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Abstract

We contribute to a recent literature on the normalization, calibration and estima-
tion of CES production functions. The problem arises because CES ‘share’ parameters
are not in fact shares, but depend on underlying dimensions - they are ‘dimensional
constants’ in other words. It follows that such parameters cannot be calibrated, nor
estimated unless the choice of units is made explicit. We use an RBC model to demon-
strate two equivalent solutions. The standard one expresses the production function in
deviation form about some reference point, usually the steady state of the model. Our
alternative, ‘re-parametrization’, expresses dimensional constants in terms of a new
dimensionless (share) parameter and all remaining dimensionless ones. We show that
our ‘re-parametrization’ method is equivalent and arguably more straightforward than
the standard normalization in deviation form. We then examine a similar problem of
dimensional constants for CES utility functions in a two-sector model and in a small
open economy model; then re-parametrization is the only solution to the problem,
showing that our approach is in fact more general.
JEL Classification: E23, E32, E37
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1 Introduction

The concept of the normalization and calibration of CES production functions is at the

centre of a rapidly increasing literature in macroeconomics. In this paper, we attempt to

clarify the issue. We propose an equivalent way of resolving the problem of normalization

to that used in the literature that we call ‘re-parametrization’. Our paper applies dimen-

sional analysis, usually neglected in economics, showing that normalization is not just a

technical procedure and it is not specific to CES production functions. Indeed we show

that normalization is needed more generally when dealing with ‘dimensional constants’

and it is usually done implicitly, if not explicitly.

The CES production function is not a novel concept and has been used extensively in

many areas of economics since the middle of the previous century. The CES production

function appears1 in Solow (1956) Nobel Prize-winning essay and it has been subsequently

generalized by Arrow et al. (1961).

A few years later De Jong (1967) and De Jong and Kumar (1972) pointed out, by

applying ‘dimensional analysis’, that sometimes economists use forms of production func-

tions that lack the crucial property of ‘dimensional homogeneity’ – i.e., both sides of the

equation must have the same dimensions. This is not a problem for the usual Cobb-

Douglas or Leontief specification, but one must be careful in considering dimensions when

formulating a CES production function. Indeed they show that the CES functions as

specified in Solow (1956) and Arrow et al. (1961) were not dimensionally homogeneous.2

Possibly because of this dimensionality issue and/or also for reasons of better analyti-

cal tractability, subsequent works in business cycle macroeconomics extensively used the

Cobb-Douglas production function, almost forgetting the CES function defined by Arrow

et al. (1961). Another reason might be the empirical observation that factor shares have

been approximately constant over time. Indeed this observation has been the major justi-

1Here we confine ourselves to the use of CES functions applied to Macroeconomics. A full review is

beyond the scope of this paper. For a full review of the literature please refer to Klump et al. (2011). See

La Grandville (2009) for a general discussion on CES production functions.
2See De Jong (1967) at pages 38-46 for the details and the discussion of why the production function

as defined in Solow (1956) at page 77 and in Arrow et al. (1961) at page 230 are not dimensionally

homogeneous because the technical parameters are treated as pure numbers whereas they are elements of

different dimensions and therefore are not additive in a conceptually meaningful way.
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fication of the use of Cobb-Douglas production function in the RBC literature.3 However

while the assumption of constant factor shares might be reasonable in growth models, it

has been shown that (see for example Blanchard (1997), Jones (2003, 2005), McAdam and

Willman (2011) and Rı́os Rull and Santeulália-Llopis (2010)) such shares do fluctuate at

business cycle frequencies. Anyway business cycle models have largely disregarded this

issue and still today maintain the Cobb-Douglas hypothesis.

Recently there is an increasingly empirical evidence going in favour of CES produc-

tion functions, in particular at business cycle frequencies, with elasticity of substitution

well below unity (e.g., Klump et al. (2007), Chirinko (2008) and León-Ledesma et al.

(2010)). The resurrection of the CES production function is due to La Grandville (1989)

who extended the findings in Solow (1956) and introduced the concept of normalization.

Normalization, i.e. expressing the production function in terms of index numbers, is im-

portant so that the parameters of the CES are deep (dimensionless) and not a mixture

of production parameters which depends on the choice of units. La Grandville (1989)

achieved this by normalizing the CES function at some chosen baseline values for the

three following variables: the capital-labour ratio, per capita income and marginal rate of

substitution. By doing so, one can avoid arbitrary results and express the efficiency and

the distributional parameters of the CES as a function of the point of normalization and

the elasticity of substitution.

The La Grandville procedure is needed when the researcher is interested in comparing

economies which are distinguished only by their elasticity of substitution, as stressed by

Klump and de La Grandville (2000). Indeed Klump and Preissler (2000) and Klump and

de La Grandville (2000) explain that the normalized CES production function employed

permits one to compare results with steady-state allocations and factor income shares

that are constant as the elasticity of substitution is changed. The normalization proce-

dure identifies then a family of CES production functions that are distinguished only by

the elasticity parameter, and not by the steady-state allocations. This point is particu-

larly important for business cycle models which use steady-state values about which to

approximate the model’s local dynamics up to the first order. In practice, normalization

consists of recalibrating (or re-parameterizing) the model to match the data each time

3See for example Cooley (1995) Chapter 1 page 16.
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the elasticity parameter is varied. This is why Klump and Saam (2008) talk about arbi-

trary and inconsistent results if the CES function is not correctly normalized. Klump and

de La Grandville (2000) also stressed that one of their objectives was to advocate the use

of normalized CES functions in growth models.4 A normalized CES production function

approach has been used as well to investigate the implication of capital-labour substi-

tution for equilibrium indeterminacy (Guo and Lansing (2009)). On the empirical side,

León-Ledesma et al. (2010) show that normalization improves empirical identification.5

As recently stressed in Cantore et al. (2010), in a business cycle context, normaliza-

tion (or re-parametrization) is also necessary so that we choose a normalization point

corresponding to a steady state where factor shares directly map to certain CES param-

eters. Using non-normalized production functions not only obscures calibration results,

but could also affect dynamic responses to shocks as the elasticity of output with respect

to production inputs can change at different steady states. When you compare dynamic

responses for different values of the elasticity of substitution a meaningful and consistent

comparison requires analysing the models at the same normalization point. This is not

necessary when working with Cobb-Douglas functions, since factor shares do not change,

and hence it is not common practice in calibration of business cycle models.

Usually in this literature, normalization is presented as a technical procedure that

applies only when dealing with the CES production function. Our aim here is to clarify

the issue by using dimensional analysis to show that normalization always applies but is

usually done implicitly (like in the Cobb-Douglas case, due to its multiplicative forms)

and has to do with the presence of ‘dimensional constants’ which require a choice of units.

The second contribution of this paper regards the generalization of normalization be-

yond production theory. Although, to the best of our knowledge, the literature has so

far confined the issue of normalization only for CES production functions, here we also

relate the issue to CES utility functions in multi-sectoral models. We show that, while

for the case of CES production functions the standard normalization approach and the

4Furthermore they show how their approach is preferable to the one proposed in Barro and Sala-i-Martin

(2004) (pp.68-74) which is also proven to be inconsistent in Klump and Preissler (2000).
5They show that using a normalized approach permits to overcome the ’impossibility theorem’ stated

by Diamond et al. (1978) and simultaneously identify the elasticity of substitution and biased technical

change.
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re-parametrization one presented here are equivalent, in the case of CES utility function

in two-sector and open economy models re-parametrization is the only solution.

Given the focus of the paper on macroeconomic models of the business cycle, which

are usually approximated up to the first order around the non stochastic steady state,

the latter result is proved by showing that: (i) in the case of the one-sector RBC model

the log-linearization can be expressed entirely in terms of dimensionless parameters; (ii)

in the case of the two-sector (and open economy) model the linearization does depend on

parameters that are not dimensionless (ie. depends on the choice of units).

