
råáp=== = = ======råáîÉêëáíó=çÑ=pìêêÉó

Discussion Papers in Economics

Department of Economics
University of Surrey

Guildford
Surrey GU2 7XH, UK

Telephone +44 (0)1483 689380
Facsimile +44 (0)1483 689548
Web www.econ.surrey.ac.uk

ISSN: 1749-5075

TERMINAL CONDITIONS IN FORWARD-LOOKING

ECONOMIC MODELS

By

Richard G. Pierse
 (University of Surrey)

DP 10/06

Terminal conditions in forward-looking
economic models

Richard G. Pierse
Department of Economics

University of Surrey, Guildford GU2 7XH, U.K.

February 24 2006

Abstract
In this paper we show how the popular L-B-J algorithm for solving

forward-looking economic models using Newton methods can be gen-
eralised to allow for a block of terminal equations for variables that
appear with a lead. The e¤ect of choosing di¤erent types of termi-
nal condition is explored in a simple stochastic growth model using
WinSolve, a general nonlinear model solution package.

1 Introduction

The L-B-J algorithm, due to La¤argue (1990), Boucekkine (1995) and Jul-
liard (1996), has become a popular method for solving non-linear economic
models involving forward-looking variables. An application of Newton�s
method to the model equations stacked over time, the algorithm takes ad-
vantage of the special sparse structure of the Jacobian matrix to solve the
linear Newton step equations e¢ ciently, without having to invert or even
store the complete matrix. The algorithm has been implemented in com-
puter packages such as Dynare (Juillard, 1996), Troll (Hollinger, 1996) and
WinSolve (Pierse, 2002), either using numerical derivatives (Dynare) or au-
tomatic derivatives (Troll and WinSolve). Juillard et al. (1998) compare
Newton methods with alternative �rst-order methods such as Fair-Taylor
(Fair and Taylor (1983)), using a variety of di¤erent models, and �nd that
Newton methods are faster and more robust than �rst-order techniques.

1

One important issue with the solution of models involving forward-looking
variables is the determination of terminal values. Any forward-looking model
requires terminal values to be speci�ed for all model variables that appear
with a lead. In the standard L-B-J algorithm, the only possibility is to set
terminal values to constant exogenous values, since these do not a¤ect the
Newton method. However, it is more usual to want to impose terminal condi-
tions that either force terminal values to revert to deterministic steady state
values or make them follow a simple rule such as constant level or constant
growth at the terminal date. To do this, the L-B-J algorithm needs to be
extended to incorporate an extra block of equations de�ning the terminal
conditions. An algorithm for this is presented in this paper and this has
been implemented in WinSolve.
The rest of the paper is structured as follows: Section 2 brie�y outlines

the L-B-J algorithm for solving forward-looking models and Section 3 shows
how the algorithm can be extended by augmenting the Newton equations to
be solved with a block of terminal condition equations for the forward-looking
variables. In Section 4, a simple stochastic growth model is described and in
Section 5 the results of stochastic simulations with this model are compared
when di¤erent types of terminal condition are imposed on the forward-looking
variable, all simulations conducted using the software package WinSolve1.
The �nal section summarises and presents some conclusions.

2 The L-B-J algorithm

The general nonlinear deterministic forward-looking model is de�ned by the
equations

ft(yt;yt+1; � � � ;yt+q;yt�1; � � � ;yt�p;xt;�) = 0 ; t = 1; � � � ; T (1)

where yt is an n� 1 vector of endogenous variables in time period t, xt is an
m� 1 vector of current and lagged exogenous variables, ft is an n� 1 vector
valued function and � is a vector of parameters, p is the longest lag in the
model and q is the longest lead. This system represents a set of n nonlinear
equations over T time periods. Stacking the equations over all time periods
produces a set of nT equations. The Jacobian matrix of this stacked system

1A free trial version is available for download from the Internet at web address
www.econ.surrey.ac.uk/winsolve.

2

has a special structure and looks like

J =

266666666666664

J1 F11 � � � Fq1
B12 J2 F12 � � � Fq2
...

. � � � . . .

Bpp � � � B1p Jp
. . . � � � . . .

