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Learning	  from	  learners 
 

Tom Holden1, School of Economics, University of Surrey  

 

Abstract: Traditional macroeconomic learning algorithms are misspecified when all agents are 
learning simultaneously. In this paper, we produce a number of learning algorithms that do not 
share this failing, and show that this enables them to learn almost any solution, for any parameters, 
implying learning cannot be used for equilibrium selection. As a by-product, we are able to show 
that when all agents are learning by traditional methods, all deep structural parameters of standard 
new-Keynesian models are identified, overturning a key result of Cochrane (2009; 2011). This holds 
irrespective of whether the central bank is following the Taylor principle, irrespective of whether the 
implied  path  is  or  is  not  explosive,  and  irrespective  of  whether  agents’  beliefs  converge.  If  shocks  are  
observed then this result is trivial, so following Cochrane (2009) our analysis is carried out in the 
more plausible case in which agents do not observe shocks.  
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1. Introduction 
There is a contradiction at the heart of the traditional approach to macroeconomic learning (Marcet 
and Sargent (1989), Evans and Honkapohja (2001)). In this literature, each of the agents in an 
economy is supposed to run a regression that is correctly specified when all the other agents know 
the true law of motion. Were it indeed the case that only one agent in the economy had partial 
information about the economy’s   law   of   motion,   then   this agent’s   regression   would   always  
converge  to  the  true  law  of  motion,  meaning  that  “learnability”  in  this  weak  sense  is  of  no  use  for  
equilibrium selection. The literature supposes instead that all agents are learning at the same time, 
yet they continue to run a regression that is only correctly specified when everyone else has full 
information. As a result, these agents would be readily able to detect the misspecification in their 
regression, through evidence of serially correlated errors, or parameter non-constancy. This 
misspecification is most clear precisely when learning fails, meaning a finding of non-learnability via 
the traditional method only implies that agents would switch from that traditional method to a 
more sophisticated one. In this paper, we demonstrate the existence of a family of learning 
mechanisms that remain correctly specified when all agents are learning simultaneously. 

Along the way, we will answer three challenges raised by Cochrane (2009) (directly or otherwise). 
Firstly, we will show that the non-observability of shocks does not pose any fundamental challenges 
either to learning, or to the formation of rational expectations, and we give general conditions 
under which a rational expectations equilibrium is precisely implementable without observing 
shocks.2 Secondly, we show that serially correlated monetary policy shocks do not prevent Taylor-
rule parameter identification, at least when everyone is learning at the same time, whether or not 
the central bank is following active policy. Finally, we demonstrate a learning mechanism capable of 
learning stationary minimal state variable (McCallum 1983) solutions whenever they exist, and 
another that may converge towards any sunspot solution, including explosive ones,3 though a 
simple extension of our mechanism will rule out the latter when (and only when) they are 
prohibited by transversality or non-explosiveness constraints. Since, new-Keynesian models 
generally have no such constraints ruling out explosive paths for inflation (Cochrane 2011),  in such 
models there is no guarantee that the stationary minimal state variable solution will be learnt, 
meaning that Cochrane (2009) was   correct   to   conclude   that   learnability   could   not   “save”   the  
standard logic of new-Keynesian models. 

The structure of our paper is as follows. In section 2 and the first appendix (7.1), we derive the 
general solution of a rational expectations model, under determinacy and indeterminacy, when 
shocks are unobserved. The resulting reduced form solution will be the basis of all of the learning 
mechanisms considered. The presence of sunspot shocks in the general solution will be key to our 
proof of structural parameter identification when agents are learning. In section 3, we show that an 

                                                      

2 In general a Kalman filter must be used as in Pearlman, Currie, and Levine (1986) or Ellison and Pearlman (2011), and 
impulse responses will differ. 
3 We cannot guarantee asymptotic convergence to explosive solutions, nonetheless beliefs will at least initially 
approach these solutions, and they will certainly diverge from beliefs under the stationary minimal state variable 
solution. 
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awareness that everyone else is learning is sufficient to achieve identification even when other 
agents are learning using a traditional method. Then in section 4, we introduce our family of 
sophisticated learning algorithms under which everyone in the economy realises everyone else is 
learning at the same time. 

2. FREE solutions 

2.1. Motivating example 

Suppose, following Cochrane (2009), that the central bank follows the Taylor rule: 

 𝑖௧ = 𝑟 +
1
𝛽
(𝑥௧ − 𝛾 − 𝜎𝑠௧), (2.1) 

   

where 𝑥௧ is the inflation rate, 𝑟 is the constant real interest rate, ఊ
ଵିఉ

 is the inflation target and 𝑠௧ is 

the monetary policy shock which is given by: 

𝑠௧ = 𝜌𝑠௧ିଵ + 𝜀௧, 

with 𝜀௧~NIID(0,1). From the Fisher equation, we also have that: 

 𝑖௧ = 𝑟 + 𝔼௧𝑥௧ାଵ. 4 (2.2) 
   

Hence, from combining (2.1) and (2.2): 

𝑥௧ = 𝛽𝔼௧𝑥௧ାଵ + 𝛾 + 𝜎𝑠௧. 

More generally, there might also be a lag term in the model. Here, this would emerge if the central 
bank used the rule: 

𝑖௧ = 𝑟 +
1
𝛽
൫(1 − 𝛼)𝑥௧ + 𝛼∆𝑥௧ − 𝛾 − 𝜎𝑠௧൯ 

which punishes accelerating inflation, and leads to the general univariate model: 

 𝑥௧ = 𝛼𝑥௧ିଵ + 𝛽𝔼௧𝑥௧ାଵ + 𝛾 + 𝜎𝑠௧. (2.3) 
   

We work with this general model not because we believe central banks respond to inflation 
acceleration, but because in its multivariate version this structure encompasses all linear 
macroeconomic models, and we wish to make clear nothing we say is specific to the 𝛼 = 0 case. 

The crucial thing to note about (2.3) is that since the   transversality   conditions  of   the   consumer’s  
optimisation problem do not restrict inflation, when solving this model there is no justification for 
restricting ourselves to stationary solutions.5 

                                                      

4 Throughout this document, variables with 𝑡 subscripts are in the information set under which 𝔼௧ is taken. 
5 If the Taylor rule is the result of optimal policy on behalf of the central bank, then there will in general be a 
transversality constraint coming from the central   bank’s   optimisation   problem   that   restricts   inflation.   But   since   it   is  
consumer   inflation  expectations   that  determine   the  solution  picked,   the  central  bank’s   transversality   constraint  does  
not rule out explosive solutions, conditional on them using a Taylor rule. 
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2.2. Solution 

For the time being, we suppose that all the agents in the economy have full knowledge of the 
values of 𝛼, 𝛽, 𝛾, 𝜌 and 𝜎, and may observe 𝑥௧ (and its lags), and 𝔼௧ିଵ𝑥௧ (and its lags), at 𝑡. In our 
motivating example, the observability of expectations just requires nominal interest rates to be 
observable, thanks to the constant real interest rate, and the Fisher equation, (2.2). In reality, 
expectations may still be observed thanks to the survey of professional forecasters (or, more 
plausibly,   media   reports   based   on   economic   pundit’s   expectations).   Expectations   are   also  
effectively observable if agents have access to prices from futures markets, or if they know that all 
other agents are forming expectations via the same mechanism. The traditional learning literature 
usually assumes homogeneous beliefs across agents, and we will continue to do so here, so in the 
models we work with, even in the absence of observable nominal and real interest rates, or 
observable futures contracts, aggregate expectations will always be observable. 

We do not assume however that agents may observe 𝑠௧ or 𝜀௧. As pointed out by Cochrane (2009), 
that most shocks in DSGE models should be observable is rather implausible, thus ruling out 
rational expectations equilibria (REE) which require the observability of shocks seems like a minimal 
sensible restriction. We call the set of resulting equilibria the feasible rational expectations 
equilibria (FREE) of the original model. The key trick that enables agents to form expectations 
without seeing shocks is the fact that current news about past expectational errors is informative 
about the current shock. Thus, in general, agents will form expectations as a linear function of their 
lagged expectations. 

To see this, let us begin by defining the expectational error by 𝜂௧ ≔ 𝑥௧ − 𝔼௧ିଵ𝑥௧. Now, normally 
when solving rational expectations models we choose 𝜂௧ to rule out explosive solutions, but here 
this is not justified, due to the lack of a consumer transversality condition on inflation. Thus there is 
a REE to the model for any 𝜂௧ satisfying 𝔼௧ିଵ𝜂௧ = 0. Without loss of generality then, we may 
assume (following Lubik and Schorfheide (2003)) that 𝜂௧ = 𝑚ఌ,௧ିଵ𝜀௧ + 𝑚,௧ିଵ

ᇱ 𝜁௧, for some sunspot 
shock 𝜁௧  (possibly a vector) satisfying 𝔼௧ିଵ𝜁௧ = 0 , 𝔼௧ିଵ𝜀௧𝜁௧ = 0  and 𝔼௧ିଵ𝜁௧𝜁௧ᇱ = 𝐼 , and some 
possibly time-varying belief parameters 𝑚ఌ,௧ିଵ and 𝑚,௧ିଵ, known at 𝑡 − 1. (There is no reason why 
agents should always believe in the same set of sunspot shocks.) 

Under the assumption then that 𝑚ఌ,௧ିଵ ≠ 0 for all 𝑡, subtracting 𝜌 times the first lag of (2.3) from 
(2.3), gives: 

 

𝑥௧ = (𝛼 + 𝜌)𝑥௧ିଵ − 𝛼𝜌𝑥௧ିଶ + 𝛽𝔼௧𝑥௧ାଵ − 𝛽𝜌𝔼௧ିଵ𝑥௧ + (1 − 𝜌)𝛾 + 𝜎𝜀௧ 
= (𝛼 + 𝜌)𝑥௧ିଵ − 𝛼𝜌𝑥௧ିଶ + 𝛽𝔼௧𝑥௧ାଵ − 𝛽𝜌𝔼௧ିଵ𝑥௧ + (1 − 𝜌)𝛾

+ 𝜎
𝑥௧ − 𝔼௧ିଵ𝑥௧ − 𝑚,௧ିଵ

ᇱ 𝜁௧
𝑚ఌ,௧ିଵ

. 

(2.4) 
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Hence providing 𝛽 ≠ 06: 

 
𝔼௧𝑥௧ାଵ =

1
𝛽
ቆ1 −

𝜎
𝑚ఌ,௧ିଵ

ቇ 𝑥௧ −
1
𝛽
(𝛼 + 𝜌)𝑥௧ିଵ +

1
𝛽
𝛼𝜌𝑥௧ିଶ + ቆ𝜌 +

1
𝛽

𝜎
𝑚ఌ,௧ିଵ

ቇ𝔼௧ିଵ𝑥௧

−
1
𝛽
(1 − 𝜌)𝛾 +

1
𝛽

𝜎
𝑚ఌ,௧ିଵ

𝑚,௧ିଵ
ᇱ 𝜁௧, 

(2.5) 

   

which enables agents to form rational expectations without observing the value of shocks (i.e. 𝑠௧ or 
𝜀௧). Thus providing 𝛽 ≠ 0,  almost  all  of  the  model’s  REE  are  FREE. 

When |𝛼 + 𝛽| < 1, the unique stationary minimal state variable (MSV) solution corresponds to 

setting 𝑚ఌ,௧ ≡ 𝑚ఌ
MSV ≔ 𝜎 ቂଵ

ଶ
− 𝛽𝜌 + ଵ

ଶඥ1 − 4𝛼𝛽ቃ
ିଵ

 and 𝑚,௧ ≡ 𝑚
MSV ≔ 0. To see this, let us first 

define: 

𝜐௧ ≔ 𝔼௧𝑥௧ାଵ − 𝑎ଵMSV𝑥௧ − 𝑎ଶMSV𝑥௧ିଵ − 𝑐MSV 

where 𝑎ଵMSV ≔ 𝜌 + ଵିඥଵିସఈఉ
ଶఉ

, 𝑎ଶMSV ≔ −𝜌 ଵିඥଵିସఈఉ
ଶఉ

 and 𝑐MSV ≔ ଶ(ଵିఘ)ఊ
ଵିଶఉାඥଵିସఈఉ

. Hence, 𝔼௧𝑥௧ାଵ =

𝑎ଵMSV𝑥௧ + 𝑎ଶMSV𝑥௧ିଵ + 𝑐MSV + 𝜐௧ for all 𝑡. Then, when 𝑚ఌ,௧ ≡ 𝑚ఌ
MSV and 𝑚,௧ ≡ 𝑚

MSV, from (2.5): 

𝔼௧𝑥௧ାଵ = 𝑎ଵMSV𝑥௧ + 𝑎ଶMSV𝑥௧ିଵ + 𝑐MSV +
1 + ඥ1 − 4𝛼𝛽

2𝛽
𝜐௧ିଵ, 

i.e. 𝜐௧ =
ଵାඥଵିସఈఉ

ଶఉ
𝜐௧ିଵ . Now when |𝛼 + 𝛽| < 1  and 𝛼𝛽 < 1

4ൗ  (so 𝑥௧  is real), ଵାඥଵିସఈఉ
ଶఉ

> 1 , 

therefore 𝑥௧ is stationary if and only if 𝜐௧ = 0 for all 𝑡, i.e. if and only if expectations always take this 
minimum state variable form. However, since current expectations are not constrained to render 
past expectations rational, if agents find themselves off the 𝜐௧ = 0 path, it is still rational for them 
to jump back onto it, at least if 𝑥௧ is constrained to be stationary. 

Linear models such as this have two MSV solutions, however only one of them will be stationary 
under determinacy. In the below we refer to the MSV solution that is stationary under determinacy 
as the SMSV solution. 

2.3. Generalization 

All our analysis in the body of this paper will be confined to the univariate case; however, the tricks 
used above to express expectations as a function of observables carry over to the multivariate case, 
and the case in which at least some combinations of variables are constrained by transversality. 
This is discussed in the first appendix, section 7.1, where we provide a range of necessary and/or 
sufficient conditions for the existence of FREE solutions in multivariate models. Particularly intuitive 
results include the facts that: 

                                                      

6 Automatic in the particular case under consideration, but in other models there may be particular parameters for 
which expectations cease to matter, and in the multivariate case, 𝛽 may not be invertible. 
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 if the model is completely indeterminate (perhaps because of a lack of transversality 
conditions), so there are as many degrees of freedom in expectations as there are variables, and 
there are at most as many shocks as variables, then almost all REE are FREE; 

 there is always a REE with the form 𝔼௧𝑥௧ାଵ = 𝑇 ଵ,ଶଵ𝑥௧ିଵ + 𝑇 ଵ,ଶଶ𝔼௧ିଵ𝑥௧ + 𝑇ఓ,ଶ + 𝑇௦,ଶ𝑠௧, which 
is always a FREE when dim 𝑠௧ = 1, and is a FREE more generally providing: 
o 𝑇௦,ଶ has linearly independent columns, 
o the number of explosive (or transversality violating) roots is greater or equal to dim 𝑠௧, 
o a further technical condition is satisfied; 

 if the unobserved shocks are not serially correlated, and if for any linear combination of shocks 
which does not appear in the transversality-violating block, that same linear combination does 
not appear anywhere in the model (i.e. agents can back out the value of relevant shocks from 
observing jump variables), then the model has at least one FREE, and a continuum under 
indeterminacy. 

In all cases, the FREE solution to the model takes the form: 

𝔼௧𝑥௧ାଵ = 𝒜ଵ𝑥௧ + 𝒜ଶ𝑥௧ିଵ +𝒜ଷ𝑥௧ିଶ + ℬଵ𝔼௧ିଵ𝑥௧ + ℬଶ𝔼௧ିଶ𝑥௧ିଵ + 𝒸 + 𝒹ଵ,௧ିଵᇱ 𝜁௧, 

which is identical to the univariate case, except for the extra lag on expectations. 

