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Abstract 
This paper examines observational equivalence in a class of nonparametric structural 

equations models under weaker conditions than those currently available in the literature. It allows for 

several endogenous variables, does not impose differentiability or continuity of the equations which 

are part of the structure, and allows the unobserved errors to depend on the exogenous variables. The 

usefulness of the main result is illustrated by deriving observational equivalence conditions for some 

models including nonparametric simultaneous equations models, additive errors models, multivariate 

triangular models, etc.. Some of these yield well known results as special cases. 
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1. Introduction 
A fundamental concern for econometricians has been the possibility that some features of 

interest of a model may not be identified (see among others the excellent reviews of Hsiao (1983) and 

Matzkin (2007), and references therein). For a long time, great effort was devoted to understanding 

the conditions under which the coefficients of a system of linear simultaneous equations are identified 

(e.g. Hsiao (1983)). However, more recently, the interest has shifted to non-linear and non-parametric 

models. The study of the latter is considerably more difficult than that of a system of linear equations 

especially when the error terms do not appear in the models in an additive form. Seminal 

contributions include work by Brown (1983) and Roehrig (1988) which has been recently critically 

re-examined by Benkard and Berry (2006) and revisited by Matzkin (2008). See also Chesher (2003), 

Chernozhukov and Hansen (2005), Chernozhukov, Imbens and Newey (2007), Hoderlein and 

Mammen (2007), Matzkin (2008) and Imbens and Newey (2009)). Matzkin (2007) provides an 

excellent survey of existing results. 

The classical approach to determine the identification of a feature of interest of a model is 

based on two steps. Firstly, a class of alternative models that produce the same distribution of the 

observed variables - and are thus observationally equivalent - is identified. Secondly, the researcher 

checks whether the feature of interest varies within the set of observationally equivalent models. If it 

does not change, the feature is identified, otherwise it is not. Methods used to establish identification 

are very varied and involve for example the conditional quantile approach (e.g. Chesher (2003), 

Matzkin (2003)), the control function approach (e.g. Imbens and Newey (2009)) as well as more 

direct approaches such as that of Matzkin (2008), (2010) and Berry and Haile (2013).   

This paper derives a necessary and sufficient condition for the observational equivalence of 

two structures in a class of models introduced by Matzkin (2008) and further studied by Matzkin 

(2010) and Berry and Haile (2013). The strategy used in these papers has been to relate the 

conditional density of the endogenous variables conditional on the exogenous variables to the 

unobservable errors through a change of variable argument. This relationship is then used to 

understand what aspects of the model are identified.  

This paper uses a different approach which exploits fundamental relationships between 

measurable functions expressed by the factorization lemma. Our conditions are weaker than those 

currently available in the literature because we allow for several endogenous variables, do not impose 

differentiability or continuity of the equations which are part of the structure, and allow the 

unobserved errors to depend on the exogenous variables. We illustrate the main result deriving 

observational equivalence conditions for some classes of models including nonparametric 

simultaneous equations models, additive models, multivariate triangular models, etc.. Some of them 

yield well known results as special cases but under weaker conditions. 
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The rest of this paper is organized as follows. Section 2 defines the set-up and derives the 

main result. Section 3 considers some special cases where the equations which are part of the structure 

are differentiable, and Section 4 concludes. 

 

2. Model and main result 
Suppose that an observable n  dimensional continuous random vector y  depends on an 

observable k  dimensional random vector z  and an unobservable n  dimensional continuous random 

vector u  through a relationship of the form (e.g. Matzkin (2008), (2010) and Berry and Haile (2013)) 

(1) � �,z y uK  , 

where : k n nK u o  and u  has probability distribution |u zP  with respect to the Borel sigma-

algebra � �n n . Notice that the function K  can be defined on a subset of k nu  to a subset of 

n  but to keep the notation as simple as possible we will not make this explicit. For each kz� , we 

regard K  as a /n n  measurable map from the measurable space � �,n n  to � �,n n  where the 

sigma-algebra n  is such that nY �  if � �, nz YK � . We define the structure for y  as the pair 

� �|, u zS PK , and for each nY � , � � � �� �| , | ,y z S u zP Y P z YK  a.e. in z . Notice that the dimension of the 

unobservable random variable u  is the same as the dimension of y .  