The paper proceeds as follows. Section 2 introduces dimensional analysis, presents the

normalization issue in a one-sector standard RBC model and sets out our two equivalent

approaches. The standard one is to express the production function in deviation form

about some reference point, usually the steady state of the model. The alternative we

refer to as ‘re-parametrization’ is conceptually more straightforward. This identifies pa-

rameters that are not dimensionless and in the absence of specifying dimensions cannot

be quantified. It follows that such ‘dimensional parameters’ cannot be calibrated, nor

estimated unless the choice of units is made explicit. Re-parametrization involves intro-

ducing a new share (and therefore) dimensionless parameter and expressing dimensional

parameter in terms of this parameter and all remaining dimensionless ones. Sections 3 and

4 discuss the normalization and re-parametrization of CES utility functions respectively

in a two-sector RBC model and in an open economy model. Finally Section 5 concludes.

2 Dimensional Constants in the CES Production Function

One can think of ‘normalization’ as removing the problem that always arises from the fact

that labour and capital are measured in different units, but the units of measurement are

not specified. Under Cobb-Douglas, normalization is implicit since, due to its multiplica-

tive form, differences in units are absorbed by a scaling assumption that relates the units,

whatever they are, to each other. The CES function, by contrast, is non-linear in logs, and

so, unless correctly normalized, out of its three key parameters - the efficiency parameter,

the distribution parameter, the substitution elasticity - only the latter is dimensionless.

The other two parameters turn out to be affected by the size of the substitution elasticity

and factor income shares. Then if one is interested in model sensitivity with respect to
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production parameters, normalization in needed to avoid arbitrary comparisons and to

make sure that inference based on impulse-response functions is correct and not driven by

the choice of units.

2.1 The CES Production Function

We start with a general CES production function (and Cobb-Douglas as a special case) in

dynamic form suitable for use in a DSGE model

Yt =
[

αk(ZKtKt)
ψ + αn(ZNtNt)

ψ
] 1

ψ
; ψ != 0 & αk + αn != 1

= (ZKtKt)
αk(ZNtNt)

αn ; ψ → 0 & αk + αn = 1 (1)

where Yt, Kt, Nt are output, capital and labour inputs respectively at time t, ZNt and ZKt

representing respectively labour-augmenting and capital augmenting technical change, and

ψ ∈ (−∞, 1] is the substitution parameter and αk and αn are sometimes referred as

distribution parameters. The way we present the production function in (1) goes back to

Pitchford (1960) who generalized the one presented in Solow (1956). Also De Jong (1967)

and De Jong and Kumar (1972) use a similar formulation, that does not restrict the two

distribution parameters (αk and αn) to sum up to 1, in order to show the dimensionality

problem in the formulation by Solow and Arrow et al. (1961). As discussed in Klump and

Preissler (2000) and Klump et al. (2011) in the literature different ways of expressing the

CES production function have been used6 with the one proposed by Arrow et al. (1961),

Yt = C
[

α(ZKtKt)
ψ + (1 − α)(ZNtNt)

ψ
] 1

ψ
(2)

probably being the most used. However it is straightforward to show that the formulation

in (2) is equivalent to the one presented in (1) with C = (αk + αn)ψ and α = αk
αk+αn

.

Calling σ ≡ 1
1−ψ the elasticity of substitution between capital and labour,7 then with

6Klump and Preissler (2000) also discuss why the formulation used by Barro and Sala-i-Martin (2004)

is inconsistent.
7The elasticity of substitution for the case of perfect competition, where all the product is used to

remunerate factor of productions, is defined as the elasticity of the capital/labour ratio with respect to the

wage/capital rental ratio. Then calling W the wage and R + δ the rental rate of capital we can define the

elasticity as follows:

σ =
dK

N
N
K

d W
R+δ

R+δ
W

.

See La Grandville (2009) for a more detailed discussion.
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ψ ∈ (−∞, 1), σ ∈ (0,+∞). When σ = 0 ⇒ ψ = −∞ we have the Leontief case,

σ = 1 ⇒ ψ = 0 collapses to the usual Cobb-Douglas case and as σ → ∞ ⇒ ψ → 1 capital

and labour become perfect substitutes.

2.2 Dimensional Analysis

From the outset a discussion of dimensions and dimensional analysis is essential. ZK and

ZN are not measures of efficiency as they depend on the units of output and inputs (i.e.,

are not dimensionless and the problem of normalization arises because unless ψ → 0, α in

(2) is not a share and in fact is also not dimensionless.

As in every science a choice of primary dimensions must be made. It is useful to

consider the example of classical mechanics and Newton’s famous law of gravitation. This

states that two masses m1 and m2 a distance r apart attracts each other with a force given

by

F = G
m1m2

r2
(3)

where G is a constant. The important point is that the value of G depends on the

choice of units. Dimensional analysis essentially imposes dimensional homogeneity on a

relationship, that is the requirement that both sides of an equation must have the same

dimensions to be meaningful. Let [F ] denote the dimension of force and define [m] and [r]

similarly. It follows that the dimension of the constant G is [Fr2m−2] and in fact it turns

out that in metric units G = 6.670 × 10−11 newton×(meters)2 per (kilogram)2. Here a

newton is a unit of force and is a secondary dimension. In terms of primary dimensions

of mass, distance and time, by Newton’s second law force equals mass × acceleration and

hence F ∈ [mrT−2] where T is time so in terms of primary dimensions G ∈ [r3T−2m−1]

and has metric units of cubic meters per (kilogram×second2).

In macroeconomics we do not distinguish between the millions of goods produced nor

between the many types of labour. Instead we construct composite measures of output,

labour and capital which have dimensions, but often the unit of measurement is not made

explicit. Let our primary dimensions of such composites be output (Ry), capital (Rk),

labour (Rl) and time (T ). Then the flow output per period has dimensions RyT−1, labour

per period has dimensions RlT−1, whilst capital is a stock of accumulated output with

dimension Rk = RyT−1T = Ry. Consider first the Cobb-Douglas production function in
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a no-growth steady state Y = (ZKK)α(ZNN)1−α where we define αk = α. Then by

dimensional homogeneity

Y ∈ [RyT
−1] = (ZKK)α(ZNN)1−α ∈ [ZKαZN1−αRα

y (RlT
−1)1−α] (4)

It follows that the composite constant, ZKαZN1−α ∈ [R1−α
y Rα−1

l T−α]. For example, if

labour is the only input, α = 0, ZK disappears and ZN ∈ RyR
−1
l ; that is output per unit

of labour or labour productivity. If capital is the only input, α = 1, ZN disappears and

ZK ∈ T−1 which enables a stock to be related to a flow.8

These steady-state ‘efficiency parameters’ ZK and ZN are then constants that depend

on the choice of units. They are in other words dimensional constants. De Jong (1967)

proposes the following procedure that avoids specifying units of measurement. Define a

steady-state baseline point (later the literature refers to this as a ‘normalization’ point)

Y = Y0, K = K0 and N = N0 that satisfy the Cobb-Douglas production function. Then

Y0 = (ZKK0)α(ZNN0)1−α. Dividing the two forms of the production function we have

what De Jong refers to as the “revised version”

Y

Y0
=

(
K

K0

)α (
N

N0

)1−α

(5)

Now all the ratios Y
Y0

etc are dimensionless and the troublesome dimensional constants ZN

and ZK have been eliminated. In fact there is a simpler way of handling these dimensional

constants. Units can be chosen so that when N = 1 and K = 1, then Y = 1 implying

ZKαZN1−α = 1. We do not need to specify units of measurement to do this. What we

are saying is that whatever our units of say output and labour are, we can define the units

of capital and time so that Y = N = K = 1 and hence ZKαZN1−α = 1.9 Since we wish

the ZK and ZN to be independent of α it follows that ZK = ZN = 1.

Things are not so straightforward when we generalize to a CES production function.

As before we can put ZK = ZN = 1 and dispose of one problem of dimensional constants.

8For some, these dimensional requirements pose a fundamental problem with the notion of a production

function - see Barnett (2004)
9For example suppose 1 kilogram of steel (capital) combines with 4 hours of labour to give one unit of

a product per day. In fact later we will define N to be a proportion of a day and therefore dimensionless;

so N = 1 combines with 2 kilograms of steel to give 2 units of the product. Then redefine a unit of output

to be the latter and a unit of capital to be 2 kilograms of steel.

