
råáp=== = = ======råáîÉêëáíó=çÑ=pìêêÉó 
 

  
 

Discussion Papers in Economics 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Department of Economics 
University of Surrey 

Guildford 
Surrey GU2 7XH, UK 

Telephone +44 (0)1483 689380 
Facsimile +44 (0)1483 689548 
Web www.econ.surrey.ac.uk 

ISSN: 1749-5075 

 
 

THE DYNAMIC WAGE BARGAINING PROBLEM 
 
 

By 
 
 

Renuka Metcalfe 
(University of Swansea) 

 
 
 

DP 11/06 
 



THE DYNAMIC WAGE BARGAININGPROBLEM

Renuka Metcalfe1

University of Swansea

This paper considers dynamic equilibria in wage bargaining unifying for the �rst time the

models of Coles and Wright (1998) and Pissarides and producing in contrast to the Coles

and Wright model, a non-de�cient equilibrium. In sharp contrast to the Pissarides model

we analyse a fully dynamic model with non-linear cost functions and risk-averse agents, to

provide overall, saddle-path stability and unique wage and employment outcome which is

devoid of limit cycles.

KEYWORDS: Wage determination, job matching, unemployment, labour markets, bar-

gaining. J23, J31, J40, J64.

1. INTRODUCTION

A two-person ongoing bargaining situation arises when two individuals have the opportunity

to collaborate in a long-term relationship for mutual bene�t in various ways. In the simpler

case, which is the one considered in this chapter, all aspects of the game are analysed, within

a dynamic equilibrium. No aspect of the game is analysed in steady-state (in particular,

the terms of trade of the ongoing partnership), as has been done in the past in the labour

economics literature. No agent will bargain with his trading partner, myopically, without

taking into account what his partner�s expected bargaining endowments may be in the future,

irrespective of whether these are favourable or adverse.

The ongoing labour economics situations of bargaining between members of trade union

workers and �rms, as expounded in the trade union models of Monopoly Union, Right to

Manage and E¢ cient Bargaining Models, insiders and �rms, can be regarded as dynamic

1 I am grateful to Professor Paul Levine for his assistance. This paper is extracted from Chapter 5 of my
thesis. Corresponding author: r.metcalfe@swan.ac.uk
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bargaining problems. The object of this chapter is to provide a theoretical discussion of this

problem, to obtain equilibria and to show overall a de�nite solution to dynamic analysis of

wage determination, which could then provide an explanation of unemployment in a imper-

fectly competitive labour market2. Of course the results found here can be generalised to any

economic situation where the relationship is ongoing between the two agents.

This is a classical problem of exchange in a labour market model in a dynamic envi-

ronment, and more speci�cally of �rms and workers, as developed by Shapiro and Stiglitz

(1984), Stigler (1961), Lindbeck and Snower (1988c) and others. A di¤erent approach is

suggested by Pissarides (2000), which permits the identi�cation of this typical exchange in a

dynamic labour market model. However, his analysis imposes Nash�s axiomatic bargaining

solution within a dynamic environment, a feature in common with the large literature on de-

centralised trade. In addition, he focuses on linear utility with risk-neutral agents and linear

cost functions. Agents in general are risk averse. I have generalised the Pissarides model by

considering risk-averse agents and non-linear cost functions.

In general terms, we assume that the two individuals have perfect foresight, are rational,

forward-looking, and each can compare the utility he or she derives from various economic

situations, each can accurately estimate the other�s expected endowments at the time of

bargaining, each is fully equipped with astute bargaining skills and each has perfect knowledge

of the other�s tastes, preferences and time preferences.

In developing our labour market model with random matching, strategic bargaining as

in Pissarides (2000) (henceforth, referred to as Pissarides model), our terms of trade, the

wage, is a di¤erential function of time, in contrast to the Pissarides model. We assume that

agents are forward-looking, and show that this makes a qualitative di¤erence in the types of

equilibria that emerge.

The concept of expectation with foresight in an ongoing relationship is crucial in this

theory. This concept will be partly explained by way of illustration. Suppose a worker who,

having formed a match with a �rm, is bargaining with the �rm as to the wage at some

period t: the worker knows that the �rm is expected to make a great deal of revenue in the

near future. With knowledge of this, the worker bargains a higher wage. The �rm accepts,

which is consistent with rent-sharing theories, the sociological model of the e¢ ciency wage

2 I will leave this for my future research.
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theory (Akerlof, 1982), insider-outsider theory and so forth. On the other hand, if the worker

knows that the �rm is going to perform adversely in the near future, and may even be on the

verge of bankruptcy, the worker suppresses his wage demands. There is a body of evidence

which is consistent with workers accepting paycuts, see for example, Smith (1994), Smith

(2000), Nickell and Quintini (2003), who indicates that wages are signi�cantly downward

�exible. Also Brown, Ingram and Wadsworth (2004) and more recently, stewards of American

Airlines3 accepting paycuts to postpone bankruptcy of the airline.

Labour market models in the past, including that of Pissarides�s analyses, imposes the

Nash bargaining solution (henceforth, referred to as NBS), in a special case of the dynamic

model. That is, although the bargainers are in an ongoing relationship, the bargainers bargain

wage at its steady-state values, i.e., the values when t!1, or they have equal rates of time

preference. But the theory developed there makes no attempt to reconcile that rational

bargainers in an ongoing relationship will bargain with foresight and will be forward-looking

in a dynamic environment in all aspects and hence a dynamic equilibrium should be sought

for a given non-stationary environment, that is, to determine what it is worth to each agent

to have the opportunity to engage in an ongoing game with a long-term partner4. This

determination is only accomplished in the case of a game in stationary environment.

In any labour market model, the way in which wage is determined plays a crucial role for

the number of job matches taking place per unit of time, and thus for unemployment. There-

fore, special attention will be focused on dynamic determination, which has been relatively

neglected in the labour economics literature. I state at the outset that I have uni�ed for the

�rst time the Coles and Wright (1998) [henceforth, referred to as CW] and Pissarides (2000)

model, to show a stable and unique wage and employment outcome with no limit cycles, that

is, I show a new equilibrium concept. Whilst the CW model is equilibrium de�cient in an

entirely di¤erent model and Pissarides does not analyse a fully dynamic labour market model

as e¤ectively the steady state Nash solution is imposed in an otherwise dynamic model. In

addition, Pissarides only analyses linear cost functions. In contrast, I analyse a fully dynamic

labour market model with risk averse agents and non-linear cost functions. The CW model

had a limit cycle in their model, whilst Pissarides did not perform any simulations and only

3See Financial Times, 26/4/03.
4 I will refrain from discussing the typical di¢ culty (in terms of both monetary costs and time) of �nding

long-term partners, although this is an interesting issue. Search theory has covered some elements of this, for
example, Mortensen (2002).
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analysed a two-dimensional non-linear model. The latter derived the stability properties of

his system purely by visually inspecting the signs of his simple two-dimensional system with

only the unemployment and the market tightness variable.

Wages should re�ect an equilibrium which is derived as a function of time, and by the

construction of the said equilibrium the agreement is immediate. That is, this equilibrium

will depend continuously on the set of the value of the labour services and the value of the

output of these services over time, constituting the mathematical description of the game and

which expresses the utility to each player of the opportunity to engage in the ongoing game.

The ensuing equilibrium is non de�cient, that is, it has a stable and unique wage outcome,

in contrast to the extant literature.

CW study forward-looking bargaining in a totally di¤erent environment to ours in mone-

tary economics, where of course, agents are di¤erent and behave markedly di¤erently to ours.

For example, where the two agents adopts the role of the other upon completion of the trade.

This phenomenon is unobserved in an ongoing game in the labour market. However, their

general theoretical result can be applied to our model.

The organisation of the chapter is as follows: In Section 2 I review the basic labour

market model of matching. In Section 3 I analyse dynamic wage-bargaining and characterise

the equilibrium in terms of a simple di¤erential equation. In Section 4 � 7 I integrate the

dynamic bargaining solution to market equilibria. Section 8 concludes.

2. TRADE IN THE LABOUR MARKET MODEL

The main idea of the model is that trade in the labour market is typically a decentralised

economic activity by agents in a dynamic environment, which is re�ected more importantly

in the price the agents trade as well. Trade is uncoordinated, time-consuming and costly

for both �rms and workers. That is, �rms and workers expend resources prior to job cre-

ation and production, and existing jobs command rents in equilibrium, unlike the Walrasian

labour markets. We use a simple modeling device to capture the implications of trade in a

market equilibrium where I ensure that every aspect of the model is dynamic, including wage

determination.

Pissarides develops a theory of unemployment which includes as a special case the two-

person static wage-bargaining problem within an otherwise dynamic model, that is, where
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the expected values of employed workers, unemployed workers, the expected value of an

occupied job and vacancies to the �rm are all dynamic. But the theory there developed

makes no endeavour to �nd a value for a given ongoing wage-bargaining game, that is, to

determine what it is worth to each agent to have the opportunity to engage in the ongoing

bargaining game, which is crucial to a proper development of any unemployment theory. The

determination is accomplished only in the case of the two-person static bargaining game,

within an otherwise dynamic environment. In other words, the special dynamic model using

steady-state wages developed by Pissarides, makes no endeavour to characterise the wage

as a di¤erential function of time, in an ongoing relationship where in all other respects the

model is dynamic. The model in this chapter is dynamic in all respects as it should be.

3. THE MATCHING FUNCTION AND THE BEVERIDGE CURVE

We use the matching function as a modelling device that captures the outcome of the in-

vestment of resources by �rms and workers in the trading process as a function of inputs. In

order to provide a theoretical treatment of dynamic wage-bargaining situations in the labour

market, I abstract from the intricacies of the matching function, for example, with hetero-

geneous workers, jobs, skills, search intensity of both workers and �rms, geographical areas

and so forth, to form a mathematical model in terms of which to develop the theory.