If the function � � : n n
z yK o  where � � � �,z y z yK K  is invertible,  it  is  possible  to  “solve”  

for y  in (1) and obtain the reduced form � �,y m z u  (e.g. Matzkin (2003)). Although we do not 

make use of this assumption, it is important to notice that it allows models of the form � �,y m z u  to 

be written as in equation (1). This is the case for the models studied by Chernozhukov and Hansen 

(2005), Chernozhukov, Imbens and Newey (2007) and Matzkin (2003). Other structures described by 

stochastic equations having the same form as equation (1) are: linear models and the additive error 

models of Newey, Powell and Vella (1999) and Newey and Powell (2003), some demand and supply 

models (e.g. Matzkin (2008)), models of differentiated product markets (e.g. Berry and Haile (2013)) 

and models of production functions in the presence of unobserved shocks to the marginal product of 

each input (e.g. Berry and Haile (2013)). 

Notice that we allow the distribution of u  to depend on z . One could argue that if this is the 

case, it may be possible to find another random variable H  - in general not necessarily of dimension 

n  - having a distribution which does not depend on z  such that � �,u s z H  (e.g. Matzkin (2003)). 

However, in order to write the model as in equation (1) – with the observable endogenous and 

exogenous variables on the left-hand side and the unobserved errors H  on the right-hand side of (1) - 
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one would need ': n n
zs o  where � � � �,zs s zH H  to be invertible, and this is not the case in 

general. Therefore, we will not impose this invertibility assumption in our main result. Notice, 

however, that the model considered allows u  to satisfy � �,u s z H  where the dimension of H  may 

even be larger than that of y . This case is also of interest (c.f. Theorem 3 of Matzkin (2003)).  

We now investigate the existence of another structure � �*
* *

|
,

u z
S PK  which is observationally 

equivalent to � �|, u zS PK  in the sense that � � � �*| , | ,y z S y z S
P Y P Y  for all nY�  a.e. in z . Notice that 

we need the map * : n k nK u o  from � �,n n  to � �*,n n  to be */n n  measurable so that 

nY�  if � �* *, nz YK � . In this case � �*n n  is the Borel sigma-algebra on n . The random 

variable *u  is defined by � �* *,z y uK  . In this notation we have also � � � �� �* *
*

| , |
P ,

y z S u z
P Y z YK . 

Let � �* ,i z yK  denote the i -th component of � �* ,z yK . The following Diagram 1 illustrates the 

relationship between the quantities described above. 

 

 

� �
� �

� �

� �

� �

* ,
*, ,

,

,

i z y
n n

n n

z y

K

K p

o

 

Diagram 1 

  

 

The function � �* ,z yK  must be */n n  measurable for every z . It follows from the Factorization 

Lemma (e.g. Lemma 2.1 of Lehmann (1997)) that the i-th component of � �* ,z yK , � �* ,i z yK , is 

*/n  measurable if and only if there is a */n  measurable function if  such that 

� � � �� �* , ,i iz y f z yK K . Thus, we can complete Diagram 1 above. 
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Diagram 2 

 

Repeating this argument for all components of � �* ,z yK , and noticing that for each z , � �* ,z yK  is a 

map between two Euclidean spaces, we can conclude that */n n  - measurability of � �* ,z yK  

implies the existence of a */n n -measurable transformation f  such that � � � �� �* , ,z y f z yK K  

(e.g. Exercise 7.5 of Schilling (2005)), or equivalently � �*u f u . 

Now, suppose that there is a */n n  measurable function f  such that 

� � � �� �* , ,z y f z yK K . Then, 

 

� � � �� �
� �� �� �

� �� �
� �

* *

*

*
| , |

|

|

| ,

P ,             by definition

P ,        by assumption

P ,                by measurability of the function 

                      by definition

y z S u z

u z

u z

y z S

P Y z Y

f z Y

z Y f

P Y

K

K

K

 

 

 

 

  

and the structures � �|, u zS PK  and � �*
* *

|
,

u z
S PK  are observationally equivalent.  