7



Then applying dimensional homogeneity we have that

αn ∈ [Rψ
y R−ψ

l ] (6)

αk ∈ [T−ψ] (7)

so the dimensions of both parameters depend on the distribution parameter ψ. In addition,

αn is a dimensional constant depending on units of output and labour whereas αk only

depends on the unit of time which we do specify in our macroeconomic models and data.

Equivalently C and α in (2) are also dimensional constants. It follows that their values

will change simply by a different choice of units and the actual data will not be able to

pin down their values.10

2.3 RBC Model

We embed the CES production function in a very standard RBC model with no costs of

investment as in Cantore et al. (2010). It consists of a household’s utility function, the first-

order conditions for intertemporal savings and consumption, Ct (the Euler Equation), their

labour supply decisions, a CES production function for firms, their first-order conditions

for labour and capital inputs and an output equilibrium.

Utility : Λt = Λ(Ct, 1 − Nt) (8)

Euler : ΛC,t = βEt [(1 + Rt+1)ΛC,t+1] (9)

Labour Supply : Wt = −
ΛN,t

ΛC,t
(10)

Production Function : Yt = F (ZKt, ZNt,Kt, Nt) (11)

Labour Demand : FN,t ≡ MPLt = Wt (12)

Capital Demand : FK,t ≡ MPKt = Rt + δ (13)

Equilibrium : Yt = Ct + Kt+1 − (1 − δ)Kt + Gt (14)

where ΛL,t and ΛC,t are respectively the marginal utilities of labour supply and consump-

tion, and Gt is government spending. Seven equations (8)–(14) describe and equilibrium

in seven real variables {Λt}, {Ct}, {Nt}, {Rt}, {Wt}, {Yt} and {Kt} given exogenous pro-

10This is neatly demonstrated in Klump et al. (2011) in an example where different values of C and α

can be generated simply by changing the units of capital - see their Table 3.
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cesses for {ZKt}, {ZNt} and {Gt} and the initial value of the one predetermined variable

in the model, beginning of period capital stock, Kt.

We next choose functional forms. The production function is CES as above and the

utility function is standard and chosen to be compatible with a balanced-growth path:

Λt =
(C(1−!)

t (1 − Nt)!)1−σc − 1

1 − σc
(15)

Marginal utilities and marginal products (the latter equated with factor prices) are now

given by

ΛC,t = (1 − ")C(1−!)(1−σc)−1
t (1 − Nt)

!(1−σc) (16)

ΛN,t = "C(1−!)(1−σc)
t (1 − Nt)

!(1−σc)−1 (17)

FN,t =
Yt

Nt

[
αn(ZNtNt)ψ

αk(ZKtKt)ψ + αn(ZNtNt)ψ

]

= αnZNψ
t

(
Yt

Nt

)1−ψ

= Wt (18)

FK,t =
Yt

Kt

[
αk(ZKtKt)ψ

αk(ZKtKt)ψ + αn(ZNtNt)ψ

]

= αkZKψ
t

(
Yt

Kt

)1−ψ

= Rt + δ (19)

and along with specified forms of the exogenous processes, this completes the specification

of the model. The equilibrium of real variables depends on parameters ", σc, δ, ψ, αk and

αn. Of these ", ψ and σc are dimensionless, δ depends on the unit of time, but unless

ψ = 0 and the technology is Cobb-Douglas, αk and αn depend on the units chosen for

factor inputs, namely machine units per period and labour units per period. To see this

rewrite (18) and (19) in terms of factor shares

WtNt

Yt
= αnZNψ

t

(
Yt

Nt

)
−ψ

(20)

(Rt + δ)Kt

Yt
= αkZKψ

t

(
Yt

Kt

)
−ψ

(21)

from which
WtNt

(Rt + δ)
=

αn

αk

(
ZKtKt

ZNtNt

)
−ψ

(22)

Thus αn (αk) can be interpreted as the share of labour (capital) iff ψ = 0 and the produc-

tion function is Cobb-Douglas. Otherwise the dimensions of αk and αn depend on those

for
(

ZKtKt
ZNtNt

)ψ
which could be for example, (machine hours per effective person hours)ψ.

In our aggregate production functions we choose to avoid specifying unit of capital, labour

and output. It is impossible to interpret and therefore to calibrate or estimate these ‘share’

parameters.
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There are two ways to resolve this problem; ‘re-parameterize’ the dimensional param-

eters αk and αn so that they are expressed in terms of dimensionless parameters to be

estimated or calibrated, or ‘normalize’ the production function in terms of deviations from

a steady state. We consider these in turn.

2.4 Re-parametrization of αn and αk

First write the balanced growth steady state of consumption Euler equation as

Λ̄C,t+1

Λ̄C,t
=

[
C̄t+1

C̄t

](1−!)(1−σc)−1)

= (1 + g)((1−!)(1−σc)−1) = β(1 + R) (23)

On the balanced-growth path (bgp) consumption, output, investment, capital stock, the

real wage and government spending are growing at a common growth rate g driven by

exogenous labour-technical change ZN t+1 = (1+g)ZN t, but labour input N is constant.11

As it is well-known, a bgp requires either Cobb-Douglas technology or that technical change

must be driven solely by the labour-augmenting variety (see, for example, Jones (2005)).12

Then ZKt = ZK must also be constant along the bgp. It is convenient to stationarize the

bgp by defining stationary variables such as Y ≡ Ȳt

ZKZNt
.13 Then the stationarized bgp is

given by

Y =
[

αkK
ψ + αnNψ

] 1
ψ

(24)

#C

(1 − #)(1 − N)
= W (25)

Y

N

[
αnNψ

αkKψ + αnNψ

]

= W (26)

Y

K

[
αkKψ

αkKψ + αnNψ

]

= R + δ (27)

I = (δ + g)K (28)

Y = C + I + G (29)

which together with (23) defines the bgp.

11If output, consumption etc are defined in per capita terms then N can be considered as the proportion

of the available time at work and is therefore both stationary and dimensionless.
12Recently León-Ledesma and Satchi (2010) have demonstrated that by using a slightly modified CES

production function it is possible to introduce capital augmenting technical change as well along the bgp.

Here for reasons of simplicity we do not consider that case.
13The full model can also be stationarized in the same way by dividing Yt, Ct, etc by ZKZN t.
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We can now define

π ≡
αnNψ

αkKψ + αnNψ
=

WN

(R + δ)K + WN
(30)

1 − π ≡
αkKψ

αkKψ + αnNψ
=

(R + δ)K

(R + δ)K + WN
(31)

which are the labour and capital share on the bgp and are both dimensionless and sta-

tionary. Then using (24), (30) and (31) we obtain our re-parametrization of αn and αk:

αn = π

(
Y

N

)ψ

(32)

αk = (1 − π)

(
Y

K

)ψ

(33)

Note that αn = π and αk = 1 − π at ψ = 0, the Cobb-Douglas case.14 Before proceeding

we need to apply dimensional analysis. From (32) we see that αn ∈ [Rψ
y R−ψ

l ] confirming

(6). From (58) and (31) we see that Y
K (1 − π) = R + δ. Hence we have that

αk = (1 − π)1−ψ(R + δ)ψ ∈ [T−ψ] (34)

confirming (7).

To complete the description of the model including the parameters αk and αn we need

to characterize the bgp steady state. From (58) – (58) we have the shares

K(R + δ)

Y
=

K̄t(R + δ)

Ȳt
= 1 − π (35)

WN

Y
=

W̄tN

Ȳt
= π (36)

I

Y
=

Īt

Ȳt
=

(δ + g)K

Y
=

π(δ + g)

(R + δ)
(37)

C

Y
= 1 −

Īt

Ȳt
−

Ḡt

Ȳt
(38)

which are both dimensionless and independent of the production elasticity ψ, as is the real

interest rate. Using (25) we have

(1 − N)(1 − %)

N%

WN
Y
C
Y

=
(1 − N)(1 − %)π

N%
(39)

from which N is obtained. The steady state consumption Euler equation (23) determines

R and hence K
Y from (35). To recover levels along the bgp first put Ȳt = ZKtZN tY

14And as argued before if π ∈ (0, 1) αk + αn = 1 iff ψ = 0.