Vacant jobs and unemployed workers become matched and move from trading to pro-

duction activities, in accordance with the prevailing matching technology. Unemployment

persists in the steady-state, due to the fact that during the matching process, and prior to

all job-worker pairs matching, some of the existing jobs break up, due to shocks such as de-

mand and technology, providing a �ow into unemployment. Firms and workers search for the

other agent, with full knowledge of the job-matching and job-separation process, but make

no attempt to coordinate their actions.

The equilibrium developed in this chapter is a dynamic equilibrium. The aggregate equi-

librium is where both agents maximise their respective objective functions, subject to the

matching and separation technology and where both the in�ows into and out�ows out of

unemployment are equal. We assume, that there is no on-the-job search. It has been claimed

(see, for example, Pissarides (2000)), that it makes no qualitative di¤erence to the theory of
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unemployment, whether the assumption of no on-the-job or on-the-job search is introduced.

Time is considered as a sequence of discrete periods of length �t > 0.

Then the number of job matches per unit time is given by the matching function

mL = m(uL; vL) (1)

where L is the workers in the labour force, u is the unemployment rate, v is the number of

vacant jobs as a proportion of the labour force and (1) is assumed to be increasing in both

its arguments, concave and homogenous of degree 1. Job matches at any point in time are

randomly selected from the sets vL and uL. Thus, a typical matching function is

m (u; v) = v
h
1� e�

u
v

i
(1a)

It follows, the Poisson process that �lls vacant jobs vL has a rate

mL

vL
=
m(uL; vL)

vL
= m(

u

v
; 1) = q(�) (2)

or following (1a)

q (�) =
m (u; v)

v
= 1� e�

1
� (2a)

where, � = v
u , is a measure of labour market tightness, which one can interpret as the balance

between the demand and supply of labour as in Brigden and Thomas (2003). Thus, q (�) is

the rate at which vacancies become �lled. Note that q0 (�) < 0: The unemployed workers

move into employment according to a related Poisson process with rate

m(uL; vL)

uL
=
vL

uL

m (uL; vL)

vL
=
v

u
m
�u
v
; 1
�
= �q (�) = �(1� e�

1
� ) (3)

In yet another Poisson process, suppose that the employed workforce of size (1 � u)L

loses jobs at an exogenous rate � per unit of time. Thus, the out�ows from employment are

�(1 � u), per unit of time. The latter can be expressed as u�q (�)L, from (3). Hence the

evolution of unemployment is

_u = � (1� u)� �q (�)u (4)
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Then, in steady-state

� (1� u) = �q (�)u (5)

which implies,

u =
�

�+ �q (�)
(6)

This equation can be represented in vacancy-unemployment space, by a downward-sloping

convex to the origin curve. The curve is referred to as the Beveridge curve. If we restate (5)

in terms of the job �ows, then clearly the key driving force of this model is job creation. This

is because the empirical literature on job �ows de�nes the job creation rate asm(u; v)=(1�u),

where m(u; v) is the number of jobs created and (1� u) is employment. In addition, the job

destruction rate is also de�ned as the ratio of � (1� u) to (1� u). Equating the constant �

to �q (�)u=(1 � u) yields (5), thereby demonstrating that it is job creation that is the main

driving force of the model.

4. THE FIRM: THE VALUE OF A JOB AND A VACANCY

Each �rm has one job when entering the market which it desires to �ll. When the job is

�lled the �rm obtains revenue by selling its output. The value of the output is some constant

p > 0. While the job is un�lled, the search costs are �xed at h > 0 each time, which is a

proportion of productivity. The rate at which jobs are �lled is q (�). These preliminaries are

the same as in the Pissarides model.

The number of jobs available at any given time is determined by pro�t maximisation. All

�rms can open a vacancy and engage in searching. Thus, pro�t maximisation requires that

the pro�t from a marginal vacancy is zero. In the environment of this model, with each �rm

having one vacancy only, pro�t maximisation is equivalent to a zero pro�t condition for �rm

entry. Let J (t) be the present discounted value of expected pro�ts from a �lled job and V (t)

be the corresponding value of a vacant job, both evaluated at the beginning of the period [t;

t + �t]. Assume the rate at which vacant jobs become �lled is q (�) and the rate at which

unemployed workers attain jobs is �q (�). Assume that at each date t agents who can match

complete negotiations immediately at w (t), which could possibly be random. Then the job

generates a pro�t (p� c(w))�t, during a small time interval and c (w) is the cost of labour.
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Assume 0 < c0 (0) < 1, and c00 (w) > 0 for all w � 0, in sharp contrast to the Pissarides

model. The latter implies that there are diminishing returns to scale. The reason for the

former assumption will be seen later. The Pissarides model is restricted to linear utility only,

that is, for instance, c(w) = cw. The job also dies with probability ��t and survives with a

probability 1 � ��t. Hence, the standard dynamic programming (D.P.) equations for �lled

jobs and vacancies gives us

J (t) =
1

1 + r�t
[(p� c (w))�t+ (1� ��t) J (t+�t)

+��tV (t+�t) + o (�)] (7)

V (t) =
1

1 + r�t
[�h�t+ (1� q (�)�t)V (t+�t)

+q (�)�tJ (t+�t) + o (�)] (8)

where r is the rate of time preference and the term o (�) appears due to the Poisson process,

which satis�es o(�)� as �t! 05.

Taking the limit as �t! 0 we obtain the standard continuous time equations

_J = rJ + � (J � V )� (p� c (w)) (9)

_V = rV + q(�) (V � J) + h (10)

In equilibrium, with free entry of �rms, all pro�t opportunities from new jobs are exploited,

driving rents from vacant jobs to zero. Thus, in equilibrium, the supply of a vacancy is V = 0;

which implies from (10)

J =
h

q (�)
(11)

For an individual �rm, 1
q(�) is the expected duration of an un�lled vacancy. The interpretation

of (11) is that, in equilibrium, market tightness is such that the expected pro�t from a new

job is equal to the expected cost of hiring. The latter is due to the competition for vacant

5For example, the interpretation of (7) is that between t and t+�t a �rm meets a worker, with whom it can
form a productive match, which yields payo¤ (p� c (w)) and with the probability (1� ��t) the job-speci�c
shock not occuring and with probability ��tV (t+�t) the shock occuring.



9

jobs. Given (11), (9) will now be

_J =
(r + �)h

q (�)
� (p� c (w)) = 0 (9a)

Next, we consider the behaviour of workers.

5. THE WORKER: THE VALUE OF EMPLOYMENT AND

UNEMPLOYMENT

Workers receive a wage w per unit of time if employed and an unemployed insurance and

income z if unemployed. Assume the worker derives current utility of � (w) from the wage.

Assume �0 (w) > 0, �00 (w) < 0. That is, agents�behaviour are risk-averse, as mentioned

above. This is another contrast to the Pissarides model. Let W and U be the corresponding

value functions of employment and unemployment. Then following the same reasoning as

before the D.P. equations are:

W (t) =
1

1 + r�t
[�(w)�t+ ��tU(t+�t)

+(1� ��t)W (t+�t) + o (�)] (12)

U(t) =
1

1 + r�t
[z�t+ (1� �q (�)�t)U (t+�t)

+�q (�)�tW (t+�t) + z + o (�)] (13)

where z is the unemployment bene�t and letting �t! 0, we obtain

_W = rW � �(w) + � (W � U) (14)

_U = rU + �q(�) (U �W )� z (15)

Since q (�) = 1 � e� 1
� ; this implies, �q (�) = �(1 � e� 1

� ). Considering both the discrete and

continuous time value functions of both the �rms and workers, it is abundantly clear, that it

is the determination of the wage that plays a very crucial role in this model and indeed, in

imperfectly-competitive theories of unemployment that have been put forward over the years.

The wage, w (t) remains to be determined. In the next section, I analyse explicit strategic
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bargaining games between the �rm and worker. Prior to this, for illustrative purposes, I will

consider the implications of the adoption of the NBS as it was in the Pissarides model (except

that in the latter�s model, strategic bargaining analyses were not used): w (t) = wn (t), where

wn (t) = arg max
w

[W (t)� U (t)]� [J (t)� V (t)]1�� (16)

where U and V are the threatpoints of worker and �rm respectively, and � � [0; 1] is the

bargaining power of the worker. In addition, I need to impose that this maximisation is

subject to the constraints that guarantee trade is voluntary; that is, there are gains to trade:

!w (w; t) = �(w) +W (t) > U (t) (17)

!f (w; t) = p� c (w) + J (t) > V (t) (18)

where the instantaneous payo¤ functions following a successful match are on the LHS of the

inequality sign in both these equations.

We will choose a utility function of the form � (w) = w1��

1�� with 0 < � < 1, thereby

rendering our game to be more general than the Pissarides model. c (w) can also be nor-

malised. Rede�ne costs in terms of units of utility. Two points arise from this de�nition:

First, in the vicinity of w = 0; (18) becomes p � c (0)w + J (t) > V (t) : Hence the reason

for the additional assumptions initially of c0 (0) < 1: Second, if c (w) = cw in conjunction

with � (w) = w1��

1�� ; then with c < 1; there will always be some p � c (w) and V (t) such

that p � c (w) + J (t) > V (t). The same applies to (17). I generalise the Pissarides model

which has constant returns-to-scale and linear utility with risk-neutral agents and nonlinear

cost functions with decreasing returns-to-scale. Therefore, ITE 6= NBS , in contrast to the

assumption of ITE � NBS in the Pissarides model. Thereby, introducing a new equilibrium

concept.

