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Abstract

In this paper, we examine parameter identification in the hybrid specification of the

New Keynesian Phillips Curve proposed by Gali and Gertler (1999) by employing recently

developed inference procedures. Our results cast doubts on the empirical validity of the

NKPC.
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1 Introduction

In this study, we re-evaluate the empirical validity of the hybrid version of the New Keynesian

Phillips Curve (NKPC) proposed by Gali and Gertler (1999, henceforth GG) and recently refined

by Gali, Gertler and López-Salido (2005, GGLS hereafter). In particular, we address the issue

of parameter identification of the NKPC by applying recently developed moment-conditions

inference methods. We employ Generalized Empirical Likelihood (GEL) procedures to obtain

∗We are grateful to Jordi Gali and J. David López-Salido for providing the data used in their papers. We

are also indebted to Patrik Guggenberger for help with the GAUSS codes employed in this study. The usual

disclaimer applies.
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parameter confidence sets, conditional on model validity. These tests have been studied by

Guggenberger and Smith (2005, 2006, GS hereafter) and Otsu (2006), based on the work of

Kleibergen (2005), developed in a GMM framework. To our knowledge, this paper is the first

empirical application of these methodologies.

GG derive their hybrid Phillips curve in a imperfectly competitive, Calvo-type price setting

framework, combining forward and backward-looking behavior in the equation

πt = λmct + γfEt(πt+1) + γbπt−1 + εt, (1)

where mct represents real marginal cost, Et(πt+1) is the expected inflation in period t and εt

captures measurement errors or unexpected mark-up shocks. The reduced-form parameters are

expressed as

λ = (1− ω)(1− θ)(1− βθ)φ−1

γf = βθφ−1

γb = ωφ−1

φ = θ + ω[1− θ(1− β)]

with structural parameters β, the subjective discount rate, θ measuring price stickiness and ω

the degree of backwardness. Two main results were obtained by GG and GGLS: 1) forward-

looking behaviour is dominant, i.e., γf is approximately as twice as large as γb, which, although

statistically significant, was found to be quantitatively negligible; 2) real marginal cost (instead

of traditional measures of the output gap) plays a major role in driving inflation, as suggested

by a positive and significant λ.

Several authors1 have questioned the validity of these results. The issue of identification was

discussed in Mavroeidis (2005) and analysed by Ma (2002), who applies the Stock and Wright

(2000, SW henceforth) statistics. However, SW tests are not fully informative with respect

to parameter identification, since weak identification and instrument validity are being jointly

tested. Also, in an independent work, Dufour, Khalaf and Kichian (2006) use identification-

robust methods, but do so in a IV context and without taking into account the time-series

nature of the data. These studies provide evidence against the NKPC’s robustness to weak

identification, meaning that conventional GMM asymptotic theory, used in GG and GGLS, is

not valid. We rely on GEL methods, discussed in the next section, which are higher-order efficient
1See, for example, the 2005 special issue on "The econometrics of the New Keynesian price equation" of the

Journal of Monetary Economics, vol. 52(6).
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and have been found to have superior finite sample properties. Furthermore, by concentrating

on the subset of crucial parameters (θ, ω), our analysis leads to more powerful tests.

2 Econometric Framework

Given the often disappointing small sample properties of GMM, a variety of alternative estim-

ators has been proposed. Among these, the empirical likelihood (EL), the exponential tilting

(ET) and the continuous-updating (CUE) estimators are very appealing from a theoretical per-

spective. Newey and Smith (2004) have shown that these methods pertain to the same class

of GEL estimators. These authors demonstrate that, while GMM and GEL estimators have

identical first-order asymptotic properties, the latter are higher-order efficient, in the sense that

these estimators are able to eliminate some sources of GMM’s biases. For example, they show

that, unlike GMM, the bias of EL does not grow with the number of moment conditions.