These results hopefully go some way to reassuring the reader that although from here on in we will 
be focussing on the univariate case, the non-observability of shocks does not cause any additional 
problems when we generalise to the multivariate case.7 

3. Learning (and identifying) from unsophisticated learners 
We now turn to the formation of expectations when the values of 𝛼, 𝛽, 𝛾, 𝜌, 𝜎, 𝑚ఌ,௧ and 𝑚,௧ are 
not common knowledge. Before introducing our misspecification free learning methods in section 
4, we address the issue of parameter identification when the agents in an economy are using a 
traditional learning method. For the duration of this section, we also assume it is common 
knowledge that 𝑚ఌ,௧  and 𝑚,௧ are constant across time, since the traditional models of 
macroeconomic learning cannot deal with actual laws of motion (ALMs) with time varying 
parameters. 

                                                      

7 These results are closely related to the conditions derived by Levine et al. (2012) for solutions under imperfect 
information to be identical to solutions under perfect information. The results of Levine et al. (2012) are at once more 
general than our results (as they allow for arbitrary informational assumptions, rather than assuming that only shocks 
are unobserved) and less general (as they are restricted to the solutions of determinate models, and depend on 
assorted strong invertability assumptions). 
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3.1. Set-up 

Under the saddle-path learning method of Ellison and Pearlman (2011), agents learn using the same 
rule they use to form expectations. Under the FREE solution to (2.3), given in equation (2.5), this 
suggests that agents should learn by estimating the regression model: 

 
𝑥௧ାଵ = 𝑎ଵ𝑥௧ + 𝑎ଶ𝑥௧ିଵ + 𝑎ଷ𝑥௧ିଶ + 𝑏𝔼௧ିଵ

∗ 𝑥௧ + 𝑐 + 𝑑ଵᇱ 𝜁௧ + 𝜂௧ାଵ,
𝜂௧ାଵ~NIID൫0, 𝜎ఎଶ൯, (3.1) 

   

where 𝔼௧ିଵ
∗ 𝑥௧ is lagged aggregate (not-necessarily rational) expectations, which are observable for 

the reasons given previously. 

If agents observed shocks, then by replacing 𝜂௧ାଵ with 𝑚ఌ𝜀௧ାଵ + 𝑚
ᇱ 𝜁௧ାଵ, this would become an 

exact line fitting exercise, rather than a regression problem: after a finite number of periods agents 
would know the value of all parameters, thanks to the observability of 𝔼௧ିଵ

∗ 𝑥௧. (We also need that 
there is at least some variation in 𝔼௧ିଵ

∗ 𝑥௧ that is independent of the other terms, this will be true 
providing initial beliefs about 𝑎ଷ and/or 𝑑ଵ are non-zero.) Thus when shocks are observed, learning 
is trivial. This further justifies our focus on the non-observable shock case in this paper. 

3.2. (Non-)Identification via OLS 

Given that it is common knowledge that 𝑚ఌ,௧  and 𝑚,௧  are constant, the “true” model has 
6 + dim 𝜁௧ free parameters (𝛼, 𝛽, 𝛾, 𝜌, 𝜎, 𝑚ఌ, 𝑚), and by running the regression (3.1) agents will 
also learn 6 + dim 𝜁௧  parameters (𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑏, 𝑐, 𝜎ఎଶ, 𝑑ଵ), which is a necessary condition for the 
identification  of   all   of   the  model’s   parameters. This also means that if any variables are omitted 
from this regression (as they are in the traditional regressions used in the literature) then agents 
will have no information about at  least  one  of  the  model’s parameters. 

Providing 𝜌 ≠ 1 and 𝜎 > 0, equating terms reveals that all   the  model’s   parameters   are   uniquely  
identified if any only if either 𝛼 = 𝜌 = 0, or the following equation for 𝛽 has a unique solution:8 

𝛽ଷ𝑎ଷ = ൫−𝛽ଶ𝑎ଶ − (𝛽𝑏 − 1 + 𝛽𝑎ଵ)൯(𝛽𝑏 − 1 + 𝛽𝑎ଵ). 

Tedious algebra reveals that this in turn holds if any only if 𝛼 ≠ 0, 𝜌 ≠ 0 and 𝛼𝛽 > ଵ
ସ
, which implies 

there is no non-explosive, real, minimal state variable solution for 𝑥௧.   This   confirms   Cochrane’s  
(2009) result that Taylor rule parameters are not identified under determinacy via this simple form 
of OLS learning. Away from this case, there will either be two or three discrete solutions for the 
model’s parameters. 

                                                      

8 The equations also have a unique solution when either 𝛼 = 0 and 𝜌 = ଵ
ఉ

, or when 𝜌 = 0. However, these two cases 

are observationally equivalent. 
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However, we previously argued that sunspots were observable to agents. Hence, agents using the 
perceived law of motion (PLM) (3.1) are not using all available information. If they instead run the 
regression: 

 
𝑥௧ାଵ = 𝑎ଵ𝑥௧ + 𝑎ଶ𝑥௧ିଵ + 𝑎ଷ𝑥௧ିଶ + 𝑏𝔼௧ିଵ

∗ 𝑥௧ + 𝑐 + 𝑑ଵᇱ 𝜁௧ + 𝑑ᇱ 𝜁௧ାଵ + 𝑚ఌ𝜀௧ାଵ,
𝜀௧ାଵ~NIID(0,1), (3.2) 

   

then all parameters will apparently be identified, providing 𝑑 ≠ 0. For example, in the case where 

dim 𝜁௧ = 1 we have: ଵ
ఉ
= 𝑎ଵ +

ௗభ
ௗబ

 and 𝜌 = 𝑏 − ௗభ
ௗబ

. We also have the over-identifying restriction 

𝑎ଷ + ቀ𝑎ଵ +
ௗభ
ௗబ
ቁ ቀ𝑏 − ௗభ

ௗబ
ቁ
ଶ
= −𝑎ଶ ቀ𝑏 −

ௗభ
ௗబ
ቁ. When dim 𝜁௧ > 1, these equalities must hold for each 

non-zero component of 𝑑 and the corresponding component of 𝑑ଵ, giving further over-identifying 
restrictions. Unfortunately, since the estimated value of 𝑑 will be non-zero with probability one 
(even under a MSV solution with 𝑚 = 0), under (3.2) although it may seem like we have identified 
a non-MSV solution, we must continue to place positive probability on being in a MSV solution, so 
the identification here is illusory. Furthermore, agents generally have no grounds for believing that 
𝑚ఌ,௧  and 𝑚,௧  are indeed constant. This means that the standard errors on their parameter 
estimates should be bounded away from zero even asymptotically, further dashing any hope of 
identification. 

3.3. Identification by learning from learners 

Although agents cannot identify structural parameters via running either of the regressions given in 
the last section, if one sophisticated agent realises that everyone else is running these regressions 
in order to form expectations then that sophisticated agent will be able to identify parameters. 

Since we did not use the rationality of expectations in deriving equation (2.4), it must always be the 
case that: 

 𝑥௧ = (𝛼 + 𝜌)𝑥௧ିଵ − 𝛼𝜌𝑥௧ିଶ + 𝛽𝔼௧
∗𝑥௧ାଵ − 𝛽𝜌𝔼௧ିଵ

∗ 𝑥௧ + (1 − 𝜌)𝛾 + 𝜎𝜀௧. (3.3) 
   

The only thing stopping us from running a regression of this form in order to identify 𝛽 is the 
endogeneity of 𝔼௧

∗𝑥௧ାଵ. But if agents are forming expectations using (3.1) or (3.2) then we know 
that 𝑑ଵ,௧ିଵᇱ 𝜁௧  is a valid instrument for 𝔼௧

∗𝑥௧ାଵ (where 𝑑ଵ,௧ିଵ is the estimated values of 𝑑ଵ using 
information up to period 𝑡 − 1 at the latest)9, since 𝜁௧  is uncorrelated with 𝜀௧  by assumption. 
Hence, one potential way of achieving identification would be to run a standard IV-regression. 
However, this is unlikely to be very efficient as it discards a lot of information. 

                                                      

9 We are assuming that the OLS agents adopt the standard convention of forming expectations using parameter 
estimates  from  previous  periods’  observations.  When  they  are  allowed  to  use  current  observations  then  we  can  proxy  
the estimates with current observations by the estimates with lagged ones to avoid further endogeneity issues. 
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We can do considerably better here by considering the structure of the implied actual law of 
motion (ALM). Note that if everyone is forming expectations by running the regression (3.1) or 
(3.2), then: 

𝑥௧ = ൫1 − 𝛽𝑎ଵ,௧ିଵ൯
ିଵ
ൣ൫𝛼 + 𝜌 + 𝛽𝑎ଶ,௧ିଵ൯𝑥௧ିଵ + ൫𝛽𝑎ଷ,௧ିଵ − 𝛼𝜌൯𝑥௧ିଶ + 𝛽(𝑏௧ିଵ − 𝜌)𝔼௧ିଵ

∗ 𝑥௧
+ [(1 − 𝜌)𝛾 + 𝛽𝑐௧ିଵ] + 𝛽𝑑ଵ,௧ିଵᇱ 𝜁௧ + 𝜎𝜀௧൧, 

where time subscripts on the regression coefficients again refer to agents’   estimates   using 
information up to period 𝑡 − 1 at the latest. We do not specify at this point if these estimates are 
the result of recursive least squares (RLS—equivalent to OLS), constant gain least squares (CGLS), or 
some other estimation method. In the appendix, section 7.2 we analyse e-stability, which will 
determine  convergence  of  the  naïve  agents’  beliefs  under  RLS;  but  this  will  not  be  important  for  the  
analysis of the convergence of the beliefs of our one sophisticated agent. 

Using the ALM above, we  can  estimate  the  model’s  structural  parameters  by  conditional  maximum  
likelihood (ML). The conditional log-likelihood is given by: 

log 𝑓(𝑥ଵ, … , 𝑥்|𝑥, 𝑥ିଵ, 𝔼
∗𝑥ଵ, 𝜁ଵ, … , 𝜁், ℎ, 𝜃) 

= log 𝑓(𝑥௧|𝑥௧ିଵ, 𝑥௧ିଶ, 𝔼௧ିଵ
∗ 𝑥௧, 𝜁௧, ℎ, … , ℎ௧ିଵ, 𝜃)

்

௧ୀଵ

 

= −
𝑇
2
log 2𝜋   +logห1 − 𝛽𝑎ଵ,௧ିଵห − log 𝜎 −

1
2𝜎ଶ (𝑥௧ − 𝜇௧)ଶ൨

்

௧ୀଵ

 

where ℎ௧ = [𝑎ଵ,௧ 𝑎ଶ,௧ 𝑎ଷ,௧ 𝑏௧ 𝑐௧ 𝑑ଵ,௧ᇱ ]ᇱ, 𝜃 = [𝛼 𝛽 𝛾 𝜌 𝜎]ᇱ,  

𝜇௧ ≔ (𝛼 + 𝜌)𝑥௧ିଵ − 𝛼𝜌𝑥௧ିଶ + 𝛽𝔼௧
∗𝑥௧ାଵ − 𝛽𝜌𝔼௧ିଵ

∗ 𝑥௧ + (1 − 𝜌)𝛾, 

and: 

 𝔼௧
∗𝑥௧ାଵ = 𝑎ଵ,௧ିଵ𝑥௧ + 𝑎ଶ,௧ିଵ𝑥௧ିଵ + 𝑎ଷ,௧ିଵ𝑥௧ିଶ + 𝑏௧ିଵ𝔼௧ିଵ

∗ 𝑥௧ + 𝑐௧ିଵ + 𝑑ଵ,௧ିଵᇱ 𝜁௧. (3.4) 
   

Note that in introducing the conditioning on ℎ, … , ℎ௧ିଵ in the first equality we have used the fact 
that ℎ, … , ℎ௧ିଵ are deterministic functions of 𝑥ିଵ, … , 𝑥௧ିଵ. 

The first order conditions then imply that10: 

 

0 = (𝑥௧ିଵ − 𝜌ො𝑥௧ିଶ)(𝑥௧ − �̂�௧)
்

௧ୀଵ

 

0 = ቈ𝔼௧
∗𝑥௧ାଵ(𝑥௧ − �̂�௧) −

𝑎ଵ,௧ିଵ𝜎ොଶ

1 − 𝛽መ𝑎ଵ,௧ିଵ


்

௧ୀଵ

 

0 = ൫𝑥௧ିଵ − 𝛼ො𝑥௧ିଶ − 𝛽መ𝔼௧ିଵ
∗ 𝑥௧ − 𝛾൯(𝑥௧ − �̂�௧)

்

௧ୀଵ

 

(3.5) 

                                                      

10 As usual, hats denote estimates. 



01/10/2012 

Page 10 of 38 

0 = (𝑥௧ − �̂�௧)
்

௧ୀଵ

, 𝜎ොଶ =
1
𝑇
(𝑥௧ − �̂�௧)ଶ
்

௧ୀଵ

 

   

Since the second equation is a polynomial of at least order 𝑇 in 𝛽, in general these equations will 
have to be solved numerically. However, providing parameters are indeed identified, the resulting 
estimates will have all the usual desirable properties of ML estimates (consistency, efficiency, 
asymptotic normality). 

To show that the ML estimator does indeed identify parameters, we give an alternative estimator 
that we are able to prove to be consistent. Since the existence of a consistent estimator implies 
identification (Gabrielsen 1978), this is sufficient for the consistency and asymptotic normality of 
the ML estimator. This alternative estimator will also have a recursive form, making it convenient 
for the case in which everyone realises everyone else is learning. 

Let 𝜃 ≔ [𝜃ଵ 𝜃ଶ 𝜃ଷ 𝜃ସ 𝜃ହ]ᇱ = [(1 − 𝜌)𝛾 𝛼 + 𝜌 −𝛼𝜌 𝛽 −𝛽𝜌]ᇱ  be a vector of 
parameters to be estimated, and let: 

 𝑧௧ ≔ 1 𝑥௧ିଵ 𝑥௧ିଶ ൬
𝑎ଶ,௧ିଵ𝑥௧ିଵ + 𝑎ଷ,௧ିଵ𝑥௧ିଶ +

𝑏௧ିଵ𝔼௧ିଵ
∗ 𝑥௧ + 𝑐௧ିଵ + 𝑑ଵ,௧ିଵᇱ 𝜁௧

൰ 𝔼௧ିଵ
∗ 𝑥௧൨

ᇱ

. (3.6) 

   

Suppose for the moment that an oracle told us the value of 𝛽. Then by running the regression: 

 ൫1 − 𝛽𝑎ଵ,௧ିଵ൯𝑥௧ = 𝑧௧ᇱ𝜃 + 𝜎𝜀௧, 𝜀௧~NIID(0,1), (3.7) 
   

we could identify all parameters, even if we forgot what the oracle had told us as soon as the 

regression had been run. In particular 𝜎ො is the standard deviation of the shock, 𝛽መ = 𝜃ସ, 𝜌ො = −ఏఱ
ఉ
=

−ఏఱ
ఏర

, 𝛾ො = ఏభ
ଵିఘෝ

= ఏభఏర
ఏరାఏఱ

, and 𝛼ො is given by either 𝜃ଶ − 𝜌ො = ఏమఏరାఏఱ
ఏర

 or −ఏయ
ఘෝ
= ఏయఏర

ఏఱ
. (The two estimates 

of 𝛼 may be near-optimally combined to give 𝛼ො = ఏయఏరఏఱ௦ഇ,మమାఏర൫ఏమఏరାఏఱ൯௦ഇ,యయି൫ఏమఏరఏఱାఏయఏరమାఏఱమ൯௦ഇ,మయ
ఏఱమ௦ഇ,మమାఏరమ௦ഇ,యయିଶఏరఏఱ௦ഇ,మయ

, 

where ቂ
𝑠ఏ,ଶଶ 𝑠ఏ,ଶଷ
𝑠ఏ,ଷଶ 𝑠ఏ,ଷଷቃ is the estimated covariance matrix of ቈ𝜃

ଶ
𝜃ଷ
.) 