Given bargaining power, an equilibrium can be de�ned as a list of nonnegative and

bounded paths [J (t) ; V (t) ;W (t) ; U (t) ; wn (t)]1t=0 satisfying for all t the dynamic program-

ming equations in either discrete or continuous time and the maximisation problem in (16)

subject to (17) and (18).
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In a related model CW claim to have obtained limit cycles. But this gives rise to indeter-

minacy and instability. Pissarides (2000) also analyses a labour market model, but e¤ectively

imposes the steady-state wage-bargaining solution, that is, the Nash solution in an otherwise

dynamic model. In addition, he also only analyses a two-dimensional non-linear model, when

considering out-of-steady-state dynamics. Second, Pissarides (2000) does not conduct any

simulation as noted. In the next section I apply some results of CW to a model of Pissarides.

In the succeeding section after that I de�ne a saddle-path stable and unique equilibrium with

no limit cycles in a fully dynamic model, in contrast to past studies, including CW and

Pissarides (2000), where all or either of these elements are absent/lacking.

6. A BARGAINING MODEL BETWEEN FIRMS AND WORKERS

If both �rms and workers form a successful match, their instantaneous payo¤s are !w(w; t) and

!f (w; t) as given in (17) and (18) respectively; where !w is increasing and !f is decreasing

in w and both explicitly vary with time. Agent i discounts the future at rate ri > 0, so

the payo¤ for i from trading at t discounted back to date 0 is e
�rti
i ! (w; t) : Assume !i� C2,

!i concave in w for all t, !i(w; t) bounded in t; and
@!i(w;t)

@t bounded for all (w; t): Since

�rms exploit all pro�t opportunities from new jobs, in equilibrium V = 0: Workers derive

some utility from not trading, but this is normalised to zero for expositional purposes in

this section. This should have no impact on the qualitative result of this chapter. De�ne

& (t) = fwi : !i (w; t) � 0, i = w; fg, and assume that & (t) is nonempty for all t and uniformly

bounded in t.

6.1. The Bargaining Process

In making our treatment of wage-bargaining we employ a Rubinstein-type bargaining process

of the type considered in CW with the following features:

(i) Random alternating o¤ers, where with some probability �w; nature chooses the worker

to propose a value of w and the �rm, with probability �f = 1� �w.

(ii) There is no delay (immediate agreement)
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When agreements are reached, agents trade and depart. But when agreements have not

been reached immediately, agents prefer to pursue bargaining until they have reached one

in accordance with constraints (17) and (18), which is consistent with individual optimising

behaviour6.

Our object is to characterize subgame perfect equilibria in strategies that are history

independent, but typically nonstationary, since payo¤s are time varying. In equilibrium

�rms and workers reach immediate agreement upon meeting. This category of equilibrium is

referred to as the Immediate Trade Equilibrium (ITE).

Following CW, we de�ne reservation values ww (t) and wf (t) such that at time t the

worker will accept any w � ww (t), and the �rm will pay any w � wf (t) : In addition, the

best proposal is always the reservation value of the other agent. This implies we identify a

strategy pro�le with [ww (t) ; wf (t)]
1
t=0 , where each agent proposes the other�s reservation

values and accepts each agent�s own reservation values, when it is his turn to accept.

Theorem 1. In an ITE , in the limit as �t! 0; the expected terms of trade, w (t) is a

di¤erential function of t; (Coles and Wright, 1998), which satis�es

_w = �f

�
rw!w (w; t)� @�w (w; t) =@t

@!w (w; t) =@w

�
+ �w

�
rf!f (w; t)� @!f (w; t) =@t

@!f (w; t) =@w

�
(22)

By Theorem 1, if we know w (t) = ŵ at any given time t̂, for example, then the entire

path [w (t)]1t=0 can be found by iterating on (22). Next, we will establish precisely such a

condition, and thereby, identify an ITE. The next result considers the case where �i settle

down over time, that is, when t!1.

However, (22) permits ambiguity7, when we consider Binmore�s continuum example. In

addition, currently, the Theorem is only applicable when agents use Markov strategies. Hence,

a uniqueness argument can be provided to render Theorem 1 more general8.

Theorem 2 In the limt!1 w (t) = limt!1wn (t), that is, the steady-state of the ITE

and the Nash Solution coincide (Coles and Wright, 1998). That is, !i (w; t) ! �!i (w) as

t ! 1, and �!i satis�es all the assumptions on !i, then in the limit as �t ! 0, if an ITE

6Later in this section I also generalize the model to permit exogenous breakdown in bargaining.
7 I will leave this for my future research.
8 I will leave this for my future research.
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exists it is unique and w (t)! �w as t!1 and satis�es

�w = arg max �!w (w)
�
f �! (w)

1��

where

� =
�wrf

�wrf + �frw

Proof as in CW.

Let us consider again the Nash solution, as shown in (16), with di¤erent � and threat

points, Ti set to zero, to those in (16),

wn (t) = arg max
w

[!w (w; t)� Tw (t)]� [!f (w; t)� Tf (t)]1�� (22a)

where Ti (t) = 0 and � =
�wrf

�wrf+�f rw

The previous result says that, when limt!1w (t) = limt!1wn (t); but the coincidence

does not generally hold when t < 1: The conditions in Theorem 2 apply to the Pissarides

(2000) model, when limt!1w (t) = limt!1wn (t), where the steady-state wage is imposed.

To, illustrate this, let us take the example, of risk-averse workers with foresight. Let

! (w) = w1��

1�� ; with 0 < � < 1. and !f (w; t) = e
��t � w, so that the surplus to be divided is

depreciating at rate � (or, if � < 0, appreciating): In the Pissarides model, where NS � ITE 9,

when � = 0, which implies, workers are risk-neutral. Again assume ri = r and �i = 1
2 , then

(22) is

_w =
r!w [1 + (1� �)]� (1� �) e��t (r + �)

2 (1� �)

Here, Theorem 2 implies w (t)! 0 and the solution to the above di¤erential equation, subject

to this boundary condition, is

w� =
(r + �) (1� �) e��t
r (2� �) + 2� (1� �)

It is straightforward to establish that immediate trade is an equilibrium provided (r + �) > 0:

In comparison, the Nash solution with the threatpoints and � that is applicable in steady

states, implies that

9When t!1 or rf = rw (that is, the discount rates of agents are equal).
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wn =
(1� �) e��t
2� �

for all t. While w� and wn converge to the same limit as t!1, for �nite t, w� > wn if � > 0

and w� < wn if � < 0:

Theorem 3. Equivalence of ITE and Nash Solution along the entire path, not just in

steady-state (Coles and Wright, 1998).

Suppose !i (w; t) = �iw + 'i (t) ; where �w > 0 > �f , and rw = rf = r > 0. Then if an

ITE exists with these functional forms, it is unique and w (t) = wn (t) with Ti (t) = 0 and

� = �w.

Proof as in CW.

In other words, wn (t) = w (t) for all t only when payo¤s are linear in w, separable between

w and t, and rw = rf 10.

Notice that the NBS solution (16) is similar to the one used in the Pissarides (2000) labour

market model. The NBS used in the Pissarides model does coincide with an ITE, shown

in Theorem 3. The conditions in Theorem 3 apply in the Pissarides model, except that the

threat points are now Tw = U and Tf = V for the worker and �rm respectively. This does

not a¤ect the logic of the Rubinstein-type solution though, since one simply measures the

utility relative to these threat points. As we have shown that this changes, if wage, w(t) is

characterised as a di¤erential function of time, in an ITE in the lim as �t! 0, the workers

are risk-averse with single period utility given by w1��

1�� , 0 < � < 1, as we have shown in an

example earlier and if the cost function is for example, c (w) = a0 + a1w + a2w2.

Theorem 3 also corresponds to how wage-bargaining has been settled in the past in

general, in the labour economics models, including all the trade union models and the main

unemployment and the wage determination models. In a dynamic environment as in the

Pissarides model, in general, where at least one of the functions, that is w or c (w), is non-

linear, we must use the forward-looking bargaining solution (22) to analyse dynamics.

10 In the risk averse example, if we assume � = 1, then the assumptions of Theorem 3 are satis�ed, and we
can con�rm that wn (t) = w� for all t; as shown below.

wn = e��t

2

w� = (r+�)e��t

2(r+�)

w� = e��t

2
= wn
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So far, we have assumed immediate trade. We need to check that this is consistent

with equilibrium behaviour. Let �i (t) = e�riti !i [w (t) ; t] be the equilibrium payo¤ to i if

agreement is made at time t; given w solves (22). Then an immediate trade for all t is an

equilibrium, if

�i (t) > 0 and �0i (t) < 0 (23)

for all t and both �rms and workers. The interpretation of this equation is that, agents would

prefer to trade sooner than later.

The second inequality will hold for both agents, given w satis�es (22), if and only if the

following condition holds as in CW:

�i (t) = e
�rit
i !i [w (t) ; t]

�
rw!w �

@!w
@t

�
@!f
@w

�
�
rf!f �

@!f
@t

�
@!w
@w

< 0 (24)

The agents will trade sooner as opposed to later if (23) is satis�ed. The interpretation of

(23) is that e�rit!i(w (t) ; t) decreases in t 8 w�& (t) and is strictly decreasing for one agent

(Binmore, 1987).

We now consider the case where we permit exogenous breakdowns in the bargaining game.

Let �i be the Poisson arrival rate with which i believes an exogenous breakdown will occur

during bargaining, and bi his utility in this event. Note, we now let ri; �i; �i and bi be time

varying. For brevity, this variance is not made explicit in the notations.

In this case, a simple generalisation of Theorem 1, yields, following CW

_w = �f

�
(rw + �w)!w � �wbw � @!w=@t

@!w=@w

�
+ �w

�
(rf + �f )!f � �fbf � @!f=@t

@!f=@w

�
(25)

Just as in the case with no breakdown, we can analogously show, that when !i (w; t) converges

over time to �!i (w) ; then limt!1w (t) = �w is the Nash solution with,

T =
�ibi
ri + �i

� =
�w (rf + �f )

�w (rf + �f ) + �f (rw + �w)

Following Theorem 3, it can be shown that if payo¤ functions are linear and rw = rf and
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�w = �f , then w (t) = wn [t] along the entire path and not just in steady-state11.