11



etc. There is one more dimensional issue: the specification of dimensional constants

ZN0 and ZK. As argued earlier by choice of units in the steady state at t = 0 we

can put ZN0 = ZK = 1. This completes the bgp steady-state equilibrium which is

now defined only in terms of dimensionless parameters !, σc, ψ, π and δ which depends

on the unit of time. In (32) and (33) dimensional parameters expressed in terms of

other endogenous variables Y , N and K are now themselves functions of θ ≡ [σ, ψ, π, δ].

Therefore αn = αn(θ), and αk = αk(θ) which expresses why we refer to this procedure as

re-parametrization.

To calibrate these dimensionless parameters and δ, if we have data for R, g, π, C
Y , I

Y

and N we can pin down δ and ! from (37) and (39) respectively. Then (23) can be used

to calibrate one out of the two remaining parameters β and σc. Since there is a sizeable

literature on the microeconometric estimation of the latter risk-aversion parameter, it is

usual to use this and calibrate β.

2.5 The Production Function in Deviation Form

This simply bypasses the need to retain αk and αn and writes the dynamic production

function in deviation form about its steady state as

Yt

Ȳt
=

[

αkZKtK
ψ
t + αn(ZNtNt)ψ

αkK̄
ψ
t + αn(ZN tN)ψ

] 1
ψ

=






αk

(
ZKtKt

K̄t

)ψ

αk + αn

(
ZNtN

K̄t

)ψ
+

αn

(
ZNtNt

ZNtNt

)ψ

αk

(
K̄t

ZNtN

)ψ
+ αn






1
ψ

From the steady-state of the first order conditions, and from (30) in particular, we can

write this simply as

Yt

Ȳt
=

[

(1 − π)

(
ZKtKt

K̄t

)ψ

+ π

(
ZNtNt

ZN tN

)ψ
] 1

ψ

(40)

as in Cantore et al. (2010). The steady-state is characterized as before and again involves

a further ‘normalization’ Ȳ0 = ZN0 = ZK = 1.15

Re-parametrization and writing the production function in deviation form are two

equivalent ways of eliminating the dimensional parameters in the CES production. How-

ever following Arrow et al. (1961) it is possible to estimate a non-normalized CES produc-

tion function of the form (2). Using aggregate private non-farm output in the US (1929

15Which is almost identical to the one used in Cantore et al. (2010) although they normalize as well

hours worked to 1 using the accounting identity Ȳ = (R̄ + δ)K̄ + W̄ N̄ .
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- 49) they obtained C = 0.584(1.0183)t , α = 0.481 and ψ = −0.756. What can we make

of these estimates? They are perfectly valid provided the units are made explicit. For

this exercise these units for labour are person-years, for output $m at 1939 prices per year

and for capital the stock measured in $m at 1939 prices. However as demonstrated in

León-Ledesma et al. (2010) using Monte Carlo experiments there are enormous advan-

tages in estimating a normalized CES production function arising from the fact that the

parameters to be estimated are dimensionless; in particular the share parameter has a

natural prior, a feature that is particularly pertinent in the estimation of DSGE models

where Bayesian estimation is now standard. This econometric advantage of using a nor-

malized form is in addition to a second advantage, alluded to in the introduction, that

non-normalized production functions cannot be used to carry out comparative static ex-

ercise as the elasticity σ changes. Our dimensional analysis results (32) and (33) clearly

show that the units of measurement must depend on ψ and therefore σ, so as we change

the elasticity then the unit of measurement changes. Estimates on one choice of units

cease to be valid as these change thus invalidating the comparison based on the original

estimates of (32) and (33). By contrast, in our re-parametrization (32) and (33) become

endogenous for a given dimensionless share parameter π.

2.6 Dynamic Set-up for Simulations

The two ways of addressing the normalization issue result in two equivalent set-ups for

use in modelling software such as Dynare. These involve the following steps:

1. Solve for the bgp steady state for dimensionless variables consisting of consumption-

output, capital-output, etc shares, labour supply (the proportion of hours worked)

and the real interest rate. For the RBC model these are given by (23) and (35) –

(38) and can be solved analytically in a sequential fashion. In general a numeral

algorithm is required.

2. Choose units in a convenient way at t = 0. For our model we do so in such a way

that along the bgp Ȳ0 = ZN0 = ZK = 1.

3. Having solved for this bgp steady state, the model dynamics along the bgp in levels

13



is now obtained from the dynamics of output

Ȳt = ZKZN tY (41)

ZN t+1 = (1 + g)ZN t (42)

4. For the re-parametrization approach define output by the basic CES production

function (1) with dimensional parameters αn and αk given by (32) and (33).

5. Or for what has now become the standard normalization approach set the production

in deviation form (40).

6. Both forms follow from the same first-order conditions and are equivalent.

Figures 1 illustrate our re-parametrization as the elasticity of substitution parameter σ

varies.16 In our simulations consumption, investment and government spending ratios are

constant as well as hours and real wages. What are changing are the two parameters αk

and αn that are not dimensionless maintaining the same steady state for across σ (figure

2). If we compute impulse response functions at any point along these graphs we would

not get arbitrary results, in line with Klump and Saam (2008) and Cantore et al. (2010).

As it is clear from the previous figures the parameters αk and αn are not dimensionless

and for this reason when the model is set up with our first re-parametrization we cannot

calibrate nor estimate the α’s without specifying explicitly the choice of units; only the

dimensionless parameter π can be meaningfully quantified.17

2.7 Linearization

Define lower case variables xt = log Xt
X where X is the bgp stationarized steady state

value of a trended variable. For the variable rt ≡ log
(

1+Rt
1+R

)

is the log-linear gross real

interest rate. Then using the ‘re-parametrization’ approach presented in section 2.4 and

substituting (33) and (32) it can be shown18 that the log-linearized RBC model about the

16Parameter values are π = 0.6, g = 0, σc = 2.0, β = 0.99, $ = 0.6030, gy ≡ G
Y = 0.2 and δ = 0.025

17The Dynare and Matlab programs are available from the authors on request.
18See Appendix A for the log-linearization of the production function.
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BGP steady state takes the state-space form

kt+1 =
1 − δ

1 + g
kt +

δ + g

1 + g
it

Et[λC,t+1] = λC,t − Et[rt+1]

λC,t = −(1 + (σc − 1)(1 − $))ct + (σc − 1)$
N

1 − N
nt

λN,t = λC,t + ct +
N

1 − N
nt

wt = λN,t − λC,t = ct +
N

1 − N
nt

yt = π(nt + at) + (1 − π)kt

yt =
C

Y
ct +

I

Y
it +

G

Y
gt

1 + R

R + δ
rt = (1 − ψ)(yt − kt)

wt = (1 − ψ)(yt − nt) + ψat

From equation (40) it is clear that by using the production function in deviation form

showed in section 2.5 we arrive at the same result. The importance of this result is that

the log-linearization can be expressed entirely in terms of dimensionless parameters $, σc,

ψ and π and δ which depends on the unit of time, and is no longer a function of αn and αk.

It follows that, once the model is re-parameterized the first-order dynamics and impulse

response functions in the region of the steady-state are independent of these dimensional

parameters.

2.8 Summary

The CES function is defined in terms of a ‘share parameters’ αn and αk which are not

dimensionless (and therefore not shares) and consequently cannot be quantified without

specifying the precise units of factors and output. We avoid doing this in macroeconomics

so we need to either re-parameterize the model by expressing these dimensionless param-

eters in terms of the other endogenous variables and a newly introduced parameter, the

long-run labour share of output, π or we need to express the production function in devi-

ation form. If we include π in the vector of parameters θ, we can then express αn = αn(θ)

and αk = αk(θ) in effect treating these ‘parameters’ as variables. Alternatively we can

eliminate αn and αk altogether and formulate the production function in normalized form

as a function of π. The log-linearized form of the model can be expressed in terms of π
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and does not involve the dimensional parameters. Both set-ups require some further nor-

malization (choice of units) for the steady states, but the model dynamics is independent

of this choice.