Consider the estimation of a p-dimensional parameter vector θ = (θ1, ..., θp) based on m ≥ p

moment conditions of the form E[g(yt,θ0)] = 0,∀t = 1, ..., T, where, in our case, g(yt,θ0) ≡
gt(θ0) = ε(xt,θ0) ⊗ zt for some set of variables xt and instruments zt, such that yt = (xt, zt).

For a concave function ρ(v) and a m× 1 parameter vector λ ∈ ΛT (θ), the GEL estimator solves
the following saddle point problem

θ̂GEL = arg min
θ∈<p

sup
λ∈ΛT

T−1
TX
t=1

ρ[λ0gt (θ)]. (2)

Special cases arise when ρ (v) = −(1 + v)2/2, where θGEL coincides with the CUE, while with

ρ(v) = ln(1−v) we have the EL estimator and ρ(v) = − exp(v) leads to the ET case. When gt(θ)
is serially correlated, Anatolyev (2005) obtains similar results to Newey and Smith (2004) and

demonstrates that the smoothed GEL estimator of Kitamura and Stutzer (1997) is efficient, ob-

tained by replacing gt (θ) in (2) with the smoothed counterpart gtT (θ) ≡ 1
2KT+1

PKT
k=−KT

gt−k (θ) .

The SEL variant, in particular, removes important sources of bias associated with the GMM,

namely the correlation between the moment function and its derivative, as well as third-order

biases.

Another major source of misleading inferences with GMM is weak identification. SW de-

rived the appropriate asymptotic theory for this case, concluding that GMM is inconsistent and

conventional tests are therefore flawed. They developed an asymptotically valid test that allows

the researcher to construct identification-robust confidence sets (S-sets) for θ. However, SW

acknowledge difficulties with the interpretation of their method, since their procedure jointly
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tests simple parameter hypotheses and the validity of the overidentifying restrictions. This

may be problematic since their S(θ) statistic is asymptotically χ2(m), with degrees of freedom

growing with the number of moment conditions and, therefore, less powerful to test parameter

hypotheses, with the resulting confidence sets being less informative.

Recently, GS and Otsu (2006) propose identification-robust procedures in a GEL framework,

following the work of Kleibergen (2005). Here, we focus on the LM version of the Kleibergen-type

test proposed by GS, which was found to have advantageous finite-sample properties:

KLM(θ0) = T ĝT (θ0)
0∆̂(θ0)−1Dρ(θ0)[Dρ(θ0)

0∆̂(θ0)−1Dρ(θ0)]
−1Dρ(θ0)

0∆̂(θ0)−1ĝT (θ0)/2 (3)

with ĝT (θ) = T−1
PT

t=1 gtT (θ), ∆̂(θ) = STT
−1P gtT (θ)gtT (θ)

0 (with ST = KT + 1/2) and

Dρ(θ) = T−1
P

ρ1(λ
0gtT (θ))GtT (θ), where GtT (θ) = (∂gtT/∂θ) and ρ1(v) = ∂ρ/∂v. The

statistic has a χ2(p) limiting distribution that depends only on the number of parameters. This

statistic may be appropriately transformed if one wishes to test a sub-vector of θ (see GS and

Kleibergen, 2005 for details), for instance if one or more parameters are deemed to be strongly

identified. If the assumption is correct, partialling out identified parameters will deliver a more

powerful test, with a χ2 asymptotic distribution with degrees of freedom equal to the number

of parameters under test.

3 Empirical Results

For comparability, we use the same dataset of GG and GGLS (see papers for details), comprising

quarterly US data (1960:1-1997:4). We concentrate on the most recent results reported in GGLS

and therefore use the same set of instruments, i.e. 2 lags of each variable, with the exception

of inflation with 4 lags. Thus, resorting to the analysis discussed in the previous section2,

we formed 90% confidence sets for the set of parameters (ω, θ, β) by performing a grid search

over the parameter space (restricted to the interval (0, 1), with increments of 0.01) then tested