Now let 𝑍் ≔ 
𝑧ଵᇱ
⋮
𝑧்ᇱ
൩, 𝑥 ≔ 

𝑥ଵ
⋮
𝑥்
൩ and 𝑦 ≔ 

𝑎𝑥ଵ
⋮

𝑎்ିଵ𝑥்
൩. Then the (OLS) estimated value of 𝜃 is given by: 

𝜃 = (𝑍்ᇱ 𝑍்)ିଵ𝑍்ᇱ (𝑥 − 𝑦𝛽). 

To show consistency of this estimator, let us begin by defining a   vector  of   “pseudo-instruments”  
(variables that we would like to use in place of 𝑧௧, were they observable): 

𝒹௧ ≔ ቈ1
𝜎𝜀௧ିଵ

1 − 𝛽𝑎ଵ,௧ିଶ
𝜎𝜀௧ିଶ

1 − 𝛽𝑎ଵ,௧ିଷ
𝑑ଵ,௧ିଵᇱ 𝜁௧

𝑑ଵ,௧ିଶᇱ 𝜁௧ିଵ
1 − 𝛽𝑎ଵ,௧ିଶ


ᇱ

. 
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Denote by 𝔼ା𝑉 the unconditional expectation of 𝑉 that would have obtained were 𝑎ଵ,௧, 𝑎ଶ,௧, 𝑎ଷ,௧, 
𝑏௧, 𝑐௧ and 𝑑ଵ,௧ non-stochastic for all 𝑡. Then if 𝐽௧ ≔ 𝔼ା𝒹௧𝒹௧

ᇱ , 

𝐽௧ = diag ቈ1
𝜎ଶ

൫1 − 𝛽𝑎ଵ,௧ିଶ൯
ଶ

𝜎ଶ

൫1 − 𝛽𝑎ଵ,௧ିଷ൯
ଶ 𝑑ଵ,௧ିଵᇱ 𝑑ଵ,௧ିଵ

𝑑ଵ,௧ିଶᇱ 𝑑ଵ,௧ିଶ
൫1 − 𝛽𝑎ଵ,௧ିଶ൯

ଶ , 11 

and if 𝐾௧ ≔ (𝔼ା𝒹௧𝒹௧
ᇱ)ିଵ𝔼ା𝒹௧𝑧௧ᇱ, 

𝐾௧ =

⎣
⎢
⎢
⎢
⎢
⎡
1 ? ? ? ?
0 1 0 𝑎ଶ,௧ିଵ + 𝑏௧ିଵ𝑎ଵ,௧ିଶ 𝑎ଵ,௧ିଶ
0 𝑞௧ିଶ 1 ൫𝑎ଶ,௧ିଵ + 𝑏௧ିଵ𝑎ଵ,௧ିଶ൯𝑞௧ିଶ + 𝑎ଷ,௧ିଵ + 𝑏௧ିଵ𝑎ଶ,௧ିଶ 𝑎ଶ,௧ିଶ + 𝑎ଵ,௧ିଶ𝑞௧ିଶ
0 0 0 1 0
0 𝛽 0 𝛽𝑎ଶ,௧ିଵ + 𝑏௧ିଵ 1 ⎦

⎥
⎥
⎥
⎥
⎤

, 

where 𝑞௧ିଶ =
ఈାఘାఉమ,షమାఉ(షమିఘ)భ,షయ

ଵିఉభ,షమ
, and ? denotes a term omitted for the sake of space. We 

also define 𝐽ሚ் ≔ ∑ 𝐽௧்
௧ୀଵ , and 𝐾෩் ≔ 𝐽ሚ்ିଵ ∑ 𝐽௧𝐾௧

்
௧ୀଵ , so if 𝐷 ≔ 

𝒹ଵ
ᇱ

⋮
𝒹்
ᇱ
൩ , 𝐽ሚ் = 𝔼ା𝐷ᇱ𝐷  and 𝐾෩் =

(𝔼ା𝐷ᇱ𝐷)ିଵ𝔼ା𝐷ᇱ𝑍். These definitions are valid as 𝐽ሚ்  is diagonal, with a strictly positive diagonal, for 
all 𝑡. (Though the elements of the diagonal may tend to 0 asymptotically.) A sufficient condition for 
the invertability of both 𝐾் and 𝐾෩், for all 𝑇, is that 𝛽 ≠ 1, in which case the eigenvalues of 𝐾௧ and 
𝐾෩் must be bounded away from 0 asymptotically. 

If we go on to define: 

𝑈் ≔ 𝑍் − 𝐷(𝐷ᇱ𝐷)ିଵ𝐷ᇱ𝑍், 

then 𝐷ᇱ𝑈 = 0 and: 

𝑍்ᇱ 𝑍் = 𝑍்ᇱ 𝐷(𝐷ᇱ𝐷)ିଵ𝐷ᇱ𝐷(𝐷ᇱ𝐷)ିଵ𝐷ᇱ𝑍் + 𝑈்
ᇱ 𝑈். 

If it were valid to drop the 𝔼ା operators from our expressions for 𝐽ሚ்  and 𝐾෩், asymptotically, then 
we would have: 

 Pr ቀ lim
்→ஶ

൫𝐾෩்ᇱ 𝐽ሚ் 𝐾෩் + 𝑈்
ᇱ 𝑈் − 𝑍்ᇱ 𝑍௧൯ = 0ቁ = 1. (3.8) 

   

Dropping the 𝔼ା operators in this way might be valid, for example, if agents were learning a 
sunspot solution via RLS, and eventually the dependence between their estimates was sufficiently 
weak that 𝑎ଵ,௧, 𝑎ଶ,௧,  etc.  were  “near  exogenous”,  in  some  loose  sense. However, rather than making 
such specific assumptions, we will instead just assume the validity of (3.8), since (3.8) encompasses 
many other cases, including ones in which plim்→ஶ 𝐾෩் does not even exist, as it will not under 
constant gain learning. 

                                                      

11 The diag operator maps vectors to diagonal matrices with a diagonal with the same elements as the vector, and maps 
matrices to a vector with the same elements as their diagonal. 
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Given (3.8), by applying Theorem 1 of Lai and Wei (1982) to the regression (3.7), providing: 

1) there exists 𝛿 > 0 such that lim  sup௧→ஶ
୫ୟ୶൛ଵ,భ,మ ൟ

௧భషഃ୫୧୬൛ଵ,ௗభ,ᇲ ௗభ,ൟ
< ∞,12 and 

2) there exists 𝛿ᇱ ≥ 0 such that lim  sup௧→ஶ
௭ᇲ௭
௧ഃᇲ

< ∞,13 

then 𝜃
.௦.
ሱሮ𝜃. Note that 2) already covers all sub-exponential explosion in 𝑧௧ᇱ𝑧௧. We do not as yet 

have a proof of consistency for the case with an exponential (or super-exponential) explosion, but 
our simulation results below certainly suggest that 𝛽 can still be consistently estimated in this case 
(though obviously 𝛾 cannot be). 

Furthermore, under slightly stronger assumptions 𝐽ሚ்
ଵ
ଶൗ 𝐾෩்𝜃  will be asymptotically normally 

distributed, implying that we have ଵ
ඥ୪୭்

 convergence in the worst case. 

It is easy to see that these sufficient conditions will hold under any non-exponentially-explosive 

learning algorithm, with slower than ଵ
√்

 convergence, such as constant gain least squares, or 

stochastic gradient learning. Under recursive least squares, there exists 𝛿 ≥ 0 such that 𝑡
భషഃ
మ 𝑑ଵ,௧ 

converges in distribution to a normal, (Marcet and Sargent 1992), with 𝛿 = 0 only if the real parts 

of   the   eigenvalues   of   the   “𝑇”   matrix   are   all   less   than  1 2ൗ .14 When 𝛿 > 0 here, our sufficient 
conditions will be satisfied, but in the other case, Theorem 1 of Lai and Wei (1982) no longer 

applies. From their reasoning, we do however have that lim  sup௧→ஶ൫𝜃 − 𝜃൯
ᇱ
൫𝜃 − 𝜃൯ < ∞, 

even here, so at worst, beyond a certain point in time standard errors on 𝜃 would cease improving. 
Additionally, we note that a sufficient condition for consistency in this case is that: 

 lim  sup
்→ஶ

ฯ𝐽ሚ்ି
ଵ
ଶൗ 𝐾෩்ᇱିଵ𝑈்

ᇱ 𝑈்𝐾෩்ିଵ𝐽ሚ்
ିଵ ଶൗ ฯ < ∞, (3.9) 

   

by Theorem 3 of Lai and Wei (1982). This will hold, for example, if 𝛼 = 𝜌 = 0, so it may be thought 
of as an additional weak-dependency condition. 

We have demonstrated then a range of conditions under which 𝜃 is a consistent estimator of 𝜃, in 
our oracle-aided regression, equation (3.7). Now suppose there is no oracle, but we have received 
infinitely many periods of data. If we guessed a value for 𝛽, we could repeat the “oracle”  exercise 
with the guessed value and we would end up with an alternative estimate for 𝛽 (namely 𝜃ଷ). We 
can thus think of this as a fixed-point problem. In general our guess of 𝛽 and the estimated value 
will not coincide, but we know that they must coincide at least once, namely when our guess is the 
true value. Thus if the (infinite-data) fixed-point problem has a unique solution for 𝛽, then we know 
that value must be the true value. Hence, if in finite samples this fixed-point problem also has a 

                                                      

12 Sufficient as ∑ 𝑡ି(ଵିఋ)ஶ
௧ୀଵ = ∞ for all 𝛿 ≥ 0. 

13 Sufficient as lim்→ஶ
∑ ௧ഃ

ᇲ
సభ
்భశഃᇲ

< ∞, lim்→ஶ
୪୭்

∑ ௧ష(భషഃ)
సభ

= 0 for all 𝛿 > 0, and since tr 𝑧௧𝑧௧ᇱ is guaranteed to be between 

the largest eigenvalue of 𝑧௧𝑧௧ᇱ and 5 times this quantity. 
14 These eigenvalues are given in the appendix, 7.2. 
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unique solution, that solution must be a consistent estimator of 𝛽, at least when the conditions 
discussed above hold. 

We proceed to establish the uniqueness of the solution to the fixed-point problem, by establishing 
a closed form solution. Let 𝑒ସ ≔ [0 0 0 1 0]ᇱ . Then the fixed-point problem may be 
expressed as finding the value of 𝛽መ  for which: 

𝛽መ = 𝑒ସᇱ (𝑍ᇱ𝑍)ିଵ𝑍ᇱ൫𝑥 − 𝑦𝛽መ൯. 

Consequently: 

𝛽መ =
𝑒ସᇱ (𝑍ᇱ𝑍)ିଵ𝑍ᇱ𝑥

1 + 𝑒ସᇱ(𝑍ᇱ𝑍)ିଵ𝑍ᇱ𝑦
. 

Armed with a consistent estimator of 𝛽መ , all other parameters may be estimated consistently by 
following our oracle procedure. In particular, the consistent estimator of 𝜃 is: 

 
𝜃2SLS = (𝑍ᇱ𝑍)ିଵ𝑍ᇱ ቈ𝑥 − 𝑦

𝑒ସᇱ (𝑍ᇱ𝑍)ିଵ𝑍ᇱ𝑥
1 + 𝑒ସᇱ(𝑍ᇱ𝑍)ିଵ𝑍ᇱ𝑦

 

= (𝐼 + (𝑍ᇱ𝑍)ିଵ𝑍ᇱ𝑦𝑒ସᇱ )ିଵ(𝑍ᇱ𝑍)ିଵ𝑍ᇱ𝑥 
= (𝑍ᇱ𝑍 + 𝑍ᇱ𝑦𝑒ସᇱ )ିଵ𝑍ᇱ𝑥, (3.10) 

   

which turns out to be equal to the 2SLS-IV estimator when ൫𝑎ଶ,௧ିଵ𝑥௧ିଵ + 𝑎ଷ,௧ିଵ𝑥௧ିଶ +
𝑏௧ିଵ𝔼௧ିଵ

∗ 𝑥௧ + 𝑐௧ିଵ + 𝑑ଵ,௧ିଵᇱ 𝜁௧൯ is used as an instrument for 𝔼௧
∗𝑥௧ାଵ. 

This gives us the following proposition: 

Proposition 1: Suppose the economy is made up of agents that are all forming expectations through 
running regressions of the form of (3.1) or (3.2), with dim 𝜁௧ > 0. Let 𝜃2SLS be the estimator defined 
by equation (3.10), and suppose that: 

1) the weak-dependence condition (3.8) holds, 

2) there exists 𝛿 > 0 such that lim  sup௧→ஶ
௫൛ଵ,భ,మ ൟ

௧భషഃ൛ଵ,ௗభ,ᇲ ௗభ,ൟ
< ∞, and 

3) there exists 𝛿ᇱ ≥ 0 such that lim  sup௧→ஶ
௭ᇲ௭
௧ഃᇲ

< ∞, 

Then if one of the following conditions holds: 

a) the agents learn by any algorithm with slower than 1
√𝑡ൗ  convergence, such as constant gain 

least squares, stochastic gradient learning, or recursive least squares in the case in which the 
eigenvalues  of  the  “𝑇”  matrix  (defined  in  appendix  7.2) are greater than 1 2ൗ , 

b) the agents learn a sunspot solution, 
c) the agents learn by recursive least squares, or another algorithm under which √𝑡𝑑ଵ,௧ᇱ  converges 

in distribution, and the second weak-dependence condition (3.9) holds, 

then the 2SLS-like estimator 𝜃2SLS is consistent. 

Since the existence of a consistent estimator implies parameter identification under maximum 
likelihood, we have the following immediate corollary: 

Corollary 1.1: Under the conditions of Proposition 1, the maximum likelihood estimator given by the 
solution to the FOCs, (3.5) is consistent. 
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Note that the consistency of these estimators is in spite of the convergence of 𝑎ଵ,௧, 𝑎ଶ,௧, etc. rather 
than because of this convergence. Indeed, the worse the learning process that is determining 𝑎ଵ,௧, 
𝑎ଶ,௧, etc., the faster this more sophisticated agent will learn the structural parameters of the model. 
So for example, if almost all agents are using stochastic gradient learning or constant gain least 
squares, then learning structural parameters is likely to be particularly easy. Likewise if 𝑎ଵ,௧, 𝑎ଶ,௧, 
etc. never converge then learning the structural parameters is again likely to be fast. This result is 
related  to  Cochrane’s  (2009) claim that with unsophisticated learning it is only in the explosive case 
that structural parameters may be identified, but here we have identification quite generally. 

3.4. Learning from MSV learners 

It is natural to wonder the extent to which our results are driven by the fact that the agents in the 
economy are learning and forming expectations using equation (3.1) or (3.2), rather than the more 
traditional MSV form: 

 𝑥௧ାଵ = 𝑎ଵ𝑥௧ + 𝑎ଶ𝑥௧ିଵ + 𝑐 + 𝑚ఌ𝜀௧ାଵ, 𝜀௧ାଵ~NIID(0,1). (3.11) 
   

Since many REE do not have a representation in this form, by estimating (3.11) the agents in the 
economy are already putting a prior probability of zero on any non-fundamental solution, which is 
certainly not justified in the absence of transversality constraints limiting 𝑥௧  to asymptotic 
stationarity. Nonetheless, even given these priors, when agents observe a stationary realisation of 
𝑥௧ they will still not be able to work out the value of 𝛽, as there are observationally equivalent MSV 
solutions. So, it remains an interesting question whether or not 𝛽 can be identified from examining 
these learners. 