. . . � � � � � � FqT�k
. . . � � �

...
. . . � � � . . . JT�1 F1T�1

BpT � � � B1T JT

377777777777775
(2)

where

Jt =
@ft
@y0t

; Fit =
@ft
@y0t+i

; Bit =
@ft
@y0t�i

are all matrices of dimension n� n.
The Stacked Newton method applies Newton�s method (Newton (1686))

to the stacked system. This involves iterating on the set of nT equations

J(ys � ys�1) = �f(ys�1) (3)

where ys is the nT � 1 vector of stacked values of the endogenous variables
in iteration s and f is the nT � 1 vector valued function formed by stack-
ing f1 � � � fT . Iterations start from an initial guess at the solution, y0, and
terminate when a convergence criterion such as

max
j

�����ysj � ys�1j

ys�1j

����� < "
has been satis�ed, for some small value of ".
Each iteration of Newton�s method involves the solution of a set of nT

equations. When either n or T is big, the matrix will be large and this
causes two problems. Firstly, storing the complete matrix consumes a lot of
computer memory. Secondly, using standard solution techniques, the cost of
solving a set of equations is roughly cubic in the order of the matrix and this
cost will quickly become prohibitive. However, the structure of the Jacobian
matrix (2) is very sparse with many zero elements and a special block-band
structure. The L-B-J algorithm, originally suggested by La¤argue (1990) and

3

re�ned by Boucekkine (1995) and Julliard (1996) explicitly takes account
of this special structure to solve the equations e¢ ciently, using Gaussian
pivoting on the blocks.
The method proceeds in two stages. In the �rst stage, the Jacobian

matrix is transformed into an upper block-triangular structure, eliminating
the blocks below the diagonal, �rst using the recursion

subtract Bjt � rows of block t� j from rows of block t

from j = p�; p� � 1; � � � ; 1, where p� = min(p; t � 1) and then replacing the
block on the diagonal by the identity matrix by the operation

premultiply rows of block t by the inverse of the diagonal block J�t

where J�t is the diagonal block Jt after transformation by the recursive set
of Gaussian eliminations. This step is applied, period by period, from t = 1
through to t = T . The �rst stage transforms the Jacobian matrix to an upper
block-triangular structure. In the second stage, this structure is simply solved
recursively, block by block, from period T down to period 1.
Not only does the algorithm exploit the block structure to minimise the

calculations involved in solving the equations. It also economises on stor-
age. The only blocks that need to be stored are those corresponding to the
lead coe¢ cients Fit, i = 1; � � � ; q so that storage is reduced from nT � nT
to nT � nq. This can be reduced further by dropping any columns in Fit,
corresponding to variables that never appear with a lead.

2.1 Terminal conditions in the L-B-J algorithm

One important issue that is neglected in the L-B-J algorithm is that of model
terminal conditions. A solution of the model (1) requires that values are sup-
plied for the variables yT+1; � � � ;yT+q that lie outside of the solution period.
One possibility is to set these terminal values to �xed exogenous values, in
an analogous manner to the way that initial conditions are usually treated.
In this case, the Newton algorithm is not a¤ected since the derivatives will
then be zero.
However, we may prefer to specify equations to de�ne the terminal values.

These may be equations de�ning equilibrium values for the variables, derived
from a deterministic steady state solution of the model. (Note that choosing
a deterministic steady state solution as a terminal condition imposes the

4

condition that the model has returned to equilibrium by period T +1, which
may be unrealistic). Alternatively, when a model has no steady state (or one
cannot easily be found), it is possible to specify a simple rule as a terminal
condition such as a constant level yT+j = yT , j = 1; � � � ; q or constant growth
rate yT+j = y

j+1
T y�jT�1, j = 1; � � � ; q.

Imposing di¤erent terminal conditions may lead to di¤erent model solu-
tions. The issues may be illustrated by considering the simple linear rational
expectations model of Muth (1961) de�ned by the equation

pt = �p
e
t+1 + "t

where pet+1 is the expected value of pt+1 formed in period t and "t is a sto-
chastic driving process. Solving the model deterministically, we make the
assumption of model consistent expectations,

pet+1 = pt+1

and set the shochastic driving process to zero. Attempting to solve the
model over a �nite horizon, t = 1; � � � ; T , it is clear that the solution path
is determined entirely by the terminal condition. In this case, imposing a
constant level or constant growth rate terminal rule leads to a singularity
and no solution is possible. The deterministic steady state of the model is
given by p = 0 (except when a = 1 in which case there are an in�nite number
of steady states) and imposing this as the terminal condition gives pt = 0
for all t. Setting any other constant terminal value, the solution values are
determined by the equation

pt =
1

a
pt+1; t = T � 1; � � � ; 1:

Fair and Taylor (1983) recommended that, when solving a model, the
in�uence of the terminal conditions be tested by extending the solution period
until further extensions had no e¤ect on the time path of the model variables
over the original period of interest. Unfortunately, in practice these so-called
type 3 iterations in the Fair-Taylor solution procedure are rarely conducted.
It is possible to generalise the L-B-J algorithm to incorporate terminal

condition equations. In general, the model terminal conditions can be de�ned
by the set of equations

hT+j(yT+j;yT+j�1; � � � ;yT+j�r;xT+j;�) = 0 ; j = 1; � � � ; q (4)

