ + 1−β

Λ first to eliminate the j2 term, and then to eliminate the j term, ignoring

the terms with denominator Λ (all positive provided that β > ρ), which yields

3f ′(1) >
Λ(ρ2 + 2ρ − 1)

(1 − ρ)2
− (1 − β)(1 + ρ) (B.7)

which is positive provided that the sufficient condition in proposition 2 is satisfied.

References

Aoki, M. (1981). Dynamic Analysis of Open Economies. Academic Press.

Batini, N. and Haldane, A. G. (1999). Forward-looking rules for monetary policy. In J. B.

Taylor, editor, Monetary Policy Rules, pages 157–202. Chicago: University of Chicago

Press.

Batini, N. and Pearlman, J. (2002). Too Much Too Soon: Instability and Indeterminacy

With Forward-Looking Rules. Bank of England External MPC Discussion Paper No. 8.

34



Batini, N., Levine, P., and Pearlman, J. (2004). Indeterminancy with Inflation-Forecast-

Based Rules in a Two-Bloc Model. ECB Discussion Paper no 340 and FRB Discussion

Paper no 797, presented at the International Research Forum on Monetary Policy in

Washington, DC, November 14-15, 2003.

Benhabib, J., Schmitt-Grohe, S., and Uribe, M. (2001). Monetary Policy and Multiple

Equilibria. American Economic Review, 91(1), 167–86.

Benigno, G. and Benigno, P. (2001). Implementing Monetary Cooperation through Infla-

tion Targeting. New York University, Mimeo.

Bernanke, B. and Woodford, M. (1997). Inflation Forecasts and Monetary Policy. Journal

of Money Credit and Banking, 24, 653–684.

Black, R., Cassino, V., Aaron, D., Hansen, E., Hunt, B., Rose, D., and Scott, A. (1997).

The Forecasting and policy System: The Core Model. Research Paper No. 43, Reserve

Bank of New Zealand, Wellington.

Blanchard, O. J. and Kahn, C. M. (1980). The Solution of Linear Difference Models under

Rational Expectations. Econometrica, 48(5), 1305–11.

Bullard, J. and Mitra, K. (2001). Learning about monetary policy rules. Journal of

Monetary Economics.

Carlstrom, C. T. and Fuerst, T. S. (2000). Forward-looking versus backward-looking

Taylor rules. Federal Reserve Bank of Cleveland working paper.

Castelnuovo, E. (2003). Taylor Rules and Interest Rate Smoothing in the US and EMU.

Mimeo, Bocconi University.

Chari, V. V., Christiano, L. J., and Eichenbaum, M. (1998). Expectation traps and

discretion. Journal of Economic Theory, 81(2), 462–92.

Christiano, L. J., Eichenbaum, M., and Evans, C. (2001). Nominal Rigidities and the

Dynamic Effects of a Shock to Monetary Policy. NBER Working Paper, no. 8403.
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