The argument of the previous section would suggest using 𝑎ଶ,௧ିଵ𝑥௧ିଵ + 𝑐௧ିଵ as an instrument for 
𝔼௧
∗𝑥௧ାଵ. Proving the general validity of this instrument in the MSV set-up is tricky, however. This is 

clearest when 𝛼 = 𝜌 = 0, in which case, asymptotically 𝑥௧ାଵ = 𝑚ఌ𝜀௧ାଵ, if parameters converge. 
With no serial correlation in 𝑥௧,   finding   “pseudo-instruments”   (i.e.   potential   elements  of 𝒹௧) that 
are correlated with 𝔼௧

∗𝑥௧ାଵ and 𝔼௧ିଵ
∗ 𝑥௧, but not with 𝜀௧ିଵ or 𝜀௧ିଶ is non-trivial. 

Suppose that ଵ
ೌ(௧)

ቂ
𝑎ଵ,௧ − 𝑎ଵ,ஶ
𝑎ଶ,௧ − 𝑎ଶ,ஶቃ tends in distribution to some non-degenerate distribution, as 

𝑡 → ∞, for some function 𝜅(𝑡), and some constants 𝑎ଵ,ஶ and 𝑎ଶ,ஶ.  Then  under  any  “reasonable”  
estimator (including the RLS, CGLS etc. estimators): 

 

lim  inf
௧→ஶ

𝜅(𝑡)ଶ cov൫𝑎ଵ,௧, 𝜀௧𝜀௧ିଵ൯ > 0, 

lim  inf
௧→ஶ

𝜅(𝑡)ଶ cov൫𝑎ଶ,௧, 𝜀௧𝜀௧ିଶ൯ > 0, & 

lim  sup
௧→ஶ

𝜅(𝑡)ଶ cov൫𝑎ଶ,௧, 𝜀௧𝜀௧ିଵ൯ = 0. 
(3.12) 

Thus if we define: 

 𝒹௧ ≔ ቈ1
𝜎𝜀௧ିଵ

1 − 𝛽𝑎ଵ,௧ିଶ
𝜎𝜀௧ିଶ

1 − 𝛽𝑎ଵ,௧ିଷ
𝜎𝜅(𝑡)ଶ𝜀௧ିଵଶ 𝜀௧ିଷ
1 − 𝛽𝑎ଵ,௧ିଶ

𝜎𝜅(𝑡)ଶ𝜀௧ିଵ𝜀௧ିଶ𝜀௧ିସ
1 − 𝛽𝑎ଵ,௧ିଶ


ᇱ

, (3.13) 
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then providing lim  inf௧→ஶ 𝑡ଵିఋ𝜅(𝑡)ଶ > 0 for some 𝛿 > 0, the previous proof goes through.15 Of 

course, under recursive least squares learning 𝜅(𝑡) =
ଵ
√௧

 when  the  eigenvalues  of  the  “𝑇”  matrix  

are less than 1 2ൗ , so this sufficient condition does not hold. While the second weak-dependence 
condition (3.9) could be generalised to this case, it seems highly implausible that it would hold here, 
due to the convoluted nature of our “pseudo-instruments”.16 

The convoluted nature of these pseudo-instruments also suggests that our actual-instrument 
vector, 𝑧௧ may be a rather poor instrument. One other possibility that could be used as an 
additional instrument is 𝑎ଵ,௧ିଵ, since it is correlated with the first term of 𝔼௧

∗𝑥௧ାଵ. Indeed, it is easy 
to see that whether agents are learning from (3.11), or one of our more general laws, (3.1) or (3.2), 
the asymptotically optimal choice of instruments is: 

𝑧௧∗ ≔ ቂ
𝑧௧

𝑎ଵ,௧ିଵ𝑧௧ቃ 

since 𝔼௧𝑥௧ାଵ = 𝐹𝑧௧∗ + 𝑎ଵ,௧ିଵ𝜀௧ for some non-stochastic, constant matrix 𝐹, and this is not true for 
any proper subset of these instruments. We then have the following generalisation of Proposition 1 
and Corollary 1.1 for this choice of instruments: 

Proposition 2: Suppose the economy is made up of agents that are all forming expectations through 
running regressions of the form of (3.1), (3.2) or (3.11). Let 𝑧௧∗ = [𝑧௧ᇱ 𝑎ଵ,௧ିଵ𝑧௧ᇱ]′, where 𝑧௧ is defined 
by equation (3.6), and let 𝑌 ≔ 𝑍 + 𝑦𝑒ସᇱ , 𝑍∗ ≔ [𝑧ଵ∗ ⋯ 𝑧்∗ ]′, and: 

𝜃்AEIV ≔ ቀ𝑌ᇱ𝑍∗൫𝑍∗ᇲ𝑍∗൯
ିଵ
𝑍∗ᇲ𝑌ቁ

ିଵ
𝑍∗൫𝑍∗ᇲ𝑍∗൯

ିଵ
𝑍∗ᇲ𝑥. 

Then if either: 

i) (3.1) or (3.2) is being used, and conditions 1), 2) and 3) of Proposition 1 hold, or: 
ii) (3.11) is being used and: 

1) the weak-dependence condition (3.8) holds (with 𝒹௧ defined by (3.13)), and, 

2) there exists δᇱ ≥ 0 such that lim  sup୲→ஶ
భ,మ

௧ഃᇲ
< ∞ and lim  sup୲→ஶ

௭ᇲ௭
௧ഃᇲ

< ∞, 

and one of the following further conditions holds also: 

a) the agents learn by any reasonable17 algorithm which converges in distribution, but slower than 
1
√𝑡ൗ , such as stochastic gradient learning, or recursive least squares in the case in which the 

eigenvalues  of  the  “𝑇”  matrix  (defined  in  appendix  7.2) are greater than 1 2ൗ , 

b) the agents learn a sunspot solution, 

                                                      

15 We also need to adjust the definition of 𝔼௧
ା so that only the 𝑎ଵ,௧ in the denominator of the ALM of 𝑥௧ is treated as 

non-stochastic. 
16 Since completing this paper, we discovered the results of Christopeit and Massmann (2010) who were able to prove 
consistency in an RLS learning of the MSV solution context, for a simple model, using a more direct technique. In future 
work we intend to investigate whether their proof techniques may be generalised to cover regressions such as these. 
17 Where a reasonable algorithm is defined as one for which (3.12) is satisfied. 
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c) the agents learn by recursive least squares on regression (3.1) or (3.2), or another algorithm 
under which √𝑡𝑑ଵ,௧ᇱ  converges in distribution, dim 𝜁௧ > 0 and the second weak-dependence 
condition (3.9) holds, 

then the estimator  𝜃்AEIV is consistent and asymptotically efficient. 

Corollary 2.1: Under the conditions of Proposition 2, the maximum likelihood estimator given by the 
solution to the FOCs, (3.5) is consistent. 

3.5. Simulation evidence 

In light of the slightly obscure nature of some our theoretical conditions, particularly in the 
recursive least squares (RLS) case, we now present some simulation   evidence   of   the   estimator’s  
success in identifying the key 𝛽 parameter. Figure 1 gives results for economies populated with RLS 
learners estimating equation (3.2), and Figure 2 gives results for economies populated with RLS 
learners estimating the MSV form, equation (3.11). 

In order to show the estimates performance, for each parameterisation (different rows of the two 
figures) we generate 2ଵସ  simulation paths (each of length 2଼), and then apply each estimator 
considered to each of the resulting paths. In both figures, each of the first three columns 
corresponds to a different estimator. For both figures, column 1 is our original 2SLS estimator, 
column 2 is the asymptotically efficient IV one (henceforth, AEIV) and column 3 is the ML 
estimator18. In each graph of the first three columns, we plot the 2.5%, 5.0%, 7.5%,… , 97.5% 
percentiles  of  the  estimator’s  distribution.  For  convenience, the quartiles are given in solid rather 
than dotted lines. The final column of both figures gives the 95% trimmed root mean squared error 
(RMSE) of the estimators.19 In this column, the dotted line corresponds to the 2SLS estimator, the 
dashed to the AEIV one, and the solid to the ML one. 

In each simulation   run,   there  was   a   “burn-in”   time  of  32 periods during which time expectations 

were set to their value under the SMSV solution (defined in section 2.2), plus ∑ 𝜁௧,
ୢ୧୫
ୀଵ + 𝜁௧B, 

where 𝜁௧B is an additional, unobservable, NIID(0,1) shock. This was done purely in order to help the 
OLS learners converge, and our estimators were only run on simulated data from the end of the 
burn-in  period.  Additionally,  the  OLS  learners’  estimates  were  constrained  to  have each parameter 
in [−1000,1000] , to prevent numerically unstable hyper-explosions with super-exponential 
growth.  This  is  in  the  spirit  of  the  “projection  facility”  invoked  by  Marcet  and  Sargent  (1989). 

                                                      

18 Obtaining a global solution to the numerical maximum likelihood was too slow to permit us to perform as many 
replications as necessary. Instead then, we start the local maximisation algorithm at the AEIV solution, denoted 𝛽መ௧AEIV, 
and constrain the ML estimate of 𝛽 to be greater than maxൣ{0} ∪ ൛1 𝑎ଵ,௧ିଵ⁄ ห𝛽መ௧AEIV > 1 𝑎ଵ,௧ିଵ⁄ , 1 ≤ 𝑡 ≤ 𝑇ൟ൧ and less 
than minൣ{0} ∪ ൛1 𝑎ଵ,௧ିଵ⁄ ห𝛽መ௧AEIV < 1 𝑎ଵ,௧ିଵ⁄ , 1 ≤ 𝑡 ≤ 𝑇ൟ൧. 
19 I.e. the RMSE after first discarding any observations below the 2.5% percentile or above the 97.5% percentile These 
outliers are trimmed to limit the damage caused by the numerical errors that are introduced by the occasional 
explosive, or near-explosive, path. 
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Figure 1: Distribution properties of the estimates of 𝜷, from 𝟐𝟏𝟒 runs, when agents estimate equation 
(3.2) using OLS. 

See text (section 3.5) for full details. 
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The first two rows of graphs in Figure 1, and the first row in Figure 2, are all generated with 𝛼 = 0.2, 
𝛽 = 0.7 , 𝜌 = 0.9 , 𝜎 = 0.001  and 𝔼𝑥௧ = 0.005 . These parameters mean there is a unique 
stationary MSV solution, which is also the only e-stable MSV solution. The graphs in the first row of 
Figure 1 are with dim 𝜁௧ = 0, while those in the second have dim 𝜁௧ = 1. Obviously, in Figure 2 we 
always set dim 𝜁௧ = 0. As was expected, the ML estimator dominates the other two, which are 
practically indistinguishable here. The initial rate of convergence is very quick for all three 

estimators, but beyond a certain point, convergence certainly seems to slow, in line with our ଵ
ඥ୪୭்

 

convergence finding. However, although the rate of improvement is slow, the level of the RMSE is 
low enough that this is unlikely to be a problem in practice. 

In the next row of both figures, we repeat the exercise with 𝛼 = 0.5121, 𝛽 = 0.4789  and 
𝜌 = 0.2405. These values were selected as they result in dynamics under full-information that are 
observationally equivalent to our original ones. Convergence here is slower since two of the 

eigenvalues  of   the  “𝑇”  map  are  now  greater   than  1 2ൗ . There is also clearly large upwards bias in 
finite samples when agents are estimating (3.11). Surprisingly, it appears the AEIV estimator 
dominates the ML one in this case, whichever equation is being estimated. Nonetheless, 
asymptotically our estimators appear to have very similar properties. 

In the penultimate row of the figures we show the results when 𝛼 = 0.2, 𝛽 = −1.2 and 𝜌 = 0.9. 
This is in the indeterminate region of the parameter space, but still in a region in which the MSV 
solution is e-stable. Performance appears similar to performance in the 𝛽 = 0.7 case. 

Finally, in the last row of both figures we show the behaviour of our estimators in an indeterminate 
region of the parameter space in which the SMSV is not e-stable. (In particular we set 𝛼 = 0.2, 
𝛽 = 1.2 and 𝜌 = 0.9.) The underlying instability of the system makes identification easier for our 
sophisticated agent, giving us better performance than in any other case, whichever equation is 
being estimated. 

The graphs make clear that even in small samples, when agents are estimating (3.2) all three 
estimators are approximately unbiased, whatever the true parameters, and whatever the value of 
dim 𝜁௧. Moreover, the estimators are highly peaked around the true value, meaning that the RMSE 
significantly overstates the median absolute error. Hence, people using these estimators can expect 
their estimated values to be closer to the truth than is suggested by the standard errors. 

4. Learning from sophisticated learners 
Having established that our ML and 2SLS-like estimators can successfully identify the structural 
parameters of the model, we now use these techniques to describe our family of misspecification 
free learning algorithms. Under these algorithms, each agent in the economy will realise that 
everyone else is learning at the same time as them, and indeed, they will take advantage of this fact 
to  identify  the  model’s  structural  parameters.  By  learning these structural parameters, rather than 
a reduced form equation, agents will be able to disentangle learning which particular solution to 
the model is being used from the time variation in reduced form parameters caused by 
simultaneous learning. 
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4.1. General results 

Suppose for the moment that 𝑚ఌ,௧ and 𝑚,௧ are public knowledge and hence do not have to be 
estimated, even when no one knows any of the other structural parameters. 

Suppose further that everyone is learning using the ML or 2SLS-like estimator from section 3.3. 
Providing agents continue to use an expression of the form of (3.4) to form expectations, where 
now 𝑎ଵ,௧ etc. will be functions of estimated structural parameters, this will be valid. 
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Figure 2: Distribution properties of the estimates of 𝜷, from 𝟐𝟏𝟒 runs, when agents estimate equation 
(3.11) using OLS. 

See text (section 3.5) for full details. 
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In particular, we might suppose that agents treat their estimate of structural parameters as the true 
values and set: 

 

𝑎ଵ,௧ =
1
𝛽መ௧

ቆ1 −
𝜎ො௧
𝑚ఌ,௧

ቇ , 𝑎ଶ,௧ = −
1
𝛽መ௧

(𝛼ො௧ + 𝜌ො௧), 𝑎ଷ,௧ =
1
𝛽መ௧

𝛼ො௧𝜌ො௧,   

𝑏௧ = 𝜌ො௧ +
1
𝛽መ௧

𝜎ො௧
𝑚ఌ,௧

, 𝑐௧ = −
1
𝛽መ௧

(1 − 𝜌ො௧)𝛾ො௧, 𝑑ଵ,௧ =
1
𝛽መ௧

𝜎ො௧
𝑚ఌ,௧

𝑚,௧. 
(4.1) 

   

(4.1) is reasonable since the actual law of motion implied by equations (2.4) and (3.4) is: 

𝑥௧ାଵ = ൫1 − 𝛽𝑎ଵ,௧൯
ିଵ
ൣ൫𝛼 + 𝜌 + 𝛽𝑎ଶ,௧ + 𝛽(𝑏௧ − 𝜌)𝑎ଵ,௧ିଵ൯𝑥௧ + ൫𝛽𝑎ଷ,௧ − 𝛼𝜌 + 𝛽(𝑏௧ − 𝜌)𝑎ଶ,௧ିଵ൯𝑥௧ିଵ

+ 𝛽(𝑏௧ − 𝜌)𝑎ଷ,௧ିଵ𝑥௧ିଶ + 𝛽(𝑏௧ − 𝜌)𝑏௧ିଵ𝔼௧ିଵ
∗ 𝑥௧ + [(1 − 𝜌)𝛾 + 𝛽𝑐௧ + 𝛽(𝑏௧ − 𝜌)𝑐௧ିଵ]

+ 𝛽𝑑ଵ,௧ᇱ 𝜁௧ାଵ + 𝛽(𝑏௧ − 𝜌)𝑑ଵ,௧ିଵᇱ 𝜁௧ + 𝜎𝜀௧ାଵ൧, 

and so when agents use (4.1), if the agents estimates of structural parameters converge in 
probability to their true values, then 𝔼௧𝑥௧ାଵ − 𝔼௧

∗𝑥௧ାଵ converges in probability to zero. 