Notice that the argument above shows that the structure � �*
* *

|
,

u z
S PK  is observationally 

equivalent to the structure � �|, u zS PK  if and only if there is a */n n -measurable transformation f  

such that � � � �� �* , ,z y f z yK K . However, one can reverse the argument and conclude that the 

structure � �|, u zS PK  is observationally equivalent to the structure � �*
* *

|
,

u z
S PK  if and only if there 

is a * /n n -measurable transformation g  such that � � � �� �*, ,z y g z yK K . Thus, the function f  is 

invertible with inverse 1f g�  , so that f  is a bijection. 

 

We can summarize the above result as follows: 
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Theorem 1. A necessary and sufficient condition for the existence of a structure � �*
* *

|
,

u z
S PK , 

where � �* ,z yK  is */n n  measurable for every z , which is observationally equivalent to 

� �|, u zS PK , is the existence of a */n n -measurable transformation f  such that 

� � � �� �* , ,z y f z yK K . Moreover, the function f  is bijective. 

 

Notice that our result depends only on the measurability of the functions K  and *K . One can certainly 

restrict the class of observationally equivalent models by imposing extra conditions on them: for 

example, K  and *K  could be taken to be differentiable. One could also impose restrictions on the 

distribution of the errors. For example, Matzkin (2003) and (2008) requires it not to depend on z . 

Newey, Powell and Vella (1999) and Newey and Powell (2003) impose moment conditions on the 

errors. These restrict the models allowed and thus facilitate the study of identification, however, 

Theorem 1 suggests that these are in fact not necessary. Theorem 1 also suggests that the assumptions 

on the error terms u  are not as relevant as one may expect in establishing identification. This is due to 

the fact that u  is essentially defined by � �,u z yK . 

Lemma 1 of Matzkin (2003) is the closest result to Theorem 1 available in the literature. This 

applies to the case where 1n   with K  being continuous and u  having a continuous distribution with 

strictly increasing probability distribution. These assumptions imply that the function f  is continuous 

and strictly increasing (and thus bijective). Our Theorem 1 shows that Lemma 1 of Matzkin (2003) 

essentially holds even if K  is not continuous and u  has an arbitrary continuous distribution. 

Results for the multivariate case are given by Matzkin (2008) assuming, among other things, 

that the function K  is twice continuously differentiable and u  has a continuous distribution 

independent of z , with a density function which is continuously differentiable and has support on 
n . Matzkin (2008) shows that observational equivalence between two structures is equivalent to 

requiring independence between z  and u . By examining the derivation of this result by Matzkin 

(2008) one may be led to think that this result depends on the assumptions of differentiability of the 

various functions involved. However, it is possible to establish a link between observational 

equivalence and independence of u  and z  in a more general context. Suppose that |u z uP P  (an 

assumption used by Matzkin (2008)), and consider a structure � �, uS PK . According to Theorem 1, if 

there is a structure � �*
* *

|
,

u z
S PK  which is observationally equivalent to � �, uS PK , there must exist 

a */n n -measurable transformation f  such that � � � �� �* , ,z y f z yK K . This is equivalent to stating 

that � �*u f u . Since neither f  nor the distribution of u  depend on z , we must have * *|u z u
P P . 

Thus, we obtain the following result. 
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Corollary 1. If the structure � �*
* *

|
,

u z
S PK   is observationally equivalent to the structure � �, uS PK , 

then * *|u z u
P P . 

 

This result generalizes the “necessary” part of Theorem 3.2 of Matzkin (2008). To recover the 

“sufficiency” in the result of Matzkin (2008) one has to introduce stronger assumptions on the 

variables involved to essentially make sure that for u  and *u  one can write � �*u f u . This is 

certainly the case if these random vectors have continuous distributions. 

Finally, Theorem 1, allows us to generate all structures observationally equivalent to 

� �|, u zS PK . To do this we need to consider all bijective measurable funtions f  from a suitable 

subset of k nu  to a suitable subset of n . Then the class of structures observationally equivalent 

to � �|, u zS PK  is � �� �|,f f u zS f PK  where  denotes function composition. Moreover, every 

functional of K  which is unchanged by the transformation fK Ko  is uniquely determined in the 

whole class of observationally equivalent models, and thus it is identified. 