7. MARKET EQUILIBRIA

We are now in a position to characterize equilibrium in the labour market model, with

the dynamic wage-bargaining model. Agents are of measure zero, that is, agents are one

of the many in the economy, but of course, their actions are typical; the likelihood of any

two traders meeting again after separation is zero. In addition, any delay to trade between

two agents has no impact on the aggregate market outcome. Thus, while bargaining, each

agent takes the expected value of returning to the market as given. We assume, now, that

in the bargaining game �i = 1
2 and there are no exogenous breakdowns, that is, (�i = 0). If

the game is subject to delay, constraints (17) and (18) dictate that agents prefer to pursue

bargaining than separate.

In discrete time, to describe an ITE, we need to determine

[W (t) ; U (t) ; J (t) ; (V ) (t) ; ww (t) ; wf (t)]
1
t=0 : The instantaneous payo¤s of a successful match

are: !w(w; t) = �(w) +W (t) and !f (w; t) = (p� c (w)) + J (t), for the workers and �rm

respectively: In an equilibrium, beliefs must be consistent with market outcomes, that is,

taking [ww (t) ; wf (t)]
1
t=0 as given, [W (t) ; U (t) ; J (t) ; V (t)]1t=0, must satisfy the dynamic

programming equations, in discrete time and vice versa.

In the limiting case, as �t! 0; we need to determine [W (t) ; U (t) ; J (t) ; V (t) ; w (t)]1t=0 ;

where the value functions solve the continuous time equations, and w(t) is the value of ww (t)

and wf (t) as �t! 0: If an ITE exists in the labour market, then w satis�es (22) ;which in

this model becomes

_w =

h
r� (w) + rW (t)� _W

i
2�0 (w)

�

h
r(p� c (w)) + rJ (t)� _J

i
2c0 (w)

(26)

It is crucial to note, in contrast to the Pissarides model, I generalise the cost function by

using non-linear cost function and risk-averse utility function, which is also non-linear. The

equilibrium is given by paths for [W (t) ; U (t) ; J (t) ; (V ) (t) ; w (t)]1t=0 satisfying the continu-

ous time equations and (26), subject to the constraints, which guarantee, that the trade is

voluntary and the condition for immediate trade.
11All calculations of solutions are available upon request from the author.
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We have reduced the dimensionality of the system, by de�ning, x = U �W: Subtraction

of (14) and (15) is

_x = x (r + �q (�) + �) + � (w) � z (27)

inserting (9) and (14) into (26) yields

_w =
r� (w) + � (w) + �x

2�0 (w)
�
�
r ((p� c (w)) + (p� c (w))� �h�)

2c0 (w)

�
(28)

In addition, note h=q (�) = J . Thus, further simpli�cations to the system, as shown below,

enabled us to depict the system in four dimensions, of (x; �; w; u) :

Incorporating the results from our analysis in the earlier sections, the full dynamical

system is:

2666666666666664

_W

_U

_J

_V

_u

_w

3777777777777775
=

2666666666666664

rW � � (w) + � (W � U)]

rU + �q (�) (U �W )� z

rJ + � (J � V )� (p� c (w))

rV + q (�) (V � J) + h

� (1� u)� �q (�)u
r�(w)+�(w)+�x

2�0(w) �
�
r(p�c(w))+(p�c(w))��h�

2c0(w)

�

3777777777777775
where in order to maintain proper generality, � (w) = w1��

1�� . In contrast to the Pissarides

model, my model is more general. The Pissarides model pertains to risk-neutral workers.

CW also does not explicitly analyse risk-averse workers.

Following (27) and setting V = 0; implies, J = h
q(�) ; we now have a system in four

dimensions, which is

266666664

_x

_J

_u

_w

377777775
=

266666664

rx+ �q (�)x+ �x+ � (w)� z

rJ + � (J)� (p� c (w))

� (1� u)� �q (�)u�
r�(w)+�(w)+�x

2�0(w)

�
�
�
r(p�c(w))+(p�c(w))��h�

2c0(w)

�

377777775
But

J =
h

q (�)
= h (q (�))�1
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Then,

_J =
�h (q (�))�2 q0 (�)

(q (�))2
=
h _�q0 (�)

(q (�))2

and the above equation, becomes after rearrangement,

_�q0 (�)

(q (�))2
= �(r + �)

q (�)
+
(p� c (w))

h

_� = � (r + �) q (�)
q0 (�)

+
(p� c (w))

h

(q (�))2

q0 (�)

Hence, the above dynamic system will now be in _�; instead of _J ,

266666664

_x

_�

_u

_w

377777775
=

266666664

x(r + �q (�) + �) + � (w)� z

� (r + �) q(�)q0(�) +
(p�c(w))

h
(q(�))2

q0(�)

� (1� u)� �q (�)u�
r�(w)+�(w)+�x

2�0(w)

�
�
�
r(p�c(w))+(p�c(w))��h�

2c0(w)

�

377777775
(29)

where the appropriate expression for q (�) is q (�) = 1 � e� 1
� , q0 (�) = � e�

1
�

�2
; which implies,

1�e� 1
� =� e�

1
�

�2
= �2

�
1� e 1�

�
; c (w) = a0+a1w+a2w

2, as shown below. In a few experiments12

I also exclude the �xed cost, where c (w) = a1w + a2w
2 and without loss in generality,

normalise � (w) = w1��

1�� , �
0 (w) = w��: Then an immediate trade equilibrium is any solution to

(29), that con�nes in both constraints (17) and (18), and also satis�es �w = e�rt [� (w) +W ]

and �f = e�rt [p� c (w) + J ].

A special case is a steady-state, which is an equilibrium where w and x are constant. Then

(w; x) = (0; 0) is a steady-state. In the Pissarides model, the dynamical system, comprises of

purely _� and _u; where w and x are constants.

8. CALIBRATION OF THE MODEL

The choice of the U.S. data for my empirical analysis is due to all labour market simulation

work being U.S. based. The past literature source/econometric studies is based in the U.S.,

provided all the data I required from one country, speci�cally, the U.S.. Needless, to say,

it is not possible to obtain data for all the variables in my analysis from the UK, since no

12Details available from the author upon request.
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simulation work is UK based. It is not possible to obtain data for all the variables in my

analysis from one particular country, for example, the UK.

Prior to conducting the stability analysis it is useful to conduct a very brief tour of the

available data pertinent to our study, in order to make an appropriate choice of the literature

source/econometric studies, which would match/re�ect the concepts of our model as far as

possible. All the data sources pertaining to the literature source/econometric studies are of

the U.S., except the econometric estimate of hiring costs, which is from Abowd and Kramarz

(2000). The latter claims that all the microeconomic evidence for France has counterparts in

the U.S., which are similar to those observed in France. Thus, the calibrations apply to the

U.S. in most cases, except due to the scarcity of data on hiring costs (Hamermesh, 1993), the

hiring costs is sourced from France�s data13.

8.1. Unemployment

We considered the o¢ cial unemployment rate as the most appropriate data compatible with

the concepts of our model. This is because other categories such as those responding a¢ r-

matively to the question if they �wanted a job now�are inappropriate.

The reason for exclusion of the out-of-the-labour-force data in our study is obvious, no-

tably, since the out-of-the-labour force �ows exhibit distinct cyclical properties relative to

�ows between employment and unemployment. The unemployment to employment �ows

are countercyclical or acyclical, whilst the out-of-the-labour-force to employment �ows are

pro-cyclical.

It is worth noting that there is a high correlation between the o¢ cial unemployment rate

data and other con�guration of unemployment rates data, namely, the o¢ cial plus �want a

job now�unemployment rate data (Yashiv, 2005).

Given this choice, it is natural to consider only the o¢ cial rate data when studying

dynamic wage-bargaining in the labour market and the associated worker �ows.

13Other authors also use Abowd and Kramarz (2000), when all their other data sources are obtained from
the U.S. For example, Silva and Toledo (2005).



20

8.2. Vacancies

The pertinent concept of vacancies compatible to the concepts of the model is the one per-

taining to those vacancies that are to be occupied by workers from outside the employment

pool, but within the labour force. But the available and widely-used data series relates to

another concept, which also includes vacancies that are subsequently occupied with workers

in job-to-job transitions.

The available vacancy data series in the U.S. economy has two representations. One is

the index of Help Wanted advertising in newspapers published by the Conference Board (see

Abraham (1987) for an analysis and discussion of this series). A newer data series is the job

openings data series available from the BLS since December 2000, utilising the Job Openings

and Labour Turnover Survey (JOLTS)14.

The third data series has the gross �ows of workers from outside employment (unemploy-

ment and out of the labour force) to employment. The latter was recently compiled at the

Boston Fed, based on the Current Population Survey (CPS) data, see Bleakley, Ferris and

Fuhrer (1999). The hiring �ows data series is negatively correlated with the �rst two series,

that is, �0:27 with JOLTS series and �0:36 with the Help Wanted ads data series (Yashiv,

2005). The �ows data series is considerably less persistent than the two vacancies series. The

hiring �ows data series is less volatile than the Help Wanted Index and the JOLTS data series

(Yashiv, 2005).

In addition, there is a body of evidence on gross worker �ows. For example, Fallick

and Fleischman (2004), using CPS data in the period 1994 � 2003, �nd that job-to-job

transitions are massive, that is 2=5 of new jobs represent employer changes. They also

demonstrate that the cyclical properties of job-to-job transitions are distinct from the �ows

into and out of employment. Nagypal (2004), using microdatasets, also shows the prevalence

of job-to-job transitions. Pissarides (1994) provides a possible explanation for the higher

volatility of vacancies associated with both job-to-job transitions and to transitions from out

of employment.