3 Re-parametrization in Utility Functions: Two-Sector Model

We now show that a similar problem and solution arise with the parametrization of utility

functions. Consider a 2-sector version of our one-sector RBC model. Factors of production

are perfectly mobile so that factor prices are equalized. A proportion n1 of household

members supply labour hours h1,t in sector 1, a proportion 1 − n1 supply labour h2,t in

sector 2. The two sectors produce goods that are imperfect substitutes with prices Pi,t,

i = 1, 2. Quantities Ci,t, Ii,t, Gi,t and Ki,t are defined similarly. We assume each sector

accumulates capital out of its own output. To simplify matters we confine ourselves to the

case of only labour-augmenting change and put ZKi,t = 1 and ZNi,t = Ai,t.

First we construct a Dixit-Stiglitz CES consumption index and a corresponding price

aggregate

Ct =
[

w1−φCφ
1,t + (1 − w)1−φCφ

2,t

] 1
φ

; φ ∈ [−∞, 1] , φ $= 0 (43)

= Cw
1,tC

1−w
2,t ; φ = 0 (44)

Pt =
[

w(P1,t)
1−µ + (1 − w)(P2,t)

1−µ
] 1

1−µ ; µ $= 1 (45)

= Pw
1,tP

1−w
2,t ; µ = 1 (46)

where µ ≡ 1
1−φ ∈ [0,∞]. Then standard inter-temporal and intra-temporal decisions give

Utility : Λt = Λ(Ct, n1,t, h1,t, h2,t) = n1,tU(Ct, h1,t) + (1 − n1,t)U(Ct, h2,t))

(47)

Euler : ΛC,t = βEt [(1 + Rt+1)ΛC,t+1] (48)

FOC C1,t : C1,t = w

(
P1,t

Pt

)
−µ

Ct (49)

FOC C2,t : C2,t = (1 − w)

(
P2,t

Pt

)
−µ

Ct (50)

16



Production Function : Yi,t = F (Ai,t, Ni,t,Ki,t) (51)

Ni,t ≡ hi,tni,t (52)

Labour Supply :
Λhi,t

ΛC,t
= −Wt (53)

(54)

Note that (49), (50) and (45) imply that P1,tC1,t + P1,tC1,t = PtCt.

The firm’s behaviour is summarized by:

FOC Ni,t :
Pi,t

Pt
FNi,t = Wt (55)

FOC Ki,t :
Pi,t

Pt
FKi,t = Rt + δ (56)

The model is completed with an output equilibrium in each sector

Yi,t = Ci,t + Gi,t + Ki,t+1 − (1 − δi)Ki,t (57)

Functional form for U(Ct, Lt) is chosen as for the one-sector model and F (At, Lt,Kt) is

assumed to be Cobb-Douglas, in order to focus on the utility function issue, but with

different parameters in the two sectors. Equations (47) – (57) describe an equilibrium

in Λt, Ct,
Wt
Pt

, Yi,t, hi,t,
Pi,t

Pt
, Ki,t, Ii,t, Rt given exogenous processes for Ai,t and Gi,t

and parameters ", σc, ψi, δ, αn,i, αk,i and w for i = 1, 2. As before ", ψ and σc are

dimensionless, δi depends on the unit of time and αn,i, αk,i depend on factor units (unless

ψi = 0) and need to be replaced by dimensionless share parameters in the same fashion.

But as we shall now see there is a further non-dimensionless parameter w, (unless φ = 0).

As for the one-sector model and the CES production function we explore two ways of

dealing with this problem: re-parameterizing w or expressing the CES utility function in

deviation form.
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3.1 Re-parametrization of w

First we must set out the balanced-growth path (bgp) steady state. Defining stationary

variables such as C ≡ C̄/Ā1, the stationarized bgp is given by

1 + R = (1 + g)((1−!)(1−σc)−1)

Yi = Nπi
i K1−πi

i ; i = 1, 2

N1 ≡ n1h1

N2 ≡ (1 − n1)

(
Ā2,th2

Ā1,t

)

!C

(1 − !)(1 − h1)

(

n1 + (1 − n1)
(

(1−h1)
(1−h2)

)!(σc−1)
) = W

!C

(1 − !)(1 − h2)

(

n1

(
1−h2
1−h1

)!(σc−1)
+ 1 − n1

) = W

πiYi

Ni
= W ; i = 1, 2

(1 − π)Yi

Ki
= R + δ ; i = 1, 2

Ii = (δ + g)Ki ; i = 1, 2

Yi = Ci + Ii + Gi ; i = 1, 2

C1 = w

(
P1

P

)
−µ

C (58)

C2 = (1 − w)

(
P2

P

)
−µ

C (59)

P 1−µ = wP 1−µ
1 + (1 − w)P 1−µ

2 (60)

G1 = gy1Y1 (61)

G2 = gy2Y2 (62)

From (58) we now have ωc ≡
P1C1
PC = w

(
P1
P

)1−µ
from which we can express w as

w = ωC

(
P1

P

)µ−1

= w(θ) (63)

where θ ≡ [µ, σc, β, g, !, δi, πi, ψi ωC ] which we refer to as parametrization 1. We can

now see that w depends on the dimensionless share parameter ωC and (unless µ = 1)
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on prices P1 and P2 on the bgp. The latter in turn depend on units of output so w

is not dimensionless and therefore cannot be pinned down without an explicit choice of

units of output.19 However we can re-parameterize the model in terms of ωC which

is dimensionless and readily calibrated. Since
(

P1
P

)

can be expressed in terms of the

dimensionless parameters µ, σc, β, g, $, δi, πi, ψi from (63) it follows that w can be

expressed in terms of these plus our new parameter ωC .

Parametrization 1 depends on the observation of the consumption share ωC which

might not always be available. In the case where the only available data are for the output

share ωY ≡ P1Y1
PY , from (58) – (59) we have

ωY ≡
P1Y1

PY
=

w
(

P1
P

)1−µ
C +

(
P1
P

)

(I1 + G1)

w
(

P1
P

)1−µ
C +

(
P1
P

)

(I1 + G1) + (1 − w)
(

P2
P

)1−µ
C +

(
P2
P

)

(I2 + G2)

from which we arrive at parametrization 2 :

w =
(ωY − 1)

(
P1
P

)

(I1 + G1) + ωY

(
P2
P

)

(I2 + G2) + ωY

(
P2
P

)1−µ

C
[

(1 − ωY )
(

P1
P

)1−µ
+ ωY

(
P2
P

)1−µ
] (64)

so now the model is re-parameterized in terms of the dimensionless quantity ωY .

This completes an equilibrium defined in terms of dimensionless parameters $, σc, ψi

and πi, ωC or ωY , ωg and δ which depends on the unit of time. The model equilibrium is

now completely defined in terms dimensionless parameters apart from the ratio of labour-

augmenting parameters Ā2,t

Ā1,t
= Ā2,0

Ā1,0
along a bgp. At t = 0 using the standard normalization

1, we can choose units of labour and capital so that 1 unit of each (whatever our choice)

produces 1 unit of output in both sectors. Therefore we can choose Ā1,0 = Ā2,0 = 1 and

the model is now complete.

An alternative choice of units would get all prices P1 = P2 = P = 1 in the steady-

state and to choose the relative efficiency Ā2,0

Ā1,0
so as to match P1C1

PC or P1Y1
PY with data.