5

where hT+j is an n�1 vector valued function, � is a vector of parameters and
r is the longest lag appearing in any of the terminal equations. (There can
be no leads in the terminal equations of course as they must be backward-
looking). Note that (4) allows a terminal condition to be de�ned for every
endogenous variable in the model. In practice, terminal conditions need only
be speci�ed for variables that appear in the model with a lead.
The complete set of equations (1) and (4) may now be solved as a stacked-

Newton system, using the L-B-J algorithm. The Newton equations (3) need
to be replaced by the augmented set of equations

J+

26664
ys � ys�1
ysT+1 � ys�1T+1

...
ysT+q � ys�1T+q

37775 =
26664

�f(ys�1)
�hT+1(ys�1T+1)

...
�hT+q(ys�1T+q)

37775 (5)

and the Jacobian matrix (2) replaced by the augmented matrix

J+ =

2666666666666666666664

J1 F11 � � � Fq1
B12 J2 F12 � � � Fq2
...

. � � � . . .

Bpp � � � B1p Jp
. . . � � � . . .

. . . � � � � � � FqT�k
. . . � � �

...
. . . � � � . . . JT�1 F1T�1

BpT � � � B1T JT
Hr
T+1 � � � H1

T+1 H0
T+1

. . . � � �
Hr
T+q � � � H1

T+q H0
T+q

3777777777777777777775
where

Hi
T+j =

@hT+j
@y0T+j�i

; i = 0; � � � ; r; j = 1; � � � ; q:

The standard L-B-J recursions can be applied to this augmented system in
the usual way.
Explicitly incorporating terminal conditions into the model in this way

has several advantages. Firstly, suppose that we wish to impose determin-
istic steady state terminal conditions. In simulations in which the model

6

is subject to a permanent exogenous shock, the deterministic model steady
state will change. Without explicitly speci�ed terminal conditions, it would
be necessary to run two simulations in this case: the �rst on a steady state
version of the model to determine the new steady state values and the second
on the dynamic version of the model, imposing the exogenous terminal val-
ues determined from the �rst simulation. With explicitly speci�ed terminal
conditions, the correct terminal values will automatically be calculated. A
second advantage of explicit terminal conditions is that it makes it possible
to solve models even when the �correct�terminal value is not known, by us-
ing a simple rule to impose constant level or constant growth at the terminal
date.

3 A stochastic growth model

This section describes a simple stochastic growth model, originally proposed
by Christopher Sims, that was used by Taylor and Uhlig (1990) and other
authors in the same journal issue to compare a number of di¤erent model so-
lution methods. Although very simple, it does not have an analytic solution,
except in a special case.
Agents are assumed to be in�nitely lived and to maximise lifetime ex-

pected utility subject to a budget constraint. A constant relative risk aver-
sion utility function is assumed

u(Ct) = (1� �)�1C1��t

where Ct is consumption and � is the coe¢ cient of relative risk aversion
0 < � < 1. Then, formally, agents solve the following problem:

maxE0

1X
t=0

�t(1� �)�1C1��t (6)

subject to the resource constraint

Ct +Kt = �tK
�
t�1 (7)

where Kt is the end of period capital stock, and �t is technology. 1�� is the
rate of capital depreciation, 0 � � � 1 and � is the rate of time discount,

7

0 < � < 1.2 We also impose the side-conditions that Ct > 0 and Kt > 0, for
all t. Technology �t is assumed to be stochastic, following the autoregressive
process

ln �t = � ln �t�1 + "t (8)

where "t is a serially uncorrelated normally distributed random variable with
zero mean and constant variance �2.
The �rst order Euler condition for capital in this model is given by

C��t = Et[�C
��
t+1(�+ ��t+1K

��1
t)] (9)

The solution to this model is a decision rule for consumption and one for
capital stock given by Ct = f(Kt�1; �t) and Kt = g(Kt�1; �t) respectively. In
general the exact forms of functions f(�) and g(�) are not known and solutions
must be found by numerical solution of the equations (7), (8) and (9) over a
�nite time horizon t = 1; � � � ; T .
An analytic expression for the deterministic long-run steady state of the

full model can be evaluated by setting "t = 0, �t�1 = �t+1 = �t, Kt�1 = Kt,
EtCt+1 = Ct, and solving equations (7), (8) and (9). The solution is given
by:

�� = 1

K� = (
��

1� ��)
1=(1��) (10)

C� = (
��

1� ��)
�=(1��) + (�� 1)(��

1� ��)
1=(1��):

4 Simulations with the stochastic growth model

Stochastic simulations were performed with the stochastic growth model un-
der alternative terminal condition assumptions. All simulations were carried
out usingWinSolve, solving the model for 1999 periods and using 1000 repli-
cations. Normally distributed shocks to the logarithm of technology (with
variance �2) were applied for the �rst 1990 periods only, allowing the model
9 periods in which to settle down before the terminal condition is imposed.
The following values were used for the model parameters: � = :95, � = :33,

2To be precise, the orginal model proposed by Sims assumed no capital depreciation
so that � = 1. However, allowing some depreciation does not materially complicate the
model.