14This survey de�nes a job as "open", conditional on it ful�lling the following criteria: (i) a speci�c position
exists and there is work available for that position; which can be full or part time, permanent , temporary,
short-term or seasonal; (ii) the job could start within 30 days, irrespective of whether the establishment
has found a suitable candidate during that time and (iii) the employer is actively recruiting from external
establishments to �ll the position.
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I conclude that in the light of our model, which is an aggregate15, representative �rm and

worker type of model, job-to-job transitions are inappropriate, as its behaviour is distinct from

the pertinent data series, where vacancies are �lled by workers from outside the employment

pool. Since the latter is unobserved, I use the vacancy rate from the literature that utilises

the rate for the observed worker �ow data series.

8.3. Wages

The existence of a variety of data series of wages with various cyclical properties was reported

by several studies, for instance, Abraham and Haltiwanger (1995), Abraham, Spletzer and

Stewart (1999), and Krueger (1999). But the analysis in these studies does not lead to any

de�nitive conclusions as to which series is the most pertinent. The Bureau of Economic

Analysis (BEA) series using total compensation16 and wages, suggests that although the

series are correlated 0:83 (Yashiv, 2005), there are a multitude of important di¤erences.

Speci�cally, the wage series declines more over time, it is lower by 10 percentage points on

average and exhibits considerably more variation, that is a coe¢ cient of variation of 0:037 as

opposed to 0:016 with respect to the compensation series (Yashiv, 2005). Both series have

an extremely weak correlation with the cycle. The compensation series has �0:05 correlation

and the wage series has a 0:12 correlation with the employment rate (Yashiv, 2005).

Needless to say, econometric study using the U.S. data on wages settled on the basis of

future �nancial performance, does not exist. The series of labour share using total compen-

sation as opposed to wages, reconciles more with the concepts of the model.

Hence, I have used the compensation data series rate from the literature, as it incorporates

all the �rm�s wage-related costs, which is the terms of trade, wage, w, in our model.

8.4. Other Data Series

With respect to the job destruction rate, �, I use the rate which represents the �ow from

employment to unemployment. The discount rate r, in the model is the rate of time preference

for both agents.

15Although we have bargaining between one worker and �rm, they are representative of their respective
type.
16De�ned as the total compensation of employees relative to GDP, latter including wages/salaries, employer

contributions for employee pension and insurance funds and government social insurance.
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8.5. Calibration Values

To conduct the numerical simulation and hence, examine the model�s performance, we need

to calibrate the model. We parameterise the model to match the relevant U.S. data. That

is, we assign values to the variables of the v=u ratio, �, unemployment, u, wages, w, and

the di¤erence between the value functions of the unemployed and employed workers, at the

steady-state values of these endogenous variables and the steady-state values of the exogenous

variables. The latter are: the rate of interest, r; destruction rate, �; the value of output,

p; hiring cost rate, h; and unemployment bene�t rate, z. I do this by experimenting with

fundamental parameters such as a0, a1, a2 and �. To attain this, I utilise, wherever possible,

results from econometric studies and prior empirical estimates on U.S. quarterly data, which

use the average values of the longest possible sample period available.

I proceed to explain the choice of the parameters. Since the �rm�s output can be sold at

any price, with no loss in generality, I normalise the value of output, p = 1. Based on Yashiv

(2005), I set the separation rate to � = 0:0404. I normalise time period to be a quarter and

thus, set the discount rate to r = 0:01, which re�ects historical U.S. values. Surveys on hiring

costs are scant (Hamermesh, 1993) as noted earlier. Based on Silva and Toledo (2005), I set

the hiring costs to h = 0:30. They follow the econometric estimate of Abowd and Kramarz

(2000). They estimate the cost of hiring as a fraction of the annual labour costs per worker to

be 30 percent17 for a representative sample of French establishments. Abowd and Kramarz

(2000) also claim that all of the microeconomic evidence for France has counterparts in the

U.S., which are similar to those observed in France as mentioned above. Based on Shimer

(2004), unemployment bene�t is set to z = 0:40. Based on Yashiv (2005), I set u = 0:063,

v = 0:047 and hence, � = v=u = 0:75: Also based on Yashiv (2005), I set total compensation

of employees as a proportion GDP, w = 0:579. Taking into account z = 0:40 and w = 0:579,

I set x to be the di¤erence between 0:40 and w = 0:579, implying the di¤erence between the

value functions of the unemployed and employed worker to be x = �0:179, on the grounds

that it is not directly observable nor available/accessible. Table 1 describes these parameters,

including their calibrated values and sources.

17This entails reported expenditure on job advertising, search �rm fees and compensation of applicants.
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TABLE 1

BASELINE CALIBRATION VALUES

Steady State Values of the Endogenous Variables and the Parameters of the Exogenous Variables
Parameter/Variable Notation Value Source

Di¤erence between the value functions of x -0.179 Own Calculation
the unemployed and employed workers
Vacancy-Unemployment ratio � 0.75 Yashiv (2005)
Unemployment u 0.063 Yashiv (2005)
Wage w 0.579 Yashiv (2005)
Discount rate r 0.012 Shimer (2005)
Separation rate k 0.0404 Yashiv (2005)
Value of Output p 1 Quarterly Normalisation
Hiring Costs h 0.30 Abowd and Kramarz (2000)
Unemployment Bene�t z 0.40 Yashiv (2005)
Coe¢ cient of the quadratic term in the cost function a2 0.312 Own calibrated value
Coe¢ cient of the �rst term in the cost function a1 0.623 Own calibrated value

9. STABILITY ANALYSIS
9.1. Constant w and x: Nash Bargaining Solution

I make it clear at the outset, that we analyse a fully dynamic labour market model in contrast

to the Pissarides model, and we also generalise with risk-averse agents and non-linear cost

functions. This, shows that ITE 6= NBS and introduces a new equilibrium concept in labour

economics. I have applied the CW general result to my model with risk-averse agents and

non-linear cost functions in a fully dynamic labour market model. The issues that arise of

immense interest are: is such a model saddle-path stable? In addition, are there limit cycles?

CW in related literature show a limit cycle in their two-dimensional non-linear system. This

implies there is indeterminacy and instability in their system. For a model to be theoretically

consistent and dynamically stable, the equilibrium should be saddle-path stable and unique

with no limit cycles. I now undertake to investigate if this is true in my model.

When my parameters, which will be my baseline value of parameters, and the parameters

that I will be varying later in my full model with non-linear costs and utility function, will

be � and a2 in (�,a2) parameter space (these are zero with linear costs and utility functions

case) when my experiments are conducted, are given by,

r = 0:012; � = 0; a0 = 0:02; a1 = 0:623; a2 = 0; p = 1; h = 0:30; � = 0:0404; w = 0:579

the equilibrium is

� = 0:75; u = 0:07

The information about eigenvalues for the linearised equation and its nature and the �xed

points are provided in Table 2. The eigenvalues are: 1:50 and �0:59 as shown in Table 2.
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2666666666666666664

TABLE 2
Equilibria

SADDLEPOINT
Pissarides Model

Linear Costs and Utilty Function
NBS � ITEa

c+ = 0 c� = 0 im = 0
r+ = 1 r� = 1

Value of Fixed Points
� = 0:75
u = 0:07
Eigenvalues

1:50
�0:59

aWhen t!1 and rf= rw:

3777777777777777775
where the information about the eigenvalues for the linearised equation are given in the

middle; c+, the number of complex eigenvalues with positive real parts, is zero; c�, the

number of complex eigenvalues with negative real parts, is zero; im, the number of purely

imaginary eigenvalues with zero real part, is zero; r+, the number of positive real eigenvalues

is 3; and r�, the number of negative real eigenvalues is, 1. The results of the simulations,

with both linear cost and utility is unstable, namely, when a2 = 0 and � = 0; as is the case

when NBS � ITE.

Numerical simulations of �xed points and eigenvalues using the software XPP, showed the

typical equilibria to be saddlepoint, as we would expect, with one positive and one negative

eigenvalue, and did not yield a stable limit cycle, that is, an isolated18 periodic orbit19 for

the di¤erential equations which is stable or attracting. That is, if the system is perturbed

from its regular oscillatory state, the ensuing new path will be attracted back to the limit

cycle. That is, all the neighbouring trajectories approach the limit cycle. A stable limit cycle

model the system exhibiting self-sustained oscillations. That is, the system oscillates devoid

of external periodic forcing20. If all the neighbouring trajectories approach the limit cycle,

then the limit cycle is stable or attracting. The steady-state as remarked is a saddle point,

that is there is one positive and negative eigenvalue.

9.2: The Full Model

For the remainder of the analysis, we assume that _w and _x are not zero and pursue and show

dynamic equilibria. The equilibrium states are found by setting the RHSs of the remaining

18 Isolated in the sense that there is not another closed path in its immediate neighbourhood. That is, the
neighbouring trajectories are not closed, they either spiral toward or away from the limit cycle. In rare cases,
half stable.
19A periodic orbit is the orbit of any point through which a periodic solution passes. A periodic solution is

a solution which is periodic in time � (t) = � (t+ T ) ; for a �xed positive constant T. T is a period of � (t) :
20Another example, would be the beating of the heart.
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four di¤erential equations, that is, the full model, to zero, and solving for x, �, w and u.