H0 : ω = ω0, θ = θ0, β = β0 and collected the values (ω0, θ0, β0) for which the p-value exceeded

the 10% significance level. We also present Kleibergen’s (2005) GMM approach, i.e., combining

his K statistic with an asymptotically independent J(θ) statistic for overidentifying restrictions,

distributed as χ2(m − p), which should enhance the power of the test. For the combined J-K

test, we use αJ = 0.025 and αK = 0.075, therefore emphasizing simple parameter hypothesis

2We used KT = 5, since the optimal bandwidth rate for the truncated kernel used in the Kitamura-Stutzer

estimator is O(T 1/3), (results are largely insensitive to the choice of this parameter).
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testing3. To save space, we report sets based on EL estimation, as there are no significant

differences with other GEL alternatives.

Moreover, we focus on the main points of contention, i.e. the relative magnitude of the

coefficients θ and ω. The latter parameter, in particular, displayed a wide range of estimated

values across the different specifications studied in GG, ranging from 0.077 to 0.522, whereas β is

estimated with more precision. Hence, in Figures 1 and 2 we present bi-dimensional confidence

sets obtained from the J-K andKLM tests, concentrated at particular values of β (here β = 0.98,

but results are the same for different values of this parameter). These sets are plotted together

with 90% confidence ellipses based on standard asymptotic theory.

As it is apparent, GMM and GEL methods produce similar results, despite their intrinsic

differences. Indeed, in both cases the robust confidence sets are much larger than standard

ellipses, with a significant proportion outside the unit cube. This feature is not only a clear

indication of weak parameter identification, but it also means that the confidence sets contain

several combinations of the reduced-form parameters that are inconsistent with the findings of

GG and GGLS. In particular, large ω’s and θ’s correspond to values of λ close to 0, which

questions the significance of the marginal cost as the forcing variable in inflation dynamics.

Furthermore, a large portion of the sets lies above ω = 0.5, hence contradicting the claim of GG

and GGLS that the degree of backwardness is negligible.

More powerful tests may be conducted if one assumes that some parameters are well identi-

fied. This involves obtaining a consistent estimate of these parameters for each value in the grid

of the parameters under test. Even when we do this, the above conclusions remain unaltered.

Figures 3 and 4 reproduce the confidence sets when β is assumed to be well identified (noted

with the superscript β̂) and the null H0 : ω = ω0, θ = θ0 is tested. As expected, the confidence

sets are tighter, mainly due to the reduction in the degrees of freedom. Nevertheless, they are

still unreasonably large and contain far too high values for ω when compared to what has been

reported by GG and GGLS.

Furthermore, when both β and θ are partialled out, the values of ω for which the null

H0 : ω = ω0 is not rejected reinforce the weak identification conclusion. Figures 5 and 6

plot sequences of K and KLM statistics against the corresponding χ2α(1) critical value. The

GMM procedure points to a region of non-rejection formed, roughly speaking, by the intervals

(0.2, 0.5) ∪ (0.7, 0.95), while the GEL test points to non-rejection for almost the entire range of
3See paper for details, choosing different significance levels does not change the results qualitatively.
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ω considered here4, both methods thus confirming identification problems.

4 Conclusion

In summary, by employing identification-robust statistics that allow us to disentangle tests on

coefficients from tests on general model validity (and are therefore more appropriate than those

used in previous studies), we question GGLS’s claim that the NKPC is robust and empirically

plausible. We corroborate the finding that the NKPC suffers from a weak identification problem,

raising doubts on the significance of marginal costs as the forcing variable in inflation dynamics

and on the relative magnitude backward-looking of behaviour. Our conclusions are strengthened

by the use of two different approaches, GMM and GEL, which produce consistent results.
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5 Appendix

Figure 1: J-K set concentrating at β = 0.98
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Figure 2: KLM set concentrating at β = 0.98
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Figure 3: J-Kβ̂ set with β̂ partialled out
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Figure 4: K β̂
LM set with β̂ partialled out
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Figure 5: Kβ̂θ̂ sequence with β̂ and θ̂ partialled out
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Figure 6: K β̂θ̂
LM sequence with β̂ and θ̂ partialled out
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