But as with the non-normalized CES production function, this throws away the ability to

carry out comparative statics on the steady state that results in changes in the relative

price for a given exogenous relative efficiency. This is demonstrated in our illustrative

simulations. We assume that sector two is more labour intensive with a choice α1 = 0.5,

α2 = 0.8.20 Then Figure 2 uses parametrization 1 and plots the parameter w, the relative

19In fact for µ != 1, the dimensions of w ∈ f
“

Ry1

Ry2

”

where Ryi is the dimension of output in sector i.
20Other parameters are as before.
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price in sector 2 P2/P , the steady state of employment share n1 and the output share as

µ ∈ [0, 1] varies between the full range of possible values. By looking at the steady state of

employment share n1 and w, we can see how, unlike the case of the one-sector model, the

steady-state equilibrium actually changes with µ. Finally Figure 3 uses parametrization

2. Now n1 is independent of µ,21 but again the equilibrium does change as shown by the

change in the other dimensionless variable w.

3.2 The Utility Function in Deviation Form

Again as with eliminating αn and αk in the CES production function, we can eliminate

w in the CES utility function, but only as an alternative to the first parametrization. In

this case write the latter in deviation form about its steady state as

Ct

C̄t
=

[

w1−φCφ
1,t + (1 − w)1−φCφ

2,t

w1−φC̄φ
1,t + (1 − w)1−φC̄φ

2,t

] 1
φ

=






w1−φC̄φ
1,t

(
C1,t

C̄1,t

)φ

w1−φC̄φ
1,t + (1 − w)1−φC̄φ

2,t

+
(1 − w)1−φC̄φ

2,t

(
C2,t

C̄2,t

)φ

w1−φC̄φ
1,t + (1 − w)1−φC̄φ

2,t






1
φ

=

[

ωC

(
C1,t

C̄1,t

)φ

+ (1 − ωC)

(
C2,t

C̄2,t

)φ
] 1

φ

(65)

using the first-order equations in the bgp, (58) and (59) and µ = 1
1−φ . At first sight this

seems to be a very convenient way of setting up the dynamic model that eliminates w,

providing the relative consumption share ωC ≡ P1C1
PC = P1C̄1

PC̄
can be calibrated from data.

However we still need to quantify w because of the Dixit-Stiglitz aggregate price given by

(45). Moreover if there is only data on the relative output share ωY ≡ P1Y1
PY = P1Ȳ1

P Ȳ
,22

then even (65) is of little use. We conclude that the model must be set up using either

re-parametrization 1 or 2 depending on the data available for the calibration.

21This can be shown from the bgp steady state. From (58) we have that Y1

Y2
= N1(K1/Y1)

1−α1
α1

N2(K2/Y2)
1−α2

α2

. From

(58) and (58) it can be shown that h1 = h2 and hence N1

N2
= n1

(1−n1) . With Cobb-Douglas technology

Ki
Yi

=
(αk,i)

R+δ is independent of µ. It follows that n1 is also independent of µ.
22This is the case in Gabriel et al. (2010) which is a two-sector model involving a formal and an informal

sector.
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3.3 Linearization

The linearization confirms that the model properties depend on w which cannot be by-

passed as we did for the parameter α in the one-sector model. As before define lower case

variables xt = log Xt
X̄t

if Xt has a long-run trend or xt = log Xt
X otherwise where X is the

steady-state value of a non-trended variable. For variables ni,t, i = 1, 2 define x̂t = log xt
x .

Define the terms of trade for the two sectors by τt = log P2,t

P2
− log P1,t

P1
≡ p2,1 − p1,t. Our

linearized model about the BGP zero-inflation steady state then takes the state-space form

ki,t =
1 − δ1

1 + g
ki,t−1 +

δ + g

1 + g
ii,t ; i = 1, 2

Et[λC,t+1] = λC,t − Et[rt+1]

λC,t = −(1 + (σc − 1)(1 − &))ct + &(σc − 1)(n1l1,t + (1 − n1)l2,t)

λhi,t = −(σc − 1)(1 − &)ct + (1 + &(σc − 1))
hi

1 − hi
hi,t ; i = 1, 2

wt − pt = λh1,t − λC,t = λh2,t − λC,t

c1,t = ct + µ(1 − w)τt

c2,t = ct − µwτt

yi,t = πi(ai,t + n̂i,t + hi,t) + (1 − πi)ki,t ; i = 1, 2

n̂2,t = −
n1

n2
n̂1,t

yi,t =
Ci

Yi
c1,t +

Ii

Yi
i1,t +

Gi

Yi
gi,t ; i = 1, 2

1 + R

R + δi
rt = (yi,t − ki,t) ; i = 1, 2

wt = y1,t − n1,t = y2,t − n2,t

Note that equations for c1 and c2 imply ct = wc1,t + (1 − w)c2,t. We now see that unless

µ = 0 and the two goods are perfect substitutes, the linearization is not independent of

the parameter w even after re-parametrization.

3.4 Summary

As for the CES production function in the one-sector model, the utility function in the two-

sector model is defined in terms of another ‘share parameter’ w which is not dimensionless
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and cannot therefore be quantified without specifying the precise units of factors and

output. Now the only way to handle this problem is to re-parameterize the model by

expressing w in terms of the other endogenous variables and a newly introduced parameter.

For the latter we choose either the long-run consumption share (ωC) or the output share

(ωY ) for the two sectors. Then including either of these in the vector of parameters, θ, we

can express w as w=w(θ). The log-linearized form of the model still involves w. Either

re-parametrization requires some further normalization (choice of units) for the steady

states, but the model dynamics (given either ωC or ωY ) will not depend on this choice.

4 Re-parametrization in Utility Functions: Open Economy

This section sets up an open economy version of the closed economy RBC in section

1. Again, as in the previous section, we confine ourselves to the case of only labour-

augmenting change and Cobb-Douglas production function. We first set up a dynamic

2-bloc model of interconnected economies. As one becomes infinitesimally small, we arrive

at the small open economy. As before we identify and set dimensional constants by using

a combination of re-parametrization and choice of units.

4.1 Dynamic Model

First define composite Dixit-Stiglitz (D-S) consumption and investment indices consisting

of home-produced (H) and foreign (F) differentiated goods in terms of elasticities µC and

µI :

Ct =

[

w
1

µC
C C

µC−1
µC

H,t + (1 − wC)
1

µC C
µC−1

µC
F,t

] µC
µC−1

(66)

It =

[

w
1

µI
I I

µI−1
µI

H,t + (1 − wI)
1

µI I
µI−1

µI
F,t

] µI
µI−1

(67)

The corresponding D-S price indices are

PC,t =
[

wC(PH,t)
1−µC + (1 − wC)(PF,t)

1−µC
] 1

1−µC (68)

PI,t =
[

wI(PH,t)
1−µI + (1 − wI)(PF,t)

1−µI
] 1

1−µI (69)

Let the proportions of these two differentiated goods produced in the home and foreign

blocs be ν and 1 − ν respectively. Then ν and 1 − ν are then measures of relative size.
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Weights in the consumption baskets in the two blocs are then defined by

wC = 1 − (1 − ν)(1 − ωC) ; w∗

C = 1 − ν(1 − ω∗

C) (70)

In (70), ωC , ω∗

C ∈ [0, 1] are a parameters that captures the degree of ‘bias’ in the two

blocs. If ωC = ω∗

C = 1 we have autarky, while ωC = ω∗

C = 0 gives us the case of perfect

integration. In the limit, as the home country becomes small ν → 0. Hence wC → ωC and

w∗

C → 1. Thus the foreign bloc becomes closed, but as long as there is some departure from

perfect integration (ωC > 0), the home country continues to consume foreign-produced

consumption goods. Exactly the same applies to the investment baskets where we define

ωI and ω∗

I by

wI = 1 − (1 − ν)(1 − ωI) ; w∗

I = 1 − ν(1 − ω∗

I ) (71)

For the small open economy as ν → 0 and w∗

C → 1, from (70) we have that 1−ν
ν (1−w∗

C) →

1 − ω∗

C . Similarly, 1−ν
ν (1 − w∗

I) → 1 − ω∗

I . These are scaling factors for the exports of

consumption and investment goods respectively set out below.