If agents believe in the SMSV for some reason, then we might suppose they set: 

 

𝒻መ௧ = ටmax൛0,1 − 4𝛼ො௧𝛽መ௧ൟ , 𝑎ଵ,௧ = 𝜌ො௧ +
1 − 𝒻መ௧
2𝛽መ௧

, 𝑎ଶ,௧ = −𝜌ො௧
1 − 𝒻መ௧
2𝛽መ௧

,   

𝑎ଷ,௧ = 0, 𝑏௧ = 0, 𝑐௧ =
2(1 − 𝜌ො௧)𝛾ො௧
1 − 2𝛽መ௧ + 𝒻መ௧

, 𝑑ଵ,௧ = 0. 
(4.2) 

   

If they do this, again as estimates of structural parameters converge in probability to their true 
values, 𝔼௧𝑥௧ାଵ − 𝔼௧

∗𝑥௧ାଵ will converge in probability to zero. 

Furthermore, from Proposition 2 we immediately have the following two corollaries: 

Corollary 2.2: Suppose that 𝑚ఌ,௧ and 𝑚,௧ are in   all   agent’s   period  𝑡 information set, and 𝑚ఌ,௧ ≠ 0 
for all 𝑡. Then if: 

1) all agents form expectations using (3.4) and (4.1), 
2) conditions 1), 2) and 3) of Proposition 1 hold, 
3) there exists 𝛿 > 0 such that lim  inf௧→ஶ 𝑡ଵିఋ𝑚,௧ > 0, and, 
4) agents estimate structural parameters using either the AEIV estimator defined in Proposition 2, 

or the ML estimator given by the solution to the FOCs, (3.5), 

then all estimates of structural parameters will converge in probability to the true values, and 
agents’  expectations  will  converge  in  probability  to  their  values  under  the  full  information,  rational  
expectations solution. 

Corollary 2.3: If: 

1) all agents form expectations using (3.4) and (4.2), 
2) conditions 1) and 2) of Proposition 2 hold, and, 
3) agents estimate structural parameters using either the AEIV estimator defined in Proposition 2, 

or the ML estimator given by the solution to the FOCs, (3.5), 
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then all estimates of reduced form parameters will converge in probability to the true values, and 
agents’  expectations  will  converge  in  probability  to  their  values  under  the  full  information,  rational  
expectations, SMSV solution. 

Note that Corollary 2.3 only guarantees convergence of reduced form parameters, not structural 
ones. This is because if reduced form parameters converge too quickly, Proposition 2 does not 
apply. Since there are more structural parameters than reduced form ones in the MSV case, it is 
quite possible for the reduced form parameters to converge without the structural ones 
converging. Guaranteeing convergence of reduced form parameters is sufficient for expectations to 
converge to the SMSV solution, however. 

To guarantee the existence of a learning algorithm that will learn an arbitrary solution, we need the 
following supplemental corollary of Corollary 2.2:  

Corollary 2.4: Suppose that agents do not know 𝑚ఌ,௧ and 𝑚,௧, and each agent 𝑖 forms the estimate 
𝑚ෝఌ,௧(𝑖) and 𝑚ෝ,௧(𝑖) (respectively) of these parameters at 𝑡. Suppose further that the mechanism 
they use for learning these parameters means that either: 

1) there exists some 𝑇 ∈ ℤ such that for all 𝑡 ≥ 𝑇, and all agents 𝑖 and 𝑗, 𝑚ෝఌ,௧(𝑖) = 𝑚ෝఌ,௧(𝑗) and 
𝑚ෝ,௧(𝑖) = 𝑚ෝ,௧(𝑗), or, 

2) for all agents 𝑖 and 𝑗 𝑝𝑙𝑖𝑚௧→ஶ
ෝഄ,()
ෝഄ,()

= 1 and 𝑝𝑙𝑖𝑚௧→ஶ
ቀෝഅ,()ିෝഅ,()ቁ

ᇲ
ቀෝഅ,()ିෝഅ,()ቁ

ෝഅ,()ᇲෝഅ,()
= 0,20 

then if 𝑚ఌ,௧(𝑖) ≠ 0 for all 𝑡 and 𝑖, and conditions 1), 2) and 4) of Corollary 2.2 are satisfied, then all 
estimates of reduced form parameters  will  converge   in  probability  to  the  true  values,  and  agents’  
expectations will converge in probability to their values under the full information, rational 
expectations solution. If in addition condition 3) of Corollary 2.2 is satisfied, then all estimates of 
structural parameters will also converge. 

The proof of the result under condition 1) of this proposition follows from Proposition 2. Under 
condition 2) the result follows from the fact that condition 2) implies that asymptotically the 
measurement error induced by treating an idiosyncratic estimate as an aggregate one is dominated 
by the signal, so the estimates will remain consistent, at least when 𝑥௧ is non-explosive. 

The set of learning mechanisms covered by Corollary 2.3 and Corollary 2.4 includes a very large 
number of plausible learning mechanisms. In the below, we mention three of particular interest. 

4.2. Guaranteed learning of SMSV solutions 

Corollary 2.3 guarantees convergence to any SMSV solution, given minimal conditions. Again, since 
these technical conditions are a little opaque, in Figure 3 we present simulation evidence 
demonstrating the broad convergence of our algorithm. The rows of Figure 3 correspond to the 
same rows of Figure 2 (identical parameters were used). 

 

                                                      

20 Condition 1) is strictly encompassed by condition 2), but the former will be more useful in practice. 
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As in section 3.5, we make 2ଵସ simulation runs, each of length 2଼. For the sake of numerical 
stability, we again use a projection facility, with all reduced form and structural parameters 
constrained to lie in the interval [−1000,1000]. We also have an eight period burn-in, during which 
expectations are given by their SMSV solution, plus 𝜁௧ (always a scalar). For all simulations, we use 
the ML algorithm for parameter estimation, due to its greater efficiency.21 

                                                      

21 Again, we only search for a local maximum, using the constraints as set up in footnote 18. To further increase the 
chance of finding a global maximum however, each period we try starting the optimisation routine at two different 
points:  last  period’s  estimate,  and  the AEIV solution. 
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Figure 3: Results from simulations of sophisticated SMSV learners, from 𝟐𝟏𝟒 runs. 
See text (section 4.2) for full details. 
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The first column of Figure 3 presents the distribution of the difference between the expectations 
formed by our sophisticated agents, and the expectations that would be formed by fully informed, 
fully rational agents in the same economy, normalised by the full information one-step ahead 
standard deviation. The second column presents the distribution of the difference between our 
agents’  expectations  and  the  SMSV  solution,22 with the same normalisation. In all cases, it is clear 
that we have rapid convergence to the SMSV solution, and even faster convergence to rationality. 

The third column presents the 95% trimmed RMSE  in  agents’  estimates  of  𝛽, and the fourth column 
does the same for 𝑎ଵMSV. In line with our theoretical results, while 𝛽 does not appear to converge, 
agents’   estimates   of  𝑎ଵMSV converge to the truth in all cases. (The RMSE in 𝛽 is nonetheless very 
small.) Finally, the fifth column presents the mean p-value from a (one-sample) bootstrapped LM 
test of serial correlation in expectational errors, at one lag. If information is being used fully 
efficiently, there should be no serial correlation, and these mean p-values should be equal to 0.5. 
While our found p-values are not quite so high, in all cases they are comfortably above 0.2 at all 
lags, so an econometrician would not reject the null of no serial correlation, at any standard 
significance level. Thus although this sophisticated learning algorithm is still not quite fully rational, 
it is close enough to rationality that users of it could not detect their own deviations from 
rationality. 

Under standard OLS learning, there are non-learnable stationary MSV solutions such as the one in 
the final row of Figure 3, so by this measure the present learning algorithm is an improvement. 
However,  it  is  in  no  sense  an  answer  to  Cochrane’s   (2009) challenge  for  learnability  to  “save  new-
Keynesian models”.  This learning algorithm is only reasonable if agents already believe that the 
solution is of the SMSV form, an assumption that is not justified by anything in the model. That 
dramatically different results may obtain with different learning mechanisms is made clear by the 
next one presented. 

4.3. Learning any sunspot solution (with positive density) 

Suppose, that agent 𝑖 believes that as well as having access to all the same information as them, 
everyone else in the economy also had access to the additional information that 𝑚ఌ,௧ ≡ 𝑚ఌ, and 
𝑚,௧ ≡ 𝑚,, where 𝑚ఌ, and 𝑚, are constants, unknown to agent 𝑖. 

Let us define: 

 ℯ௧ ≔
𝛽መ௧ିଵ
𝜎ො௧ିଵ

ቈ
1

𝛽መ௧ିଵ
𝑥௧ + 𝑎ොଶ,௧ିଵ𝑥௧ିଵ + 𝑎ොଷ,௧ିଵ𝑥௧ିଶ + 𝜌ො௧ିଵ𝔼௧ିଵ

∗ 𝑥௧ + �̂�௧ିଵ − 𝔼௧
∗𝑥௧ାଵ, (4.3) 

   

then: 

[ℯ௧ 𝜁௧ᇱ] ቂ
𝑚ఌ,௧ିଵ
𝑚,௧ିଵ

ቃ ≈ 𝑥௧ − 𝔼௧ିଵ
∗ 𝑥௧ ≕ 𝜂௧∗, 

where the approximation is exact when 𝑚ఌ,௧ିଵ = 𝑚ఌ,. (Away from this point, agent 𝑖’s  estimate  of  
𝑎ଵ,௧ will differ from the true value, introducing error into their estimates of 𝛼௧, etc..) 

                                                      

22 Given by 𝔼௧
MSV𝑥௧ାଵ = 𝑎ଵMSV𝑥௧ − 𝑎ଶMSV𝑥௧ିଵ − 𝑐MSV 
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The natural estimate of 𝑚ఌ,௧ and 𝑚,௧ is then: 


𝑚ෝఌ,௧
𝑚ෝ,௧

൨ = 
ℯଵ 𝜁ଵᇱ
⋮ ⋮
ℯ௧ 𝜁௧ᇱ

൩

ା


𝜂ଵ∗
⋮
𝜂௧∗
൩, 

where superscript + denotes the Moore-Penrose pseudo-inverse.23 By the standard properties of 
least squares estimates, this will converge on the truth, and indeed despite the presence of the 
approximation in the previous equation this will happen exactly in finite time, providing estimates 
of other parameters are updated recursively.24 

In the case we are chiefly concerned with, everyone is learning simultaneously, so by the properties 
of the Moore-Penrose pseudo-inverse, we will have 𝑚ෝఌ,௧ ≡ 𝑚ෝఌ,ଵ =

ℯభ
ℯభమାభᇲభ

𝜂ଵ∗ and 𝑚ෝ,௧ ≡ 𝑚ෝ,ଵ =
భ

ℯభమାభᇲభ
𝜂ଵ∗, ex-post justifying the constancy assumption that motivated the learning method. By 

varying initial beliefs we may attain any value for 𝜂ଵ∗, and hence any value for 𝑚ෝఌ,ଵ and 𝑚ෝ,ଵ. So with 
stochastic initial beliefs (a public signal perhaps), any solution is attainable with positive density, 
and expectations will converge to rationality with probability one (at least given the relevant 
technical conditions), by Corollary 2.4.25 

This learning method is readily extended to the case in which agents believe that 𝑚ఌ,௧ and 𝑚,௧ are 
constant until a certain event occurs. Possible candidates for these events include changes of 
central bank governors, changes of governments, financial crashes and natural disasters. In this 
case, each time the event occurs, a new draw for 𝑚ෝఌ,௧ and 𝑚ෝ,௧ will be taken, and they will remain 
fixed at those values until the event occurs again. In the extreme case in which the event occurs 

every period, we have that 𝑚ෝఌ,௧ =
ℯ

ℯమାᇲ
𝜂௧∗  and 𝑚ෝ,௧ =


ℯమାᇲ

𝜂௧∗ . Since 𝔼௧ିଵ𝜂௧∗
ଶ − ൫𝑚ෝఌ,௧ିଵ

ଶ +

𝑚ෝ,௧ିଵ
ᇱ 𝑚ෝ,௧ିଵ൯ → 0  as 𝑡 → ∞ , this means 𝔼௧ିଵ൫𝜂௧ାଵ∗ ଶ൯ − 𝔼௧ିଵ൫𝜂௧∗

ଶ൯ → 0 , so the variance of 
expectational errors follows a random walk asymptotically, providing endogenous stochastic 
volatility. 

In Figure 4, we show simulations of this learning method, with the exact same set-up as in section 
4.2. (We do not bound 𝑚ෝఌ,௧ or 𝑚ෝ,௧ however.) Since initial estimates of ℯ௧ are highly inaccurate, we 
assume all agents update their estimates of 𝑚ෝఌ,௧ and 𝑚ෝ,௧ in each of the first 8 periods after the end 
of the burn-in (i.e. periods 9 to 16), but not in any future period. 

In the two cases in which only the SMSV solution is stationary, expectations asymptotically diverge 
from rationality. However, there is an initial period of rapid convergence, so it is hard to know if this 
                                                      

23 This is of course the standard linear regression formula when 𝑡 ≥ dim 𝜁௧. 
24 In this situation, agent 𝑖 should update their estimates of 𝑎ଵ,ଵ in all periods 𝑡 with 𝑡 ≥ 1. I.e. in period 𝑡, they should 

estimate 𝑎ଵ,ଵ as ଵ
ఉభ
൬1 − ఙෝభ

ෝഄ,
൰. Based on this revised estimate of 𝑎ଵ,ଵ, they can then re-estimate 𝛼ଶ, etc., and then 𝑎ଵ,ଶ, 

etc., and so on. Armed with this set of new estimates, they can then re-estimate 𝑚ఌ,௧ and 𝑚,௧, repeating the entire 
procedure until they converge on a fixed point. After 1 + dim 𝜁௧  periods have elapsed, there may possible be multiple 
such fixed points, however, the next period, with probability 1 only one will remain. 
25 The solutions with 𝑚ෝ,ଵ = 0 are not guaranteed to converge, but the set of such solutions is of measure zero in the 
whole space. 
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divergence is merely driven by the numerical errors stemming from the explosive behaviour of 𝑥௧. 
(Either hypothesis would be consistent with our theoretical results, as these do not cover cases in 
which 𝑥௧ grows   exponentially   or   faster.)   In   the   two   “indeterminate”   cases,   expectations   rapidly  
converge to rationality, though not to the MSV solution, implying a sunspot solution has been 
learnt. While structural parameter estimates are very close to the truth in all cases, they do not 
appear to be converging. This again is consistent with our theoretical results if reduced form 
parameters have converged too quickly. Finally, note that there is even less evidence of serial 
correlation in this sunspot case, so again the agents in the model would not be able to detect their 
own departure from rationality. 
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Figure 4: Results from simulations of sophisticated sunspot learners, from 𝟐𝟏𝟒 runs. 
See text (section 4.3) for full details. 
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4.4. Learning in the presence of transversality constraints 

Finally, suppose that in the model under consideration, 𝑥௧  is restricted by a transversality 
constraint. (To recap, this is not the case for inflation.) Then if agents are ever confident they are in 
an indeterminate region of the parameter space, they should switch to the SMSV solution. This 
suggests that agents should begin using the sunspot learning method from the previous section. If 
however their estimates ever imply that ห𝛼ො௧ + 𝛽መ௧ห < 1, then they should switch to forming MSV 
expectations. If at a later date they again come to believe that ห𝛼ො௧ + 𝛽መ௧ห > 1, they should switch 
back to the general sunspot solution, with updated values for 𝑚ෝఌ,௧ and 𝑚ෝ,௧. 