This can only be performed computationally. Further numerical simulations with a wide

range of parameter values of the combination of the pair (�; a2), were conducted, where �

is the risk aversion parameter of the Constant Relative Risk Aversion utility function of the

workers, with 0 < � < 1 and a2 is the coe¢ cient of the non-linear wage parameter of the

�rm�s non-linear cost function, as mentioned earlier, where a2 � 0. Of course, when a2 � 1,

we have decreasing returns to scale in the �rm�s cost function and a2 < 0; due to increasing

returns to scale. To preserve generality I also constructed examples with 0 < � � 1 and

�3 � a2 � 3, in (�; a2) parameter space. Depending on the accurate/precise combination of

the pair (�; a2), the system (29) can lead the labour market into a unique equilibrium with

saddle-path stability. We brie�y demonstrate this, with the dynamics associated with our

dynamical system in (29). We discuss the combination of pairs (a2; �) that lead the system

to a unique equilibrium with saddle-path stability.

We combine the dynamics of unemployment with those of labour market tightness, the

di¤erence between the value functions of the unemployed and employed workers, and wages,

as in (29) : We �rst discuss the results of the combination of the pair (�; a2) which leads the

labour market to a unique and stable equilibrium with saddle-path stability. The conditions

for a stable and unique equilibrium depend on the magnitude of the eigenvalues of the RHS

of (29). If the number of eigenvalues outside the unit circle is equal to the number of non-

predetermined variables, the system (29) has a unique equilibrium which is stable. That is,

if we have one stable root and three unstable roots21. All examples constructed to examine

if the model yields a limit cycle or a unique saddle-path stability, include �xed costs in the

�rm�s cost function.

When the baseline value of the parameters are the same as above; and the parameters

varied are given by,

� = 0:01 and a2 = 0:312

the equilibrium is

x = �0:19; � = 0:74; u = 0:07 and w = 0:52
21 Instability occurs when the number of eigenvalues of the RHS of (32), outside the unit circle is greater

than the number of non predetermined variables. That is, if we have four unstable roots, when the economy is
pushed o¤ its steady state following a shock, it will not converge back to it, and results, in explosive dynamics,
that is, with the orbits tending to in�nity.
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The matrix has eigenvalues22, 1:54; 0:47;�0:59 and 0:80, see Table 3. The equilibrium is a

saddlepoint (that is, one negative eigenvalue associated with one pre-determined variable (u)

and three positive eigenvalues associated with three non pre-determined variables). They are

consistent with the equilibrium in Maple (where the orbit of u was converging towards the

equilibrium), while attempting to see if there is a limit cycle. The three positive eigenvalues

are likely to pertain to the forward-looking variables and the negative eigenvalue (that is,

a stable root/root in the unit circle of the complex plane) relates to the unemployment

di¤erential equation, u as expected is consistent with the _�; w and _u in the Pissarides model,

except that, as will be noted, the wage there, in their otherwise dynamical model is the

steady-state wage, in a two-dimensional dynamical system. Our results are also consistent

with the values I obtained for comparable parameters, in (�; a2) parameter space, when I

performed numerical simulations of eigenvalues, using the software XPP.

2666666666666666664

TABLE 3
Equilibria

SADDLE-PATH STABLE
Non-Linear Costs and Utility Function
c+ = 0 c� = 0 im = 0
r+ = 3 r� = 1

Fixed Point Values
x = �0:21
� = 0:74
w = 0:52
u = 0:07
Eigenvalues

1:54
0:47
�0:59
0:80

3777777777777777775
I have varied a wide range of parameters in (�; a2) parameter space, see Table A:1 in

Appendix B, which reports the results from simulations of the model with dynamic bargaining

in labour markets. In the values of the (�; a2) combinations23, that is, from a2 = 0:01 to a2 = 3

and � = 0 to � = 0:09, the solution is uniquely saddle-path stable. This also implies that the

cost function, c(w) exhibits decreasing returns- to-scale. A production function which does

not imply an advantage to large �rms exhibits what is called constant returns-to-duplication

(Phillips, 1997) but also decreasing returns-to-scale.

The conclusion is that for calibrated parameter values the system has a unique equilibrium

and is saddle-path stable. Of course, the three positive eigenvalues and the other negative

eigenvalue do not necessarily mean that the system is unstable or stable (since any periodic

orbit always has an eigenvalue of 1 along the orbit). The other two eigenvalues can be unstable

22Eigenvalues informs us of the local stability of the �xed point. XPP computes the Jacobi matrix numeri-
cally and then utilises standard eigenvalue routines to compute the eigenvalues of the resulting matrix.
23Except when a2 = 0 to a2 = �3 and � = 0 to � = 0:09, in the (�; a2) parameter combinations, the

solution/equilibrium of the system is unstable.
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(i.e., > 1 in magnitude with the one eigenvalue stable). The steady-state is a saddle point.

The result of the unstable solution, with linear cost functions, at a2 = 0 and � = 0:09 in

the (�; a2) combination is consistent with expectations, since it further con�rms the presence

of non-linearities in the model and is not in support of the NBS or the Pissarides model.

Similarly, the results of the solution, with both linear cost and utility is unstable, that is,

where a2 = 0 and � = 0, as is the case when NBS � ITE24 and the Pissarides model. This

is also consistent with expectations and con�rms support for our model as opposed to the

NBS or Pissarides model25.

The numerical simulations and numerical calculations of eigenvalues in XPP, suggest that

limit cycles do not exist for realistic values of the parameters. XPP calculates the equilibria

of our system. Calculations are performed using the values provided for the initial conditions

as a �rst guess, applying the Newton�s method. When a value is found, XPP then �nds

the eigenvalues, which were given above. The program continues to integrate to calculate

the equilibria of our system beyond the current numerical parameters I speci�ed. When the

equilibrium is computed, the information on the value of the �xed point and its stability

are provided, see Appendix A. Since the eigenvalues on the whole of the non-predetermined

variables are unstable, it would be hard to �nd a limit cycle. Similar results were obtained for

several experiments I conducted with a wide range of parameter values in (�; a2) parameter

space, to examine if a limit cycle can be detected and the stability if the equilibria. Further

numerical simulations, on a wide range of parameters in XPP, also did not yield a limit cycle,

as shown in Table A:1 in Appendix B. In addition, numerical simulations in the software

DsTool, also suggest that limit cycles are non-existent for sensible values of the parameters.

The ranges I conducted my search are similar to the ranges I constructed in XPP in (�; a2)

parameter space.

There are no limit cycles, in the various experiments I conducted, but the equilibrium

is unique and saddle-path stable. Overall, the model, where naturally all four variables

are dynamic, in contrast to models in the past, performs remarkably well, in re�ecting the

observed behaviour of wage-bargaining in labour markets found in the U.S. data. As will be

seen below, my equilibrium values for most variables match exactly the real life data of the

U.S..
24Where rf = rw and t!1:
25Or any other wage bargaining model in labour economics.
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Naturally, the (�; a2) parameter combination is the most important for our analysis, as

these introduce non-linearities that cause the ITE to depart from the NBS. I then varied a

wide range of � and a1 parameters from the (�; a1) combination. Table A:2 in the Appendix

reports the results. Again, from a1 = 0:1 and � = 0 to � = 0:09, in (�; a1) parameter space26,

the system has a unique equilibrium and the solution is saddle-path stable. This rea¢ rms the

consistent remarkably good performance of the model. For example, the equilibrium values

from my simulation match precisely the real life time-series data of the U.S. with respect to

most variables, except � and w, where it is 0:01 and 0:05 out, as alluded to above.

We use the combined dynamics of the four variables in (29). The equation for the evolution

of unemployment is stable with driving force �. Substitution of wages and job values J from

(11) into (9) yield an unstable equation in �; with no other unknowns in it. The critical

point of the four-dimensional dynamical system is that it yields a unique equilibrium which

is saddle-path stable. The simulation were also conducted in the same software XPP, where

Newton�s method is used to �nd �xed points and then numerically linearises about them to

determine stability as mentioned earlier.

We �rst discuss the results of the parameter combination of the pair (�; a2) which led the

labour market to a unique equilibrium and saddle-path stability. The sign pattern of a �rst-

order linear approximation to the four di¤erential equations are three positive eigenvalues

and one negative eigenvalue as noted. Since the number of eigenvalues outside the unit

circle is equal to the number of non-predetermined variables of the system, the equilibrium is

unique and saddle-path stable. The combination of the pair (�; a2) that lead to the solution

of saddle-path stability are from a2 = 0:1 to a2 = 3 and � = 0 to � = 0:09. All areas

from a2 = 0:1 to a2 = 3 and � = 0 to � = 0:09 in (�; a2) parameter space, are associated

with a unique and well behaved rational expectation equilibrium. This could be the result of

a one-o¤ moderately favourable tax-reduction, which could induce the dynamics associated

with an increase in productivity, for example. Speci�cally, a fall in tax-reduction shifts the

wage curve up and job creation curve to the right, causing an immediate rise in both � and

w. Both � and w jump to their new equilibrium, while there is an anticlockwise rotation of

the job creation line in u; v space.

The saddle point arises since one of the variables, unemployment is sticky and stable,

26From a1 = 2 to a1 = 3 and � = 0 to � = 0.09 in (�; a1) parameter space, the solution is unstable. This
con�rms the non-linearities inherent in the system.
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whilst the others, vacancies, di¤erence between the value functions of an unemployed and

employed worker and wages are forward-looking and unstable. Firms in this model treat

vacancies as an asset, since it is the price that has to be paid now in order to attract employees

in the future. The expected arrival of employees is the rate of return on this asset. In common

with other assets, there is an instability inherent in the supply of vacancies. If the arrival

rate of employees is expected to fall, then �rms will want to be left with a lower supply of

vacancies, in anticipation of less demand for it. But if the �rm wants to hire more workers

sooner, the �rm needs to create more vacancies. Thus, an expected fall in the arrival rate of

employees leads to the creation of more vacancies and to an immediate fall in the arrival rate

of employees to each vacancy.