8

� = :95, � = 0:7, � = 1, and � = :01. These values correspond to one of
the low variance cases reported in den Haan and Marcet (1990), one of the
papers in the same journal issue as Taylor and Uhlig (1990) that discusses
solution of this model (using a completely di¤erent method).
Since the model has only a single expectational variable, Ct+1, and a max-

imum lead of one, only one terminal equation is needed. Three alternative
equations were employed:

CT+1 = (
��

1� ��)
�=(1��) + (�� 1)(��

1� ��)
1=(1��) (11)

which is the deterministic steady state solution for C,

CT+1 = CT (12)

which is a constant level terminal condition and

CT+1 =
C2T
CT�1

(13)

which is a constant growth terminal condition. In the latter two cases, the
equations did not need to be speci�ed explicitly since WinSolve provides
them automatically as possible choices of terminal condition rule.
The results of the experiment are summarised in Figure 1, which displays

the mean from each of the three simulations over the last 19 periods, where
the in�uence of the terminal condition is strongest. The �rst (blue) line is the
deterministic steady state terminal condition case where the terminal value
is forced to the deterministic steady state value of 0:696135. The second
(green) line is the constant level terminal condition case and the third (red)
line is the constant growth terminal condition case.
It can be seen that the three di¤erent terminal conditions visibly in�uence

the last 15 or so periods of the simulation. However, the di¤erences are quite
small and only occur in the �fth decimal place.

5 Conclusions

A new algorithm has been proposed that extends the popular Newton-based
L-B-J algorithm for solving forward-looking nonlinear models to allow the
speci�cation of explicit terminal conditions de�ned by equations. This al-
gorithm is implemented in the software package WinSolve. The e¤ect of

9

Terminal condition simulations

 C steady C level C growth

0.69612

0.69615

0.69618

0.69621

1980 1984 1988 1992 1996

Figure 1: Simulation means for Ct with di¤erent terminal conditions

10

imposing di¤erent terminal conditions has been demonstrated in stochastic
simulations with a simple stochastic growth model. For this model, the dif-
ferences, while clearly visible, are rather small in scale although in other
models, this may not always be the case.

References

[1] Boucekkine, R. (1995), �An alternative methodology for solving nonlin-
ear forward-looking models�, Journal of Economic Dynamics and Con-
trol, 19, 711�734.

[2] den Hann, W.J. and A. Marcet (1990), �Solving the stochastic growth
model by parameterizing expectations�, Journal of Business and Eco-
nomic Statistics, 8, 31�34.

[3] Fair, R. C. and J. B. Taylor (1983), �Solution and maximum likelihood
estimation of dynamic nonlinear rational expectations models�, Econo-
metrica, 51, 1169�1186.

[4] Hollinger, P. (1996), �The stacked-time simulator in TROLL: a robust
algorithm for solving forward-looking models�, mimeo, Intex Solutions,
Needham, MA, USA.

[5] Juillard, M. (1996), �DYNARE: a program for the resolution and sim-
ulation of dynamic models with forward variables through the use of
a relaxation algorithm�, CEPREMAP working paper No. 9602, Paris,
France.

[6] Juillard, M., Laxton, D., McAdam, P. and Pioro, H. (1998), �An al-
gorithm competition: �rst-order iterations versus Newton-based tech-
niques�, Journal of Economic Dynamics and Control, 22, 1291�1318.

[7] La¤argue, J-P. (1990), �Résolution d�un modèle macroéconomique avec
anticipations rationnelles�, Annales d�Economie et de Statistique, 17,
97�119.

[8] Muth, J.F. (1961), �Rational expectations and the theory of price move-
ments�, Econometrica, 29, 315�335.

11

[9] Pierse, R.G. (2002), �WinSolve: a users� guide�, available at
http://www.econ.surrey.ac.uk/winsolve/.

[10] Taylor, J.B. and H. Uhlig (1990), �Solving nonlinear stochastic growth
models: a comparison of alternative solution methods�, Journal of Busi-
ness and Economic Statistics, 8, 1�17.

12