Standard intra-temporal optimizing decisions for home consumers and firms lead to

CH,t = wC

(
PH,t

PC,t

)
−µC

Ct (72)

CF,t = (1 − wC)

(
PF,t

PC,t

)
−µC

Ct (73)

IH,t = wI

(
PH,t

PI,t

)
−µI

It (74)

IF,t = (1 − wI)

(
PF,t

PI,t

)
−µI

It (75)

In the small open economy we take foreign aggregate consumption and investment,

denoted by C∗

t and I∗t respectively, as exogenous processes. Define one real exchange

rate as the relative aggregate consumption price RERC,t ≡
P ∗

C,tSt

PC,t
where St is the nominal

exchange rate. Similarly define RERI,t ≡
P ∗

I,tSt

PI,t
for investment. Then foreign counterparts

of the above defining demand for the export of the home goods are

C∗

H,t = (1 − w∗

C)

(

P ∗

H,t

P ∗

C,t

)
−µ∗

C

C∗

t = (1 − w∗

C)

(
PH,t

PC,tRERC,t

)
−µ∗

C

C∗

t (76)

I∗H,t = w∗

I

(

P ∗

H,t

P ∗

I,t

)
−µ∗

I

I∗t = w∗

I

(
PH,t

PI,tRERI,t

)
−µ∗

I

I∗t (77)
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where P ∗

H,t, P ∗

C,t and P ∗

I,t denote the price of home consumption, aggregate consumption

and aggregate investment goods in foreign currency and we have used the law of one

namely StP ∗

H,t = PH,t. Again we define

P ∗

C,t =
[

w∗

C(P ∗

F,t)
1−µ∗

C + (1 − w∗

C)(P ∗

H,t)
1−µ∗

C

] 1
1−µ∗

C (78)

and P ∗

I similarly.

There are two non-contingent one-period bonds denominated in the currencies of each

bloc with payments in period t, BH,t and B∗

F,t respectively in (per capita) aggregate. The

real prices of these bonds are given by

PB,t =
1

1 + Rt
; P ∗

B,t =
1

(1 + R∗

t )
(79)

where B∗

F,t is the aggregate foreign asset position of the economy denominated in home

currency and PH,tYt is nominal GDP.

The representative household must obey a budget constraint in real terms:

Ct + PB,tBH,t + P ∗

B,tRERC,tB
∗

F,t + TLt =
Wt

PC,t
Nt + BH,t−1 + RERC,tB

∗

F,t−1 + Γt(80)

where PC,t is a Dixit-Stiglitz price index defined in (68), Wt is the wage rate, TLt are lump-

sum taxes net of transfers and Γt are dividends from ownership of firms. The intertemporal

and labour supply decisions of the household are then

PB,t = βEt

[
ΛC,t+1

ΛC,t

]

(81)

P ∗

B,t = βEt

[
ΛC,t+1RERC,t+1

ΛC,tRERC,t

]

(82)

Wt

PC,t
= −

ΛN,t

ΛC,t
(83)

where

ΛC,t = (1 − ")C(1−!)(1−σ)−1
t (1 − ht)

!(1−σ) (84)

λN,t = −C(1−!)(1−σ)
t "(1 − Nt)

!(1−σ)−1 (85)

Firms use a CD production function with the same first-order conditions as in the
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RBC model. Equilibrium and foreign asset accumulation is given by

Yt = CH,t + IH,t +
1 − ν

ν

[

C∗

H,t + I∗H,t

]

+ Gt

≡ CH,t + IH,t + EX∗

t + Gt (86)

EXt = (1 − ω∗

C)

(
PH,t

PC,tRERC,t

)
−µ∗

C

C∗

t + (1 − ω∗

I )

(
PH,t

PI,tRERI,t

)
−µ∗

I

I∗t (87)

RERC,t =

[

w∗

C + (1 − w∗

C)T
µ∗

C−1
t

] 1
1−µ∗

C

[

1 − wC + wCT
µC−1

t

] 1
1−µC

=
1

[

1 − ωC + ωCT
µC−1

t

] 1
1−µC

(88)

RERI,t =
1

[

1 − ωI + ωIT
µI−1

t

] 1
1−µI

(89)

where the terms of trade Tt ≡
PF,t

PH,t
and we have used w∗

C = w∗

I = 1, wC = ωC and wI = ωI

for the small open economy.

The risk-sharing condition and the foreign Euler equations are

RERC,t =
Λ∗

C,t

ΛC,t
(90)

1

1 + R∗

t

= βEt

[

Λ∗

C,t+1

Λ∗

C,t

]

(91)

Current account dynamics are given by

1

(1 + R∗

t )
RERC,tB

∗

F,t = RERC,tB
∗

F,t−1 + TBt (92)

TBt =
PH,t

PC,t
Yt − Ct −

PI,t

PC,t
It −

PH,t

PC,t
Gt (93)

There are now two ways to close the model. First, as is standard for models of the

small open economy (SOE), we can assume processes for foreign variables R∗

t , C∗

t , I∗t and

Λ∗

t are exogenous and independent. Along with exogenous processes for domestic shocks

At and Gt this completes the model. The second arguably more satisfactory approach is

to acknowledge that the foreign variables are interdependent and part of a model driven

by the same form of shocks and policy rules as for the SOE. But here we retain the simpler

first form.

4.2 Steady State

First assume zero growth in the steady state: g = g∗ = 0 and non-negative inflation.

We also focus exclusively on CES consumption and investment indices and assume CD
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technology with labour-augmenting technical change. Then we have

W

PC
= −

ΛN

ΛC
(94)

ΛC = (1 − !)C(1−!)(1−σ)−1(1 − N)!(1−σ) (95)

ΛL = −C(1−!)(1−σ)!(1 − N)!(1−σ)−1 (96)

1 =

[

wC

(
PH

PC

)1−µC

+ (1 − wC)

(
PF

PC

)1−µC
] 1

1−µC

(97)

PH

PC
=

1

[wC + (1 − wC)T 1−µC ]
1

1−µC

(98)

CH = wC

(
PH

PC

)
−µC

C (99)

CF = (1 − wC)

(
PF

PC

)
−µC

C (100)

CH
∗ = (1 − w∗

C)

(
PH

PCRERC

)
−µ∗

C

C∗ (101)

Y = Kα(AL)1−α (102)

K =
(1 − α)PHY

(R + δ)PI
(103)

I = (g + δ)K (104)

IH = wI

(
PH/PC

PI/PC

)
−µI

I (105)

IF = (1 − wI)

(
PF /PC

PI/PC

)
−µI

I (106)

I∗H = (1 − w∗

I)

(
PH

PRER

)
−µ∗

I

I∗ (107)

PI

PC
=

[

wI

(
PH

PC

)1−µI

+ (1 − wI)

(
PF

PC

)1−µI
] 1

1−µI

(108)

Y = CH + IH + EXC + EXI + Gt (109)

EXC = C∗

H,t = (1 − ω∗

C,t)

(
PH

PCRERC

)
−µ∗

C

C∗ (110)

EXI = I∗H,t = (1 − ω∗

I,t)

(
PH

PIRERI

)
−µ∗

I

I∗ (111)

RERC =
1

[1 − wC + wCT µC−1]
1

1−µC

(112)

1 = β(1 + R∗) (113)

The problem now is that there are n variables but only n-1 state equations! The model

is only complete if we pin down the steady state of the foreign assets or equivalently the

26



trade balance. In other words there is a unique model associated with any choice of the

long-run assets of our SOE.

Our missing equation is therefore the trade balance in the steady state

PCTB = PHY −PCC−PII−PHG = PHEXC − (PCC − PHCH)
︸ ︷︷ ︸

Net Exports of C-goods

+ PHEXI − (PII − PHIH)
︸ ︷︷ ︸

Net Exports of I-goods
(114)

using (109), for some choice of TB.