The expected changes in the arrival rate of employees re�ects the expected capital gains

or losses on the �rm�s outstanding vacancies. The unique feature of vacancies is that the �rms

allocate the current vacancies in accordance to their future needs. For example, if the arrival

rate of employees is expected to fall, the �rm creates more vacancies now, and hires more

employees now. The upshot is that, as a consequence, vacancies overshoot their equilibrium

value when an adjustment is anticipated to occur.

The perfect foresight path in the neighbourhood of the equilibrium is stable and unique.

The number of stable roots in (29) is equal to the one predetermined variable. The initial

condition on the predetermined variable, and the stipulation that the perfect foresight path

should converge, uniquely de�nes an initial point in (�; u; w; x) space, from which adjustment

to equilibrium occurs. In the absence of anticipated changes in the exogenous variables, the

initial point will always be on the saddle-path, since this is the unique convergent path.

In system (29), the saddle-path is easily found, due to the independence of the other

three equations from unemployment. This can be easily shown, that is, the exogenity of

unemployment from the other three variables, in XPP and Maple. Since �; w and x are the

unstable variables, if �; w and x are not in equilibrium, it will diverge.

Let us consider the impact of a change in productivity on wages, tightness, the di¤erence

in the value functions of the unemployed and employed workers and unemployment. If

the initial equilibrium is at [w (0) ; � (0) ; u (0) ; x (0)], in u; v space, vacancies will increase

as �rms create more vacancies to take advantage of higher productivity. This leads to a

decrease in unemployment simultaneously, lowering vacancies. Obversely, in the case of a
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fall in productivity, the adjustment dynamics will move the economy in the reverse direction.

That is, there will be a fall in the job creation in the u; v space, that is, there will be fewer

vacancies, due to �rm closures. Unemployment increases, then more vacancies are created as

�rms anticipate the demand for them will be high. Then this leads to fall in unemployment

and vacancies as they are matched with employees27.

Since the bottom right entry of the Jacobian matrix of (29) is very complicated, it is

infeasible to investigate the characteristic equation analytically. The situation is made worse

by the fact that the steady-state (equilibrium) cannot be found analytically (the steady-state

has to be substituted into the Jacobian prior to �nding the eigenvalues).

As is well known, due to the complex nature of, and the fact, that we have a four-

dimensional system, it is infeasible to check all of these, in particular whether the solution

stays within both constraints (17) and (18), and to verify by numerical integration the exis-

tence of a limit cycle. With regard to the latter, in the extensive experiments I conducted

by me, using both a linear cost function of constant returns to scale for the �rm of the form,

c (w) = w and the non-linear cost function of the form c (w) = a0 + a1w + a2w
2, and also

that workers are risk-averse and have single period utility function of the form, � (w) = w1��

1�� ,

with 0 < � < 1; where � = 0, which is the risk-neutral case, the ITE � NBS, for � > 0;

27For some combination of the pair (�; a2) of the four equation system, leads the economy into instability.
The combination of parameter values of a2 and � for which this is applicable are only for a2 = 0 (this is
expected and supports our non-linear cost function and not the NBS or Pissarides model with linear cost
functions) to a2 = �3 (where there are increasing returns to scale, in the �rm�s cost function), for � = 0 and
to � = 0:09 in (�; a2) combination as mentioned. Instability was triggered naturally by the choice of the pairs
(�; a2) : These choices were attempted, since I wanted to provide a comprehensive account of what happens in
the labour market, when one uses a wide range of parameters. That is, it is purely conducted for expositional
purposes. Typically, these combination pairs does not imply a strong enough response to induce the necessary
changes in wages, vacancies, unemployment and the di¤erence between the value functions of the unemployed
and employed worker.
The sign pattern of a �rst-order linear approximation to (29) of these choices of parameter values in (�; a2)

parameter space, is that, there are four positive �xed points, when x should be negative in the model. This
implies that when the economy is pushed o¤ its steady state following a shock, it cannot converge back to it,
but ends up with explosive dynamics as mentioned, that is the orbits go away from the equilibrium to in�nity.
The �rst thing to note is that the variable unemployment which should be sticky and stable, is not. This

implies that the unemployed workers are increasing at a fast rate. This has detrimental e¤ects on the economy:
First, �rms will not be able to supply su¢ cient vacancies to provide su¢ cient jobs for the increase in the
arrival rate of employees, that is they are unsustainable when unemployment increases considerably. Second,
it engenders an unfavourable signal to both the incumbent and unemployed workers, thereby reducing their
incentive to remain in employment or exert the necessary e¤ort as expounded in e¢ ciency wage theory. In
the case of the former and in the case of the latter, it discourages the volatility of the unemployed workers,
and discourages the unemployed workers from applying to posts. Third, if there is a sudden increase in
unemployment, labour market tightness �uctuates, with tightness oscillating from low to high. Fourth, wages
similarly will �uctuate from low to high, with it being low when unemployment is high and high when
unemployment is low. There is a body if evidence to suggest that unemployment has a negative impact on
wages (for example, the empirical Chapter 3 of this thesis). Fifth, the di¤erence in the value functions of the
unemployed and employed workers would also naturally �uctuate with the other three variables �uctuating.
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the workers are risk-averse; to numerically prove that there is a limit cycle, we did not �nd a

limit cycle. In principle, we should detect a limit cycle, but as is well known, see for example,

McCord, Mishaikow and Mrozak (1995) and Jordan and Smith (1999), we may not �nd a

periodic solution, although there is one in principle. We have no grounds to completely rule

out stable limit cycles.

CW, using a two-dimensional dynamical system, claim to have detected a limit cycle;

which is reputably considerably easier, than in higher order systems. Equally, proving it ana-

lytically is also considerably easier, as the straightforward application of Poincare-Bendixson

Theorem, will theoretically prove its existence, which was indeed claimed to have been applied

by CW to show the limit-cycle�s existence. No such standard proof can be applied to dynam-

ical systems of three dimensions or higher. Of course, in our system, the Hopf-Bifucation

theorem can be applied to show the existence of a limit cycle, if one is found by numerical

integration. Furthermore, with respect to the CW study, although they provide a distinct

analysis of monetary theory, the theory there developed makes no attempt to calibrate the

model adequately. In addition, with regard to the CW paper, they did �nd a limit cycle

for their two-dimensional model, but they used values of the parameters, which I feel are

unrealistic, given their initial condition. The numerical value used for their cost function,

was a �27:04902, which is inconsistent with their condition, 0 < c0 (0) < 1.

In my model, values of the parameters are consistent with �rst, the experiments with,

0 < c0 (0) < 1; and second the experiments with, c0 (0) < 128; and the important result is that

both sets of experiments show that the system has a unique equilibrium and is saddle-path

stable, but do not seem to produce a limit cycle in either set of experiments. Moreover,

CW used two special functions, b0 and b1; a cost function, which is inconsistent with their

cost function in their model, namely, c(q) in their model, with b0 and b1 functions, and

two special parameters, which are both inconsistent to their model. Their functions are

b0(q; y; z) = q + (y � 2ez)(e � y=2z) + z(e � y=2 � z)2 and b1(q) = 2ez and their parameters

were d = 0 and e = 0:001. Devoid of these functions, but including their a value, which as I

noted above is inconsistent to their conditions, the equilibrium in their model is also a saddle

point. In my model, the functions employed are consistent with the functions in the model,

namely, c(w) = a0 + a1w + a2w
2 and q (�) = 1 � e� 1

� , and I produce a unique equilibrium

28Details available from the author upon request.
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with saddle-path stability when experimenting with a wide range of parameters, but do not

appear to produce a limit cycle:

In the past, related literature has shown there is a possibility of limit cycles, as shown in

CW, which would give rise to indeterminacy and instability. To claim to represent reality,

the equilibrium should be saddle-path stable and unique with no limit cycles. In my model,

we have a well-behaved equilibrium.

Policy prescriptions can be made on the basis of whether policy critically in�uences wages

in equilibrium. The supply of jobs is a variable and subject to pro�t maximisation. The wage,

w determined in the model, absorbs/incorporates all variations in parameters, including

policy parameters relevant at the time of bargaining. Hence, there will be no qualitative

di¤erence to the results. The policy implication of varying interest rate, r and unemployment

bene�t, z can be shown over time in XPP29.

10. CONCLUSIONS

The chapter has analysed a labour market model with random matching and strategic bar-

gaining. The solution to the bargaining problem was characterised in terms of a dynamical

equation. It was also shown that the system in (�; a2) parameter space has a unique equi-

librium and is saddle-path stable for all four variables, including the dynamic variable for

workers with both risk-neutral and risk-averse single period utility and both linear and non-

linear cost functions of the �rm, which has not been attempted in the past. But overall, this

chapter had shown that there is a well behaved unique and stable equilibrium for plausible

ranges of parameter values. Such a characterisation for the wage is important in a dynamic

labour market model, besides informing us as to what was originally available for sharing be-

tween the bargainers, but also what, why and how it was shared by the same. It is found in

this chapter that the solution did coincide with the wage-bargaining analyses in steady-state,

but not when t <1, that is, out of steady-state, except when both the bargainers have equal

rates of time preference and the agents are risk-neutral.

We analysed constructing a wide range of examples to show uniqueness and saddle-path

stability of equilibrium in our full labour market model and no limit cycles, as in the past

29This is in my future research agenda.
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related literature of CW. Limit cycles would give rise to indeterminacy and instability. But

my model has a well behaved equilibrium. This shows that forward-looking behaviour is

consistent with stable and unique outcomes in wage-bargaining. Our analysis complements

remarkably well the forward-looking behaviour, empirically established in Chapter 3 of this

thesis. Our analysis with one worker and �rm bargaining, also shows there is an e¢ cient

outcome in

terms of both wages and employment.