Figure 5 presents simulations of this learning method. Performance is an amalgam of the previous 
two cases, with convergence to the SMSV solution under determinacy, and convergence to a 
sunspot solution otherwise. 
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Figure 5: Results from simulations of sophisticated transversality learners, from 𝟐𝟏𝟒 runs. 
See text (section 4.4) for full details. 
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5. Conclusion 
This paper has set forward a family of macroeconomic learning algorithms that are correctly 
specified, even along the transition path. Our simulations and theoretical results imply that vastly 
more equilibria are learnable via these algorithms than via traditional learning methods, implying 
that learnability cannot be used for equilibrium selection. We have also demonstrated that from 
observing  traditional  macroeconomic  learners  we  may  identify  all  a  model’s  structural  parameters,  
providing those traditional learners are running a regression that encompasses the general solution 
to the model. 

The new estimators produced in this paper have many practical applications. In future empirical 
work we hope to use them to assess whether the Federal Reserve has ever pursued a policy 
satisfying the Taylor principle, something that was not possible until now due to the non-
identification of the key parameter given unobserved, auto-correlated monetary policy shocks. We 
also hope to look for empirical evidence on whether real world macroeconomic learning is best 
described by the traditional algorithm or one of our new, misspecification-free methods. 
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7. Online appendices 

7.1. FREE solutions for arbitrary linear models 

We now extend the structure of (2.3) to the general multivariate case: 

Κ𝑥௧ = Α𝑥௧ିଵ + Β𝔼௧𝑥௧ାଵ + 𝛾 + Σ௦𝑠௧ 

where: 

𝑠௧ = Ρ𝑠௧ିଵ + Σఌ𝜀௧ 

for the arbitrary matrices Κ, Α, Β, Ρ, Σ௦ and Σఌ, the vector 𝛾 and the shock 𝜀௧~NIID(0, 𝐼). Initially, 
we suppose that there are no transversality conditions restricting any of the components of 𝑥௧. 

Again defining the expectational error by 𝜂௧ ≔ 𝑥௧ − 𝔼௧ିଵ𝑥௧ , when Β  and Σ௦  have linearly 
independent columns, from the properties of the Moore-Penrose pseudoinverse (denoted by +), 
we have that: 

𝔼௧𝑥௧ାଵ = Βା(Κ + Σ௦ΡΣ௦ାΒ)𝑥௧ − Βା(Α + Σ௦ΡΣ௦ାΚ)𝑥௧ିଵ + ΒାΣ௦ΡΣ௦ାΑ𝑥௧ିଶ − ΒାΣ௦(𝐼 − Ρ)Σ௦ା𝛾
− ΒାΣ௦Σఌ𝜀௧ − ΒାΣ௦ΡΣ௦ିଵΒ𝜂௧. 

As before, without loss of generality we may assume that 𝜂௧ = 𝑀ఌ,௧ିଵ𝜀௧ + 𝑀,௧ିଵ𝜁௧, for some 
sunspot shock 𝜁௧ uncorrelated with 𝜀௧ (and satisfying 𝔼௧ିଵ𝜁௧ = 0, 𝔼௧ିଵ𝜁௧𝜁௧ᇱ = 𝐼). 

Then, if 𝑀ఌ,௧ିଵ has linearly independent columns: 

𝔼௧𝑥௧ାଵ = Βା൫Κ − Σ௦Σఌ𝑀ఌ,௧ିଵ
ା ൯𝑥௧ − Βା(Α + Σ௦ΡΣ௦ାΚ)𝑥௧ିଵ + ΒାΣ௦ΡΣ௦ାΑ𝑥௧ିଶ

+ Βା൫Σ௦ΡΣ௦ାΒ + Σ௦Σఌ𝑀ఌ,௧ିଵ
ା ൯𝔼௧ିଵ𝑥௧ − ΒାΣ௦(𝐼 − Ρ)Σ௦ା𝛾 + ΒାΣ௦Σఌ𝑀ఌ,௧ିଵ

ା 𝑀,௧ିଵ𝜁௧. 

This expression no longer contains either 𝜀௧ or 𝑠௧. Thus, when Β and Σ௦ have linearly independent 
columns, almost all rational expectations solutions to the original model are FREE, i.e. they are 
implementable by agents who cannot observe  the  model’s  fundamental  shocks.  

More generally, there will be transversality conditions restricting some variables, and Β and Σ௦ will 
not have linearly independent columns. To solve this case, we closely follow Mavroeidis and Zwols’s  
(2007) presentation of Lubik   and   Schorfheide’s   (2003) extension   to   the   irregular   case   of   Sims’s  
(2002) method for solving rational expectations models, which is itself more general than that of 
Blanchard and Kahn (1980). The majority of the results here that are not due to Mavroeidis, Zwols, 
Lubik, Schorfheide or Sims were first shown in an earlier working paper by this author (Holden 
2008). 

With the model set-up as before, let us define 𝑣௧ ≔ ቂ
𝑥௧

𝔼௧𝑥௧ାଵቃ, Γ ≔ ቂΚ −Β
𝐼 0 ቃ, Γଵ ≔ ቂΑ 0

0 𝐼ቃ, 

𝜇 ≔ ቂ𝛾0ቃ,  Ψ ≔ ቂΣ௦0 ቃ and Π ≔ ቂ0𝐼ቃ. We then have the general canonical form we will solve here: 

Γ𝑣௧ = Γଵ𝑣௧ିଵ + 𝜇 + Ψ𝑠௧ + Π𝜂௧. 

In deriving the conditions for the existence of a rational expectations equilibria (REE) below, we will 
not assume anything about the structure of 𝑣௧, 𝜂௧, Γ, Γଵ, 𝜇, Ψ, Π, Ρ, Σ௦ or Σఌ (beyond the fact that 
𝜂௧ must be chosen subject to 𝔼௧ିଵ𝜂௧ = 0). We will also be able to derive sufficient conditions for 
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the existence of a FREE in this fully general case. However, in deriving necessary conditions we will 

assume that 𝑣௧ = ቂ
𝑥௧

𝔼௧𝑥௧ାଵቃ and 𝜂௧ = 𝑥௧ − 𝔼௧ିଵ𝑥௧, as in the above. 

By the generalized complex Schur decomposition (also known as the QZ decomposition) 
(Quarteroni, Sacco, and Saleri 2000) of the matrices Γ and Γଵ, there always exist possibly complex 
matrices 𝑄 , 𝑍 , Λ = ൫𝜆,൯,  and Ω = ൫𝜔,൯,  such that 𝑄ுΛ𝑍ு = Γ , 𝑄ுΩ𝑍ு = Γଵ , 𝑄  and 𝑍  are 

unitary, Λ and Ω are upper triangular and a superscript 𝐻 denotes conjugate transpose. 

Now let 𝑤௧ = 𝑍ு𝑣௧ for all 𝑡 ∈ ℤ, then if we pre-multiply the canonical form by 𝑄 we have: 

Λ𝑤௧ = Ω𝑤௧ିଵ + 𝑄(𝜇 + Ψ𝑠௧ + Π𝜂௧). 

Providing Γ and Γଵ do not have zero eigenvalues corresponding to the same eigenvector26 the QZ 

decomposition always exists and the set ቊቚఠ
ఒ
ቚ ቤ𝑖 ∈ {1, … , dim 𝑣௧}ቋ ⊆ ℝ ∪ {∞}  is unique even 

though the decomposition itself is not (Sims 2002). Thus, without loss of generality we may assume 

that for 𝑖 < 𝑗, ቚఠ
ఒ
ቚ < ฬఠೕೕ

ఒೕೕ
ฬ. Let 𝑢ത  be the number of 𝑖 for which ቚఠ

ఒ
ቚ ≤ 1 and consider a partition of 

the matrices under consideration in which in each case the top left block is of dimension 𝑢ത × 𝑢ത27. 

We may then write: 

 Λଵଵ Λଵଶ
0 Λଶଶ

൨ ቂ
𝑤ଵ,௧
𝑤ଶ,௧

ቃ = Ωଵଵ Ωଵଶ
0 Ωଶଶ

൨ ቂ
𝑤ଵ,௧ିଵ
𝑤ଶ,௧ିଵ

ቃ + 𝑄ଵ∙
𝑄ଶ∙

൨ (𝜇 + Ψ𝑠௧ + Π𝜂௧). (7.1) 
   

The second block of this equation is purely explosive by construction. More generally, we may 
follow Sims (2002) and allow explosive combinations of variables that do not violate transversality 
to enter into the upper block. In New-Keynesian models, inflation rates will generally be such a 
variable. 

                                                      

26 This means that there is one or more equation that places no restrictions on either 𝑣௧ or 𝑣௧ିଵ. This will create an 
additional source of indeterminacy in 𝑣௧ and may also imply that one or more components of 𝜀௧ and 𝜂௧ are linear 
combinations of the others. We, like both Sims and Lubik & Schorfheide, will not further investigate this avenue. 
27 This means that we are not treating unit roots as explosive. Doing this avoids some minor technical complications. 
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If agents expect a non-transversality violating path for 𝑣௧, from solving forward, following Sims 
(2002) and Mavroeidis and Zwols (2007), we must have: 

𝑤ଶ,௧ = 𝔼௧𝑤ଶ,௧ = −𝔼௧ (Ωଶଶ
ିଵΛଶଶ)ିଵΩଶଶ

ିଵ𝑄ଶ∙(𝜇 + Ψ𝑠௧ା + Π𝜂௧ା)
ஶ

ୀଵ

 

= −(Ωଶଶ
ିଵΛଶଶ)Ωଶଶ

ିଵ𝑄ଶ∙ΨΡଵା𝑠௧

ஶ

ୀ

− (Ωଶଶ
ିଵΛଶଶ)

ஶ

ୀ

൩Ωଶଶ
ିଵ𝑄ଶ∙𝜇 

= 𝑆Ρ𝑠௧ + (Λଶଶ − Ωଶଶ)ିଵ𝑄ଶ∙𝜇, 

where 𝑆 is the solution to the Stein equation28: 

Ωଶଶ
ିଵΛଶଶ𝑆Ρ − 𝑆 = Ωଶଶ

ିଵ𝑄ଶ∙Ψ 

and where the sums are well defined since the eigenvalues of Ωଶଶ
ିଵΛଶଶ are strictly in the unit circle 

by construction (and Ωଶଶ is invertible by construction). Note that for 𝑆 to have linearly independent 
columns, it is necessary that dim𝑤ଶ,௧ ≥ dim 𝑠௧. 

Consequently (following Mavroeidis and Zwols (2007)), 𝔼௧ାଵ𝑤ଶ,௧ = 𝔼௧𝑤ଶ,௧, and so: 

−𝔼௧ାଵ(Ωଶଶ
ିଵΛଶଶ)ିଵΩଶଶ

ିଵ𝑄ଶ∙(𝜇 + Ψ𝑠௧ା + Π𝜂௧ା)
ஶ

ୀଵ

= −𝔼௧ (Ωଶଶ
ିଵΛଶଶ)ିଵΩଶଶ

ିଵ𝑄ଶ∙(𝜇 + Ψ𝑠௧ା + Π𝜂௧ା)
ஶ

ୀଵ

 

i.e. Ωଶଶ𝑆Σఌ𝜀௧ାଵ = 𝑄ଶ∙Π𝜂௧ାଵ (7.2) 
   

(using the fact that Ωଶଶ is of full rank and the definition of 𝑆). This is the key constraint limiting 
expectations. If Ρ = 0, then 𝑆 = −Ωଶଶ

ିଵ𝑄ଶ∙Ψ so under the normalisation Σఌ = 𝐼, it collapses to the 
expression given in Lubik and Schorfheide (2003). 

By the singular value decomposition (SVD) (Horn and Johnson 1985) of 𝑄ଶ∙Π and Ωଶଶ𝑆Σఌ we can 

write 𝑄ଶ∙Π = 𝑈𝐷𝑉ு = [𝑈∙ଵ 𝑈∙ଶ] ቂ
𝐷ଵଵ 0
0 0ቃ 

𝑉∙ଵு

𝑉∙ଶு
൨ = 𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு  and  Ωଶଶ𝑆Σఌ = 𝑈𝐷𝑉ு =

[𝑈∙ଵ 𝑈∙ଶ] 
𝐷ଵଵ 0
0 0

൨ ቈ𝑉
∙ଵு

𝑉∙ଶு
 = 𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு  where 𝑈 , 𝑉 , 𝑈  and 𝑉  are unitary and 𝐷ଵଵ  and 𝐷ଵଵ  have 

strictly positive diagonals and zeroes elsewhere, and where 𝐻 denotes the Hermitian transpose. 
Pre-multiplying the constraint (7.2) by 𝑈∙ଵ𝑈∙ଵ

ு then gives that: 

𝑈∙ଵ𝑈∙ଵ
ுΩଶଶ𝑆Σఌ𝜀௧ାଵ = 𝑈∙ଵ𝑈∙ଵ

ு𝑄ଶ∙Π𝜂௧ାଵ = 𝑈∙ଵ𝑈∙ଵ
ு𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு𝜂௧ାଵ = 𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு𝜂௧ାଵ = 𝑄ଶ∙Π𝜂௧ାଵ 

= Ωଶଶ𝑆Σఌ𝜀௧ାଵ 

                                                      

28  This equation has a unique solution providing none of the eigenvalues of Ρ  are in the set 

ቊቚఠ
ఒ
ቚ ቤ𝑖 ∈ {𝑢ത + 1,… , dim 𝑣௧}ቋ, which holds automatically providing the autoregressive process for 𝜀௧ is non-explosive. 

The (non-numerically robust) solution is given by: vec 𝑆 = (Ρᇱ ⊗ Ωଶଶ
ିଵΛଶଶ − 𝐼)ିଵ vec Ωଶଶ

ିଵ𝑄ଶ∙Ψ. 
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(by the constraint and the unitarity of 𝑈). Thus since 𝜀௧ାଵ may take the value 𝑉∙ଵ𝐷ଵଵିଵ𝜐 for any 𝜐, by 
the unitarity of 𝑉 , we must have: 

 𝑈∙ଵ𝑈∙ଵ
ு𝑈∙ଵ = 𝑈∙ଵ. (7.3) 

   

This condition is also sufficient for the existence of a solution, which we now demonstrate by 
exhibiting an explicit solution. 

Let 𝑞 ≔ rank𝑄ଶ∙Π, so that 𝐷ଵଵ is of dimension 𝑞 × 𝑞. Then following Lubik and Schorfheide (2003), 
we posit the following set of solutions for the forecast errors 𝜂௧: 

 𝜂௧ = [𝑉∙ଵ 𝑉∙ଶ] 
𝐷ଵଵ
ିଵ𝑈∙ଵ

ுΩଶଶ𝑆Σఌ
𝑀ఌ,௧ିଵ

൨ 𝜀௧ + [𝑉∙ଵ 𝑉∙ଶ] 
0

𝑀,௧ିଵ
൨ 𝜁௧, (7.4) 

   

where 𝜁௧ is an arbitrary vector of sunspot shocks, uncorrelated with 𝜀௧, and 𝑀ఌ,௧ିଵ and 𝑀,௧ିଵ are 
arbitrary matrices of size (dim 𝜂௧ − 𝑞) × dim 𝜀௧ and (dim 𝜂௧ − 𝑞) × dim 𝜁௧ respectively, known at 
𝑡 − 1. (The possibility of time variation in 𝑀ఌ,௧ିଵ  and 𝑀,௧ିଵ  was not noticed by Lubik and 
Schorfheide (2003).) When the condition (7.3) holds, by the unitarity of 𝑉 we have that: 

𝑄ଶ∙Π𝜂௧ = 𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு𝜂௧ 
= ൫𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு𝑉∙ଵ𝐷ଵଵ

ିଵ𝑈∙ଵ
ுΩଶଶ𝑆Σఌ + 𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு𝑉∙ଶ𝑀ఌ,௧ିଵ൯𝜀௧ + 𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு𝑉∙ଶ𝑀,௧ିଵ𝜁௧  

= 𝑈∙ଵ𝑈∙ଵ
ுΩଶଶ𝑆Σఌ𝜀௧ = 𝑈∙ଵ𝑈∙ଵ

ு𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு𝜀௧ = 𝑈∙ଵ𝐷ଵଵ𝑉∙ଵு𝜀௧ = Ωଶଶ𝑆Σఌ𝜀௧ 

and so the constraint (7.2) does indeed hold. It is immediate from this solution for the forecast 
errors that the model has a unique solution if and only if 𝑞 = dim 𝜂௧. 