Finally we re-parameterize dimensional constants wC , wI , ωC and ωI using dimension-

less trade ratios from trade data. From (114) we have

imp ≡
C-imports

GDP
=

PF CF

PCY
= cy(1 − ωC)

(
PF

PC

)1−µC

(115)

isimp ≡
I-imports

GDP
=

PF IF

PCY
= iy(1 − ωI)

PF

PC

(
PF

PI

)
−µI

(116)

csexp ≡
C-exports

GDP
==

PHC∗

H

PCY
= (1 − ω∗

C)

(
PH

PCRERC

)
−µ∗

C

c∗y
PHY ∗

PCY
(117)

isexp ≡
I-exports

GDP
=

PHI∗H
PCY

= (1 − ω∗

I )

(
PH

PIRERI

)
−µ∗

I

i∗y
PHY ∗

PCY
(118)

tb ≡
TB

Y
= csexp + isexp − csimp − isexp (119)

where we define dimensionless share parameters cy = C
Y = PHC

PHY and c∗y, iy and i∗y similarly.

(115) – (118) can now be used to re-parameterize the dimensional constants ωC , ωI , ωC

and ωI . But given tb, only three out of the four share ratios csexp, isexp, csimp and isimp are

independent. We therefore need to introduce a further dimensionless observed parameter.

We choose this to be the per capita GDP ratio

k ≡
PF Y ∗

PHY
(120)

The remaining dimensional constants are labour-augmenting change A and exogenous

steady-state values of Y ∗, C∗ and I∗. We can put C∗ = cyY ∗ and I∗ = iyY ∗, so the only

dimensional constants left are A and Y ∗. We put A = Y ∗ = 1 as before by a suitable choice

of units which do not need to be made explicit. This completes the choice of dimensional

constant parameters in the model by a combination of convenient choice of units and the

introduction of new and readily observed dimensionless parameters consisting of trade,

consumption and investment shares.
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Would it be more convenient to set all steady-state prices to be unity - i.e., PF = PH =

PI = RECC = RERI = 1 which then makes wC , wI , ωC and ωI dimensionless? This

requires a choice of A
Y ∗ and imposes another choice of units so that one unit of exports and

imports is exchanged for one unit of home currency. As before with non-normalized CES

functions, the problem with this is that if we wish to carry out comparative statics on

the steady state or examine a permanent shock that shifts the economy to a new steady

state, the terms of trade shifts have disappeared. Also if we were to utilize data on the

terms of trade to estimate the model, say by Bayesian methods, the choice of a unitary

price normalization would inevitably be inconsistent with this data.23 Figure 4 illustrates

this point by showing how the terms of trade and/or the relative income k change with

the steady-state trade balance for a given A
Y ∗ which reflects the relative efficiency of the

SOE compared with the rest of the world. To accommodate a higher trade balance in the

long run or lower income relative to the rest of the world (a higher k) the terms of trade

(the relative import price) must rise.

Finally we briefly generalize our analysis to a non-zero balanced steady-state growth

path. The bgp of the model economy with or without investment costs is now given by

Λ̄C,t+1

Λ̄C,t
≡ 1 + gΛC =

[
C̄t+1

C̄t

](1−!)(1−σ)−1)

= (1 + g)((1−!)(1−σ)−1) (121)

Thus from (81)

1 + R =
(1 + g)1+(σ−1)(1−!)

β
(122)

Similarly for the foreign bloc

1 + R∗ =
(1 + g∗)1+(σ∗

−1)(1−!∗)

β∗
(123)

It is then possible to have different preferences and growth rates provided

1 + R

1 + R∗
= φ

(
RERCB

P

)

=
Πβ∗

Π∗β

(1 + g)1+(σ−1)(1−!)

(1 + g∗)1+(σ∗−1)(1−!∗)
(124)

where φ
(

RERCB
P

)

, φ′ < 0, is a risk premium. This pins down the assets in the steady

state.
23For instance if following León-Ledesma et al. (2010) we were to use the sample mean of the terms of

trade to estimate the steady state then this would not result in a unitary outcome.
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4.3 Summary

We now summarize the details of the treatment of dimensional constants that unifies our

solution for all three models. In the RBC model we now assume only labour-augmenting

change to enable a comparison with the other two models that assume CD technology.

Below we define Ā0 ≡ ZN0. In all cases there is one dimensional parameter δ, the depreci-

ation rate, that only depends on time, a unit that is specified. Distribution parameters αn,

αk in the CES production function in the one-sector RBC model, w in the utility function

of the two-sector RBC model and wC , ω∗

C , ωI , ω∗

I for the small open economy can be

expressed in terms of the original dimensionless parameters and δ and new dimensionless

share parameters. This leaves a simple normalization of output and efficiency parameters

that does not require the specification of units to complete the model set-up.

Model RBC Two-Sector Open Economy

CES Function Production C Index C and I Indices

Dimensional Constants A0, αn, αk, δ A1,0, A2,0,w, δ ωC , ω∗

C , ωI , ω∗

I , A, Y ∗, δ

New Dimensionless Constants Wage Share C or Y Sector Shares Trade Shares, k ≡ PF Y ∗

PHY

Choice of Units Y 0 = A0 = 1 A1,0 = A2,0 = 1 A0 = Y ∗ = 1

Table 1. Summary

5 Conclusions

This paper builds up on a quite recent, but very rapidly growing, literature about the

normalization of CES function in macroeconomics. Although this type of function was

already used in the middle of the previous century it has been left aside in some areas

of Macroeconomics during the past decades. We start from recent works on the CES

production function and macro models of the business cycle and study in depth the concept

of normalization of such functions in order to avoid dimensionality problems coming from

the choice of units when defining inputs and output of production. We also extend the

discussion also to CES utility functions in multi-sectoral and open economy models.

Our contributions regard the clarification of the normalization issue which is usually

presented in the literature as a technical procedure without any appeal to dimensional

analysis. We propose an alternative and equivalent way of resolving the problem called

‘re-parametrization’ and we show that in the case of CES utility function in a two-sector
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model and an open economy model ‘re-parametrization’ is the only solution. Indeed the ‘re-

parametrization’ approach proves to be equivalent, easier to implement and more general

than the usual normalization procedure. For both the non-linear and linearization set-ups

we show that we cannot by-pass the need to express the dimensional ‘share parameter’ in

the utility function in terms of the remaining parameter which are either dimensionless or

have a time-interval dimension.

Finally one particular avenue for future research is suggested by our application to

the open economy. León-Ledesma et al. (2010) have demonstrated the importance of

using a normalized CES production functions for estimation, especially from a Bayesian

perspective. Our analysis suggests this could also be true for a Bayesian estimation of an

open-economy DSGE model with a CES utility function of domestic and imported goods.

Then utilizing our re-parametrization approach, data on terms of trade and trade shares

could be used without losing important effects of the former in the vicinity of the steady

state. As in León-Ledesma et al. (2010), monte-carlo methods would then indicate the

importance, or otherwise, of adopting normalized CES utility functions for empirical work

on the open economy.
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A Log-Linearization of the CES production function

Dropping the labor augmenting technology shock, At for simplicity:

Y ψ
t = αkK

ψ
t + αnNψ

t (A.1)

Define lower case variables xt = log Xt
X where X is the bgp stationarized steady state

value of a trended variable. Then

yt = αk

(
K

Y

)ψ

kt + αn

(
N

Y

)ψ

nt (A.2)

where Y ψ = αkKψ + αnNψ. Substituting this expression for Y ψ and after some manipu-

lation we get:

yt =

(

1 +
αn

αK

(
K

N

)ψ
)

kt +

(

αk

αn

(
L

K

)ψ

+ 1

)

nt (A.3)

Using the re-parametrization result in (32) and (32) we can substitute in the previous

expression:
αk

αn
=

π

1 − π

(
K

N

)ψ

and we obtain

yt = (1 − π)kt + πnt (A.4)

The log-linearization of the first order conditions of the firm’s problem ((18) and (19))

follows straightforwardly.
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Figure 1: αk and αn as σ varies
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Figure 2: Parametrization 1: Steady State Equilibrium as µ varies
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Figure 3: Parametrization 2: Steady State Equilibrium as µ varies
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Figure 4: Steady State Equilibrium as tb and k ≡ PF Y ∗

PHY vary
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