APPENDICES

APPENDIX A

1. Solving of the �xed points, eigenvalues and its stability :

XPP �nds �xed points as follows:

First by solving

G (X) = 0

where G (X) = F (X) for di¤erential equationsX 0 = F (X) and G(X) = ��F (X) : Newton�s

method is iterative and satis�es the scheme

Xk+1=Xk � J�1G (Xk)

where J is the matrix of partial derivates of G evaluated at Xk. XPP uses three parameters

to implement Newton�s method, namely the maximum number of iterates, the tolerance and

a parameter for the numerical computation of the matrix J , referred to as epsilon in XPP. If

successive iterates falls within the tolerance, then the convergence is assumed and the root is

found. The matrix J is found by perturbing each of the variables by an amount proportional

to epsilon and utilising this perturbation to approximate a derivative.

Following the �nding of a �xed point, the matrix J is evaluated once again and the

eigenvalues of J are computed using standard linear algebra routines. This information is

utilised to compute the stability of solutions.
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APPENDIX B
TABLE A.1

STABILITY PROPERTIESa

a2
� Equilibriab;c 0 1 2 3

Risk-Neutral Workers
With Linear utility Function

NBS � ITEd
and Pissarides Model
With linear Costs

Function

Fixed Points
� 0.75 0.44 0.36 0.34
u 0.07 0.09 0.11 0.11
w 0.57 0.50 0.44
x -0.39 -0.26 -0.12

0 Eigenvalues
1.50 3.38 4.94 5.89
-0.59 0.42 0.38 0.37

1.59 3.33 -0.36
-0.43 -0.38 5.05

Risk Averse Workers
Fixed Points

� 1.19 0.44 0.36 0.34
u 0.06 0.09 0.11 0.11
w 0.39 0.57 0.50 0.44
x 0.01 -0.39 -0.26 -0.12

0.01 Eigenvalues
-0.72 3.37 4.92 5.87
0.92 0.42 0.38 0.37
0.80 1.58 3.32 -0.36
0.53 -0.43 -0.38 5.03

Fixed Points
� 1.20 0.44 0.36 0.34
u 0.06 0.09 0.11 0.11
w 0.39 0.57 0.50 0.44
x 0.02 -0.38 -0.26 -0.12

0.02 Eigenvalues
-0.72 3.35 4.90 5.86
0.92 0.42 0.38 0.37
0.80 1.58 3.31 -0.36
0.53 -0.43 -0.38 5.02

Fixed Points
� 1.21 0.44 0.36 0.34
u 0.06 0.09 0.11 0.11
w 0.38 0.57 0.50 0.44
x 0.02 -0.38 -0.26 -0.12

0.03 Eigenvalues
-0.72 3.34 4.89 5.84
0.91 0.42 0.38 -0.36
0.80 1.57 3.30 0.37
0.53 -0.44 -0.38 5.01

Fixed Points
� 1.22 0.44 0.36 0.34
u 0.06 0.09 0.11 0.11
w 0.38 0.57 0.50 0.44
x 0.03 -0.38 -0.26 -0.12

0.04 Eigenvalues
-0.72 3.32 4.87 5.83
0.91 0.42 0.38 -0.36
0.80 1.56 3.29 0.37
0.53 -0.44 -0.38 4.99

Fixed Points
� 1.23 0.44 0.36 0.34
u 0.06 0.09 0.11 0.11
w 0.38 0.57 0.50 0.44
x 0.03 -0.37 -0.25 -0.11

0.05 Eigenvalues
-0.72 3.30 4.85 5.81
0.91 0.42 0.38 -0.36
0.79 1.55 3.28 0.37
0.53 -0.44 -0.38 4.98
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TABLE A.1

(CONTINUED)

a2
� Equilibria 0 1 2 3

Risk Averse Workers
Fixed Points

� 1.24 0.44 0.36 0.34
u 0.06 0.09 0.11 0.11
w 0.37 0.57 0.50 0.44
x 0.04 -0.37 -0.25 -0.11

0.06 Eigenvalues
-0.73 3.29 4.85 5.81
0.91 0.42 0.38 -0.36
0.79 1.55 3.28 0.37
0.53 -0.44 -0.38 4.98

Fixed Points
� 1.25 0.45 0.37 0.34
u 0.06 0.09 0.11 0.11
w 0.37 0.57 0.50 0.44
x 0.04 -0.37 -0.25 -0.11

0.07 Eigenvalues
-0.73 3.27 4.81 5.78
0.91 0.43 0.38 -0.36
0.79 1.54 3.26 0.37
0.53 -0.44 -0.38 4.95

Fixed Points
� 1.25 0.45 0.37 0.34
u 0.06 0.09 0.11 0.11
w 0.37 0.56 0.50 0.44
x 0.04 -0.36 -0.25 -0.11

0.08 Eigenvalues
-0.73 3.25 4.80 5.76
0.91 0.43 0.39 -0.36
0.78 1.53 3.25 0.37
0.53 -0.44 -0.38 4.94

Fixed Points
� 1.26 0.45 0.37 0.34
u 0.06 0.09 0.11 0.11
w 0.36 0.56 0.50 0.44
x 0.05 -0.36 -0.25 -0.11

0.09 Eigenvalues
-0.73 3.23 4.78 5.74
0.90 0.43 0.39 -0.36
0.79 1.52 3.24 0.37
0.53 -0.44 -0.38 4.93

aI have also conducted experiments of parameter
values in between a2 = 0 to a2 = 1 and a2 = 1
to a2 = 2 and a2 = 3 for values of = 0 to �
= 0:09 in (�; a2) parameter space and found the
equilibrium of the system to be unique and saddle-path
stable. Details available from the author upon request.
bThe nature of eigenvalues for all variations in
(�; a2) parameter space, are 3 positive and 1
negative eigenvalue; except where NBS � ITE,
Pissarides model with linear costs and utility function.
cThe a2 values from -1 to -3, that is decreasing cost
functions and � values from 0 to 0.09 in (�; a2)
parameter space, the solution is unstable.
d When rf = rw and t!1, with linear costs
and utility function.
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TABLE A.2

STABILITY PROPERTIESa

a1
� Equilibriab 1 2 3

Risk-Neutral Workers
NBS � ITEc

and Pissarides Model
With linear Costs and
Linear utility Function

Fixed Points
� 0.47 0.35 0.32
u 0.09 0.11 0.12
w 0.51 0.38 0.28
x -0.23 0.06 0.33

0 Eigenvalues
3.00 5.25 6.54
0.44 -0.37 0.36
-0.45 2.96 5.43
1.28 0.37 -0.35

Fixed Points
� 0.47 0.35 0.32
u 0.09 0.11 0.12
w 0.50 0.37 0.28
x -0.22 0.07 0.33

0.01 Eigenvalues
2.98 5.23 6.53
0.44 -0.37 0.36
-0.45 2.95 5.43
1.28 0.38 -0.35

Fixed Points
� 0.47 0.35 0.32
u 0.09 0.11 0.12
w 0.50 0.37 0.28
x -0.22 0.07 0.33

0.02 Eigenvalues
2.97 5.21 6.51
0.44 -0.37 0.36
-0.46 2.95 5.43
1.27 0.38 -0.35

Fixed Points
� 0.47 0.35 0.32
u 0.09 0.11 0.12
w 0.50 0.37 0.28
x -0.22 0.07 0.33

0.03 Eigenvalues
2.95 5.19 6.49
0.44 -0.37 0.36
-0.46 2.95 5.42
1.27 0.38 -0.35

Fixed Points
� 0.47 0.35 0.32
u 0.09 0.11 0.12
w 0.50 0.37 0.28
x -0.21 0.07 0.33

0.04 Eigenvalues
2.94 5.17 6.48
0.44 -0.37 0.36
-0.46 2.95 5.42
1.27 0.38 -0.35

Fixed Points
� 0.48 0.35 0.32
u 0.09 0.11 0.12
w 0.50 0.37 0.28
x -0.21 0.07 0.33

0.05 Eigenvalues
2.92 5.15 6.46
0.44 -0.37 0.36
-0.46 0.38 5.42
1.26 2.95 -0.35

Fixed Points
� 0.48 0.35 0.32
u 0.09 0.11 0.12
w 0.50 0.37 0.28
x -0.21 0.07 0.33

0.06 Eigenvalues
2.90 5.13 6.44
0.44 -0.37 0.36
-0.46 0.38 5.42
1.26 2.95 -0.35

Fixed Points
� 0.48 0.35 0.32
u 0.09 0.11 0.12
w 0.50 0.37 0.28
x -0.20 0.08 0.33

0.07 Eigenvalues
2.89 5.11 6.43
0.44 -0.37 0.36
-0.46 0.38 5.41
1.26 2.94 -0.35
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TABLE A.2

(CONTINUED)

a1
� Equilibria 1 2 3

Risk Averse Workers
Fixed Points

� 0.48 0.35 0.32
u 0.09 0.11 0.12
w 0.49 0.37 0.28
x -0.20 0.08 0.33

0.08 Eigenvalues
2.87 5.08 6.41
0.44 -0.37 0.36
-0.46 0.38 5.41
1.25 2.94 -0.35

Fixed Points
� 0.48 0.36 0.32
u 0.09 0.11 0.12
w 0.49 0.37 0.28
x -0.19 0.08 0.33

0.09 Eigenvalues
2.86 5.06 6.39
0.44 -0.37 0.36
-0.46 0.38 5.40
1.25 2.94 -0.35

I have also conducted experiments of
values of a1 in between a1 > 0 to a1 = 1 and
a1 = 2 to a1 = 2 and a1 = 3 for values of � = 0
to � = 0:09 in (�; a1) parameter space and found
the equilibrium of the system to be unique and saddle-path
stable. Details available from the author upon request.
bThe nature of the eigenvalues for all variations of the
parameters in (�; a1) parameter space, are 3 positive
and 1 negative eigenvalues, except in the models with
linear cost and utility function.
cwhere rf = rw and t!1, with linear costs and
utility functions.
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