In order for there to be a FREE solution, we must be able to express 𝜀௧ as a function of 𝜂௧ and 𝜁௧. If 

we pre-multiply the above solution for 𝜂௧  by Ωଶଶ
ିଵ𝑈∙ଵ𝐷ଵଵ 0

0 𝐼
൨ 𝑉ு, using condition (7.3) and the 

unitarity of 𝑉 we have that: 


𝑆Σఌ

𝑀ఌ,௧ିଵ
൨ 𝜀௧ = Ωଶଶ

ିଵ𝑈∙ଵ𝐷ଵଵ 0
0 𝐼

൨ 𝑉ு𝜂௧ − 
0

𝑀,௧ିଵ
൨ 𝜁௧. 

Therefore, a FREE solution will certainly exist if 
𝑆Σఌ

𝑀ఌ,௧ିଵ
൨ has linearly independent columns for all 𝑡, 

since when this holds, from standard results on the Moore-Penrose pseudo-inverse we have that: 

𝜀௧ = ቈ
Σఌு𝑆ு𝑆Σఌ

𝑀ఌ,௧ିଵ
ு 𝑀ఌ,௧ିଵ


ିଵ

ቂ[Σఌு𝑆ுΩଶଶ
ିଵ𝑈∙ଵ𝐷ଵଵ 𝑀ఌ,௧ିଵ

ு ]𝑉ு𝜂௧ − 𝑀ఌ,௧ିଵ
ு 𝑀,௧ିଵ𝜁௧ቃ 

and so it is as if 𝜀௧ is in even the limited information set. When dim 𝜂௧ − 𝑞 ≥ dim 𝜀௧,  
𝑆Σఌ

𝑀ఌ,௧ିଵ
൨ will 

have linearly independent columns for almost all 𝑀ఌ,௧ିଵ .29 More generally, we require that 
rank 𝑆Σఌ + dim𝜂௧ − 𝑞 ≥ dim 𝜀௧. 

                                                      

29 With 𝑞 = 0, this gives a generalisation of our initial result to the case in which Β and Σ௦  do not have full rank. 
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Now by (7.3), 𝑄ଶ∙Π𝑉∙ଵ𝐷ଵଵିଵ𝑈∙ଵ
ுΩଶଶ𝑆Σఌ = Ωଶଶ𝑆Σఌ, thus span 𝑆Σఌ = spanΩଶଶ𝑆Σఌ ⊆ span𝑄ଶ∙Π and so 

rank 𝑆Σఌ ≤ rank𝑄ଶ∙Π = 𝑞. Thus, if it is to be the case that 
𝑆Σఌ
𝑀ఌ,௧ିଵ

൨ has linearly independent 

columns, we must have that: 

dim 𝜀௧ − (dim𝜂௧ − 𝑞) ≤ rank 𝑆Σఌ ≤ rank𝑄ଶ∙Π = 𝑞, 

which implies dim 𝜀௧ ≤ dim𝜂௧. In the special case in which dim 𝜀௧ = dim𝜂௧, these inequalities 
become equalities, meaning that we must have spanΩଶଶ𝑆Σఌ = span𝑄ଶ∙Π, and hence 𝑈∙ଵ𝑈∙ଵு𝑈∙ଵ =
𝑈∙ଵ, by (7.3). 

The fact that 
𝑆Σఌ
𝑀ఌ,௧ିଵ

൨ having linearly independent columns implies dim 𝜀௧ ≤ dim 𝜂௧ makes clear 

that this condition is not necessary for the existence of a FREE. For example, suppose Σఌ = 0, then 
a FREE must exist independently of the dimension of dim 𝜀௧ when 𝑀ఌ,௧ିଵ ≡ 0. 

In order to derive necessary conditions (and tighter sufficient ones) we must first solve for 𝑣௧. We 
begin by pre-multiplying (7.1) by [𝐼 −𝑄ଵ∙Π𝑉∙ଵ𝐷ଵଵିଵ𝑈∙ଵ

ு], which gives: 

[Λଵଵ Λଵଶ − 𝑄ଵ∙Π𝑉∙ଵ𝐷ଵଵିଵ𝑈∙ଵ
ுΛଶଶ] ቂ

𝑤ଵ,௧
𝑤ଶ,௧

ቃ 

= [Ωଵଵ Ωଵଶ − 𝑄ଵ∙Π𝑉∙ଵ𝐷ଵଵିଵ𝑈∙ଵ
ுΩଶଶ] ቂ

𝑤ଵ,௧ିଵ
𝑤ଶ,௧ିଵ

ቃ + (𝑄ଵ∙ − 𝑄ଵ∙Π𝑉∙ଵ𝐷ଵଵିଵ𝑈∙ଵ
ு𝑄ଶ∙)(𝜇 + Ψ𝑠௧ + Π𝜂௧) 

= [Ωଵଵ Ωଵଶ − 𝑄ଵ∙Π𝑉∙ଵ𝐷ଵଵିଵ𝑈∙ଵ
ுΩଶଶ] ቂ

𝑤ଵ,௧ିଵ
𝑤ଶ,௧ିଵ

ቃ + (𝑄ଵ∙ − 𝑄ଵ∙Π𝑉∙ଵ𝐷ଵଵିଵ𝑈∙ଵ
ு𝑄ଶ∙)(𝜇 + Ψ𝑠௧)

+ 𝑄ଵ∙Π𝑉∙ଶ൫𝑀ఌ,௧ିଵ𝜀௧ + 𝑀,௧ିଵ𝜁௧൯ 

(using the unitary of 𝑈 and 𝑉, and equation (7.4)). 

Hence, if we stack the equation above with the solution for the transversality-violating terms, and 
pre-multiply by: 

[𝑍∙ଵΛଵଵିଵ 𝑍∙ଶ − 𝑍∙ଵΛଵଵିଵ(Λଵଶ − 𝑄ଵ∙Π𝑉∙ଵ𝐷ଵଵିଵ𝑈∙ଵ
ுΛଶଶ)], 

(valid as Λଵଵ is invertible by construction) we have: 

𝑣௧ = 𝑍∙ଵΛଵଵିଵ[Ωଵଵ𝑍∙ଵு + (Ωଵଶ − 𝐽Ωଶଶ)𝑍∙ଶு]𝑣௧ିଵ
+ [𝑍∙ଵΛଵଵିଵ(𝑄ଵ∙ − 𝐽𝑄ଶ∙) + [𝑍∙ଶ − 𝑍∙ଵΛଵଵିଵ(Λଵଶ − 𝐽Λଶଶ)](Λଶଶ − Ωଶଶ)ିଵ𝑄ଶ∙]𝜇
+ [𝑍∙ଵΛଵଵିଵ(𝑄ଵ∙ − 𝐽𝑄ଶ∙)Ψ + [𝑍∙ଶ − 𝑍∙ଵΛଵଵିଵ(Λଵଶ − 𝐽Λଶଶ)]𝑆Ρ]𝑠௧ + 𝑍∙ଵΛଵଵିଵ𝑄ଵ∙Π𝑉∙ଶ𝑉∙ଶு𝜂௧, 

where 𝑍 has been partitioned conformably with 𝑤௧ and where 𝐽 ≔ 𝑄ଵ∙Π𝑉∙ଵ𝐷ଵଵିଵ𝑈∙ଵ
ு. 

For brevity, we rewrite this solution for 𝑣௧ as: 

 𝑣௧ = 𝑇 ଵ𝑣௧ିଵ + 𝑇ఓ + 𝑇௦𝑠௧ + 𝑇ఎ𝜂௧, (7.5) 
   

where 𝑇 ଵ, 𝑇ఓ, 𝑇௦ and 𝑇ఎ are defined by matching terms. 

Let us assume then that 𝑣௧ = ቂ
𝑥௧

𝔼௧𝑥௧ାଵቃ and 𝜂௧ = 𝑥௧ − 𝔼௧ିଵ𝑥௧, as in the general linear expectational 

model we presented at the start of this appendix. Then if we define 𝑇ఌ,௧ିଵ ≔ 𝑇ఎ𝑉∙ଶ𝑀ఌ,௧ିଵ and 
𝑇,௧ିଵ ≔ 𝑇ఎ𝑉∙ଶ𝑀,௧ିଵ and partition all the 𝑇∙ matrices conformably with 𝑣௧, we have: 

 
𝔼௧𝑥௧ାଵ = 𝑇 ଵ,ଶଵ𝑥௧ିଵ + 𝑇 ଵ,ଶଶ𝔼௧ିଵ𝑥௧ + 𝑇ఓ,ଶ + 𝑇௦,ଶ𝑠௧ + 𝑇ఎ,ଶ𝜂௧ 

= 𝑇 ଵ,ଶଵ𝑥௧ିଵ + 𝑇 ଵ,ଶଶ𝔼௧ିଵ𝑥௧ + 𝑇ఓ,ଶ + 𝑇௦,ଶ𝑠௧ + 𝑇ఌ,௧ିଵ,ଶ𝜀௧ + 𝑇,௧ିଵ,ଶ𝜁௧. (7.6) 
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When either Ρ = 0, or when 𝑠௧ିଵ is observed, the feasibility of this solution requires that agents 
can work out ൫𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൯𝜀௧ , given knowledge of 𝑥௧ , 𝜂௧  and 𝜁௧ . By taking the SVD of 

൫𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൯ and 
𝑆Σఌ

𝑀ఌ,௧ିଵ
൨ it is straightforward to show that a sufficient condition for feasibility 

is that: 

 ker 𝑆Σఌ ∩ ker𝑀ఌ,௧ିଵ ⊆ kerൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧, (7.7) 
   

in which case: 

ൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧𝜀௧ = ൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧ 
𝑆Σఌ
𝑀ఌ,௧ିଵ

൨
ା
ቈΩଶଶ

ିଵ𝑈∙ଵ𝐷ଵଵ 0
0 𝐼

൨ 𝑉ு𝜂௧ − 
0

𝑀,௧ିଵ
൨ 𝜁௧, 

and: 

𝔼௧𝑥௧ାଵ = ൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧ 
𝑆Σఌ

𝑀ఌ,௧ିଵ
൨
ା
Ωଶଶ

ିଵ𝑈∙ଵ𝐷ଵଵ 0
0 𝐼

൨ 𝑉ு𝑥௧ + 𝑇 ଵ,ଶଵ𝑥௧ିଵ + 𝑇௦,ଶΡ𝑠௧ିଵ

+ ቈ𝑇 ଵ,ଶଶ − ൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧ 
𝑆Σఌ

𝑀ఌ,௧ିଵ
൨
ା
Ωଶଶ

ିଵ𝑈∙ଵ𝐷ଵଵ 0
0 𝐼

൨ 𝑉ு 𝔼௧ିଵ𝑥௧ + 𝑇ఓ,ଶ

+ 𝑇,௧ିଵ,ଶ − ൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧ 
𝑆Σఌ

𝑀ఌ,௧ିଵ
൨
ା


0
𝑀,௧ିଵ

൨൩ 𝜁௧, 

which is in a  “semi”-FREE form. 

In fact, when Ρ = 0, we can provide a more intuitive sufficient condition, under the normalisation 
that Σఌ = 𝐼 . In this case,  ker 𝑆Σఌ = ker 𝑆 = ker𝑄ଶ∙Ψ  and so for 𝓋 ∈ ker 𝑆Σఌ ∩ ker𝑀ఌ,௧ିଵ , 
Ψ𝑣 = 𝑄ଵ∙

ு𝑄ଵ∙Ψ𝑣 and hence: 

𝑄ଵ∙
ுΛଵଵ𝑍∙ଵு൫𝑇௦Σఌ + 𝑇ఌ,௧ିଵ൯𝑣 = 𝑄ଵ∙

ுΛଵଵ𝑍∙ଵு𝑍∙ଵΛଵଵ
ିଵ𝑄ଵ∙ Ψ + Π𝑉 𝐷ଵଵ

ିଵ𝑈∙ଵ
ுΩଶଶ𝑆Σఌ

𝑀ఌ,௧ିଵ
൨൩ 𝑣 = Ψ𝑣 

Hence if 𝓋 ∈ ker 𝑆Σఌ ∩ ker𝑀ఌ,௧ିଵ ∩ kerΨ , 𝑄ଵ∙
ுΛଵଵ𝑍∙ଵு൫𝑇௦Σఌ + 𝑇ఌ,௧ିଵ൯𝑣 = 0  which (from pre-

multiplying by [0 𝐼]𝑍∙ଵΛଵଵ
ିଵ𝑄ଵ∙) implies ൫𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൯𝑣 = 0. Thus, a sufficient condition for 

feasibility is that: 

ker𝑄ଶ∙Ψ ∩ ker𝑀ఌ,௧ିଵ ⊆ ker𝑄ଶ∙Ψ ∩ ker𝑀ఌ,௧ିଵ ∩ kerΨ = kerΨ ∩ ker𝑀ఌ,௧ିଵ. 

Consequently, a sufficient condition for feasibility for any 𝑀ఌ,௧ିଵ is that: 

ker𝑄ଶ∙Ψ = kerΨ. 

This states that if there is some linear combination of shocks which does not appear in the 
transversality-violating block, then that same linear combination does not appear anywhere in the 
model. This reveals that it is deviations from the saddle path that enable agents to back out the 
values of shocks. 

We now turn to the general case in which we do not assume that Ρ = 0 or that 𝑠௧ is observed even 
with a lag. Our first claim is that (7.7) is a necessary condition for the existence of a FREE. 
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Suppose for a contradiction that (7.7) does not hold, but that: 

𝔼௧𝑥௧ାଵ = ℛ௧ିଵ𝑥௧ + 𝒮௧ିଵ𝜁௧ + other  terms  known  at  𝑡 − 1, 

so the expectation can be formed without knowing the value of 𝜀௧. Since ker 𝑆Σఌ ∩ ker𝑀ఌ,௧ିଵ ⊈
ker൫𝑇௦,ଶ + 𝑇ఌ,௧ିଵ,ଶ൯, there must exist some 𝓋 ≠ 0 such that 𝑆Σఌ𝓋 = 𝑀ఌ,௧ିଵ𝓋 = 0, but ൫𝑇௦,ଶΣఌ +
𝑇ఌ,௧ିଵ,ଶ൯𝓋 ≠ 0. 

Then from (7.6) and the fact that 𝜁௧  is uncorrelated with 𝜀௧ , Cov௧ିଵ(ℛ௧ିଵ𝑥௧, 𝓋𝓋ு𝜀௧|𝑠௧ିଵ) =
Cov௧ିଵ(𝔼௧𝑥௧ାଵ, 𝓋𝓋ு𝜀௧|𝑠௧ିଵ) = ൫𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൯𝔼௧ିଵ𝜀௧𝜀௧ு𝓋𝓋ு = ൫𝑇௦,ଶΣఌ + 𝑇ఌ,ଶ൯𝓋𝓋ு ≠ 0 . 
Hence, by our assumption: 

0 ≠ Cov௧ିଵ(ℛ௧ିଵ𝑥௧, 𝓋𝓋ு𝜀௧|𝑠௧ିଵ) = Cov௧ିଵ(ℛ௧ିଵ(𝜂௧ + 𝔼௧ିଵ𝑥௧),𝓋𝓋ு𝜀௧|𝑠௧ିଵ) 

= 𝔼௧ିଵ ℛ௧ିଵ𝜂௧𝜀௧ு𝓋𝓋ு = ℛ௧ିଵ 𝔼௧ିଵ 𝑉 𝐷ଵଵ
ିଵ𝑈∙ଵ

ுΩଶଶ𝑆Σఌ
𝑀ఌ,௧ିଵ

൨ 𝜀௧ + 𝑉 
0

𝑀,௧ିଵ
൨ 𝜁௧൨ 𝜀௧ு𝓋𝓋ு = 0 

(using equation (7.4)), as 𝑆Σఌ𝓋 = 𝑀ఌ,௧ିଵ𝓋 = 0 and 𝜁௧  is uncorrelated with 𝜀௧ . This gives the 
required contradiction. 

Finally, we show that (7.7) and ker 𝑇௦,ଶ = {0} are jointly sufficient. First note that if ker 𝑇௦,ଶ = {0}, 
then 𝑇௦,ଶା 𝑇௦,ଶ = 𝐼. Then, from substituting 𝔼௧ିଵ𝑥௧ out of the top line of (7.6), using the definition of 
𝜂௧, subtracting 𝑇௦,ଶΡ𝑇௦,ଶା  times  the  equation’s  lag, then using again the definition of 𝜂௧: 

𝔼௧𝑥௧ାଵ = ൣ𝑇 ଵ,ଶଶ + 𝑇௦,ଶΡ𝑇௦,ଶା ൧𝑥௧ + ൣ𝑇 ଵ,ଶଵ − 𝑇௦,ଶΡ𝑇௦,ଶା 𝑇 ଵ,ଶଶ൧𝑥௧ିଵ − 𝑇௦,ଶΡ𝑇௦,ଶା 𝑇 ଵ,ଶଵ𝑥௧ିଶ
+ ൣ𝐼 − 𝑇௦,ଶΡ𝑇௦,ଶା ൧𝑇ఓ,ଶ + 𝑇௦,ଶΣఌ𝜀௧ + ൣ𝑇ఎ,ଶ − 𝑇 ଵ,ଶଶ − 𝑇௦,ଶΡ𝑇௦,ଶା ൧𝜂௧
− 𝑇௦,ଶΡ𝑇௦,ଶା ൣ𝑇ఎ,ଶ − 𝑇 ଵ,ଶଶ൧𝜂௧ିଵ, 

or equivalently (again by the definition of 𝜂௧): 

𝔼௧𝑥௧ାଵ = 𝑇ఎ,ଶ𝑥௧ + ൣ𝑇 ଵ,ଶଵ − 𝑇௦,ଶΡ𝑇௦,ଶା 𝑇ఎ,ଶ൧𝑥௧ିଵ − 𝑇௦,ଶΡ𝑇௦,ଶା 𝑇 ଵ,ଶଵ𝑥௧ିଶ + ൣ𝐼 − 𝑇௦,ଶΡ𝑇௦,ଶା ൧𝑇ఓ,ଶ
+ ൣ𝑇 ଵ,ଶଶ + 𝑇௦,ଶΡ𝑇௦,ଶା − 𝑇ఎ,ଶ൧𝔼௧ିଵ𝑥௧ + 𝑇௦,ଶΡ𝑇௦,ଶା ൣ𝑇ఎ,ଶ − 𝑇 ଵ,ଶଶ൧𝔼௧ିଶ𝑥௧ିଵ + 𝑇௦,ଶΣఌ𝜀௧. 

Hence, since 𝑉∙ଶு𝜂௧ = 𝑀ఌ,௧ିଵ𝜀௧ + 𝑀,௧ିଵ𝜁௧: 

𝔼௧𝑥௧ାଵ = ൣ𝑇 ଵ,ଶଵ − 𝑇௦,ଶΡ𝑇௦,ଶା 𝑇ఎ,ଶ൧𝑥௧ିଵ − 𝑇௦,ଶΡ𝑇௦,ଶା 𝑇 ଵ,ଶଵ𝑥௧ିଶ + ൣ𝐼 − 𝑇௦,ଶΡ𝑇௦,ଶା ൧𝑇ఓ,ଶ
+ ൣ𝑇 ଵ,ଶଶ + 𝑇௦,ଶΡ𝑇௦,ଶା − 𝑇ఎ,ଶ൧𝔼௧ିଵ𝑥௧ + 𝑇௦,ଶΡ𝑇௦,ଶା ൣ𝑇ఎ,ଶ − 𝑇 ଵ,ଶଶ൧𝔼௧ିଶ𝑥௧ିଵ
+ ൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧𝜀௧ + 𝑇,௧ିଵ,ଶ𝜁௧. 

By (7.7) then we have the FREE solution: 

𝔼௧𝑥௧ାଵ = ൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧ 
𝑆Σఌ

𝑀ఌ,௧ିଵ
൨
ା
Ωଶଶ

ିଵ𝑈∙ଵ𝐷ଵଵ 0
0 𝐼

൨ 𝑉ு𝑥௧ + ൣ𝑇 ଵ,ଶଵ − 𝑇௦,ଶΡ𝑇௦,ଶା 𝑇ఎ,ଶ൧𝑥௧ିଵ 

−𝑇௦,ଶΡ𝑇௦,ଶା 𝑇 ଵ,ଶଵ𝑥௧ିଶ + ൣ𝐼 − 𝑇௦,ଶΡ𝑇௦,ଶା ൧𝑇ఓ,ଶ 

+ ቈ𝑇 ଵ,ଶଶ + 𝑇௦,ଶΡ𝑇௦,ଶା − 𝑇ఎ,ଶ − ൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧ 
𝑆Σఌ

𝑀ఌ,௧ିଵ
൨
ା
Ωଶଶ

ିଵ𝑈∙ଵ𝐷ଵଵ 0
0 𝐼

൨ 𝑉ு 𝔼௧ିଵ𝑥௧ 

+𝑇௦,ଶΡ𝑇௦,ଶା ൣ𝑇ఎ,ଶ − 𝑇 ଵ,ଶଶ൧𝔼௧ିଶ𝑥௧ିଵ + 𝑇,௧ିଵ,ଶ − ൣ𝑇௦,ଶΣఌ + 𝑇ఌ,௧ିଵ,ଶ൧ 
𝑆Σఌ

𝑀ఌ,௧ିଵ
൨
ା


0
𝑀,௧ିଵ

൨൩ 𝜁௧, 

which establishes the result. 
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A final remark is that the condition (7.7) holds if and only if: 

ker 𝑆Σఌ ∩ ker𝑀ఌ,௧ିଵ ⊆ ker 𝑇௦,ଶΣఌ 

by the definition of 𝑇ఌ,௧ିଵ,ଶ. Under determinacy, this in turn holds if and only if ker 𝑆 ⊆ ker 𝑇௦,ଶ. 

7.2. E-stability analysis 

Following Marcet and Sargent (1989) and Evans and Honkapohja (2001), we calculate the 
eigenvalues of the Jacobian of the mapping from the PLM (3.1) to the actual law of motion (ALM) 
(2.3). This mapping takes the form: 

𝑇

⎣
⎢
⎢
⎢
⎢
⎡
𝑎ଵ
𝑎ଶ
𝑎ଷ
𝑏
𝑐
𝑑ଵᇱ ⎦
⎥
⎥
⎥
⎥
⎤

=
1

1 − 𝛽𝑎ଵ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛼 + 𝜌 + 𝛽(𝑎ଶ + (𝑏 − 𝜌)𝑎ଵ)
𝛽(𝑎ଷ + (𝑏 − 𝜌)𝑎ଶ) − 𝛼𝜌

𝛽(𝑏 − 𝜌)𝑎ଷ
𝛽(𝑏 − 𝜌)𝑏

(1 − 𝜌)𝛾 + 𝛽𝑐(1 + 𝑏 − 𝜌)
𝛽(𝑏 − 𝜌)𝑑ଵᇱ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 

since: 

(1 − 𝛽𝑎ଵ)𝑥௧ାଵ
= ൫𝛼 + 𝜌 + 𝛽(𝑎ଶ + (𝑏 − 𝜌)𝑎ଵ)൯𝑥௧ + (𝛽(𝑎ଷ + (𝑏 − 𝜌)𝑎ଶ) − 𝛼𝜌)𝑥௧ିଵ
+ 𝛽(𝑏 − 𝜌)𝑎ଷ𝑥௧ିଶ + 𝛽(𝑏 − 𝜌)𝑏𝔼௧ିଵ𝑥௧ + ൫(1 − 𝜌)𝛾 + 𝛽𝑐(1 + 𝑏 − 𝜌)൯
+ 𝛽(𝑏 − 𝜌)𝑑ଵ𝜁௧ + 𝜎𝜀௧ାଵ + 𝛽𝑑ଵ𝜁௧ାଵ. 

The set of fixed points of 𝑇 comprises three discrete islands, two of which are single points with 

𝑎ଷ = 𝑏 = 𝑑ଵ = 0 (i.e. the MSV solutions). These only exist when 𝛼𝛽 ≤ ଵ
ସ
. The third island is of 

dimension 1 + dim 𝜁௧ , capturing the degrees of freedom under indeterminacy. 

If we define 𝒻 ≔ ඥmax{0,1 − 4𝛼𝛽}, then the real-parts of the eigenvalues in the three cases are: 

 For the two MSV solutions, indexed by 𝜆 ∈ ቄଵ±𝒻
ଶఉ

ቅ (and assuming 𝛼𝛽 ≤ ଵ
ସ
): 

0,
𝛽(1 − 𝜌)

1 − 𝛽(𝜌 + 𝜆)
,

𝛽൫𝛼 − 𝜌(1 − 𝛽𝜌)൯

൫1 − 𝛽(𝜌 + 𝜆)൯
ଶ , −

𝛽𝜌
1 − 𝛽(𝜌 + 𝜆)

 

 For the sunspot solution (where 𝑏 is a free parameter): 

1, −
𝑏

𝜌 − 𝑏
, 1 −

1
𝜌 − 𝑏

, 1 −
|𝜌 − 𝑏| ± (𝜌 − 𝑏)𝒻
2𝛽|𝜌 − 𝑏|(𝜌 − 𝑏)

. 

By the results of Evans and Honkapohja (2001) least squares learning will not converge if any of the 
eigenvalues’   real   parts   are   greater   than   one.   These are similar to, but not identical to, the 
conditions Evans and Honkapohja (2001), derive for the MSV PLM in their proposition 8.3, under 
the assumption that the shock is observable. 

For convergence in the sunspot case, we at last need the following conditions to hold: 𝑏 ≤ 𝜌, 0 ≤
𝜌, 0 ≤ 𝛼, 0 < 𝛽. Providing these conditions hold, the 𝑇 map will not have any eigenvalues with real 
parts greater than one, and those eigenvalues for which the real part equals one will have zero 
complex parts (a further necessary condition for convergence, without this there may be stable 
cycles under learning). Note that these parameter restrictions include the most economically 
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relevant case from our motivating example of the Taylor rule, where we would expect 0 ≤ 𝜌 < 1, 
𝛼 = 0 and 𝛽 > 0. However, they also includes many explosive regions (when 𝛼 is large), and 

regions exhibiting stable cycles in which 𝜌 is fully identified (i.e. 𝛼𝛽 > ଵ
ସ
, which requires large 𝛽). 

Define 𝜙 ≔ [𝑎ଵ 𝑎ଶ 𝑎ଷ 𝑏 𝑐 𝑑ଵ]ᇱ . The system is weakly e-stable at the solution 

ቂଵఉ + ൫𝜌 − 𝑏෨൯ − ఈାఘ
ఉ

ఈఘ
ఉ

𝑏෨ − ఊ(ଵିఘ)
ఉ

𝑑ሚቃ
ᇱ
 for fixed 𝑏෨  and 𝑑ሚ  if and only if the differential 

equation �̇� = 𝑇𝜙 − 𝜙 is locally stable at this solution, where the dot denotes a derivative with 
respect  to  “virtual-time”  𝜏. 

Defining: 

𝜓 ≔

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜙 −

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
𝛽
+ ൫𝜌 − 𝑏෨൯

−
𝛼 + 𝜌
𝛽

𝛼𝜌
𝛽
𝑏෨

−
𝛾(1 − 𝜌)

𝛽
𝑑ሚᇱ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑎ଵ −

1
𝛽
− (𝜌 − 𝑏)

𝑎ଶ +
𝛼 + 𝜌
𝛽

𝑎ଷ −
𝛼𝜌
𝛽

𝑏 − 𝑏෨

𝑐 +
𝛾(1 − 𝜌)

𝛽
𝑑ଵᇱ − 𝑑ሚᇱ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

we then have that: 

�̇� = −
1

𝜓ଵ − 𝜓ସ + ൫𝜌 − 𝑏෨൯

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜓ଶ + 𝜓ଵ ൬𝜓ଵ +

1
𝛽
+ 𝜌൰

𝜓ଷ + 𝜓ଵ ൬𝜓ଶ −
𝛼 + 𝜌
𝛽

൰

𝜓ଵ ൬𝜓ଷ +
𝛼𝜌
𝛽
൰

𝜓ଵ൫𝜓ସ + 𝑏෨൯

𝜓ହ + 𝜓ଵ ቆ𝜓ହ −
𝛾(1 − 𝜌)

𝛽
ቇ

𝜓ଵ൫𝜓 + 𝑑ሚᇱ൯ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

Combining the third and fourth equations then gives that: 

𝜓ସ(𝜏) + 𝑏෨

𝜓ଷ(𝜏) +
ఈఘ
ఉ

=
𝜓ସ(0) + 𝑏෨

𝜓ଷ(0) +
ఈఘ
ఉ

=
𝑏(0)
𝑎ଷ(0)

. 

Using this equation, we can substitute 𝜓ସ out of the above differential equation. We can also ignore 
the final equation since it is the only one containing 𝜓, meaning that if the other components 
converge to something, so will 𝜓 . The resulting four-equation system has real eigenvalues 
components: 

𝛽
𝐶𝛼 − 𝛽

,
𝛽

𝜌(𝐶𝛼 − 𝛽)
,

1 ± ඥmax{0,1 − 4𝛼𝛽}
2𝜌(𝐶𝛼 − 𝛽)
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when evaluated at the (zero) steady-state, where 𝐶 ≔ ()
య()

. Given the necessary conditions already 

derived (𝑏෨ ≤ 𝜌, 0 ≤ 𝜌, 0 ≤ 𝛼 and 0 < 𝛽), for these real eigenvalues components to be strictly 
negative, we require that 𝛼𝐶 − 𝛽 ≤ 0. However, since we only require local convergence, we may 

assume that 𝑏 and 𝑎ଷ begin close enough to their steady state for us to have 𝐶 = ఉ෨

ఈఘ
+ 𝛽𝜖 for some 

𝜖, small in magnitude. Then 𝛼𝐶 − 𝛽 ≤ 0 if and only if 𝑏෨ ≤ 𝜌(1 − 𝛼𝜖). We can always find an 𝜖 for 
which this holds (i.e. start sufficiently close to the solution) providing 𝑏෨ < 𝜌 or 𝛼 = 0 and 𝑏෨ ≤ 𝜌. 

We now turn to the second PLM, (3.2). Since the two PLMs only differ in a term that is unknown at 
𝑡, period 𝑡 expectations of 𝑥௧ାଵ are identical under both PLMs, meaning that the 𝑇-map is just as 

before, but with one extra component, taking 𝑑ᇱ  to ఉ
ଵିఉభ

𝑑ଵᇱ . Consequently, a solution is weakly 

(strongly) e-stable under the PLM (3.2) if and only if it is weakly (strongly) e-stable under the PLM 
(3.1).30 

                                                      

30 This follows from integrating the corresponding differential equation, to give 𝑑(𝜏) = 𝑒ିఛ ∫ ఉ
ଵିఉభ(௧)

𝑑ଵ(𝑡)𝑒௧ 𝑑𝑡
ఛ
 +

𝑑(0)𝑒ିఛ. Hence as 𝜏 → ∞, 𝑑(𝜏) → lim௧→ஶ
ఉ

ଵିఉభ(௧)
𝑑ଵ(𝑡). 