 

3. Applications 
Here are examples illustrating how Theorem 1 can be used to obtain identification conditions 

for models of practical interest. For all these applications the distribution of the errors does not play 

any major role. 

 

3.1. Simultaneous equations model 

The first application is the simultaneous equations model for which the functions � �,z yK  and 

� �* ,z yK  are differentiable. Since from Theorem 1, the structures � �|, u zS PK  and � �*
* *

|
,

u z
S PK  are 

observationally equivalent if and only if � � � �� �* , ,z y f z yK K , f  must also be differentiable. 

Differentiating both sides we have  

(3) � �
� �

� � � �
� �

� �
� �

*
,

, ,z x zx z y
n k n kn n

D z y D f x D z y
K

K K
 

u uu

   

and 

(4) � �
� �

� � � �
� �

� �
� �

*
,

, ,y x yx z y
n n n nn n

D z y D f x D z y
K

K K
 

u uu

 .  
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Assuming � �� �,yrank D z y nK   and � �� �* ,yrank D z y nK   , we can write  

(5) � �� � � � � �� � � �1 1* *, , , ,y z y zD z y D z y D z y D z yK K K K
� �

 .  

Using the implicit function theorem we can concluded (5) equals � �zD y z�  which is the same for the 

two observationally equivalent structures and is thus identified. 

If 1n k  , the structures above reduce to that considered by Matzkin (2008) in Section 5.1. 

In this case, equation (5) simplifies to 

 

� �

� �

� �

� �

*

*

, ,

,,

z y z y
z z

z yz y
yy

K K

KK

w w
w w 

ww
ww

, 

which is the same condition for observational equivalence obtained by Matzkin (2008) (see her 

equation (5.1)) and for the identification of � �dy z
dz

.  

 

3.2. Additive errors models  

Newey, Powell and Vella (1999) have considered the identification of the following triangular system 

of equations � �1 2 1 1,y m y z u�    and � �2 1 2 2,y z z uS�   where 1
2

ny �� , 1
1

kz �   and  2
2

kz � . 

Consider another structure for which � �* *
1 2 1 1,y m y z u�    and � �* *

2 1 2 2,y z z uS�   which is 

observationally equivalent to the previous one. We can assume all functions are differentiable. From 

Theorem 1,  

(6) � � � � � �� �*
1 2 1 1 1 2 1 2 1 2, , , ,y m y z f y m y z y z zS�  � � , 

and  

(7) � � � � � �� �*
2 1 2 2 1 2 1 2 1 2, , , ,y z z f y m y z y z zS S�  � � .  

 

Differentiating (6) with respect to 2z  one has 

 � �� �
� �

� �

� �
� �

2
2 1 2

2

1 1 2 1 1 2,
11 1

, , , 0x zx y z z
n kn

D f y m y z x D z z
S

S
 �

� uu �

�   , 
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where the dimensions are indicated in brackets. If � �� �2 1 2, 1zrank D z z nS  � , then 

� �� �
� �2 1 2

1 1 2 1 ,
, , 0x x y z z

D f y m y z x
S �

�  . Similarly, differentiating (7) with respect to 1y , 

� �� �
� �

� �
1 2 1

2 2 1 2 ,
1 1

, , 0y y y m y z
n

D f y y z zS
 �

� u

�  . Thus (6) and (7) can be written as:  

(8) � � � �� �*
1 2 1 1 1 2 1, ,y m y z f y m y z�  �   

and 

(9) � � � �� �*
2 1 2 2 2 1 2, ,y z z f y z zS S�  � .  

Differentiating the first equation with respect to 1y   we find that the derivative is one, so that 1f   has 

the form � �1 constantf x x � , from which it follows that � � � �*
2 1 2 1, , costantm y z m y z � . 

Differentiating (7) with respect to 2y , one finds that � �2 vector of constantsf x x �  so that 

� � � �*
1 2 1 2, , vector of constantsz z z zS S � . Thus, m  and S  are identified up to additive constants 

(e.g. Theorem 2.3 of Newey, Powell and Vella (1999) and Theorem 4.5 of Matzkin (2007)). 

 

3.3. Triangular models  

We now consider a triangular system of equations of the form � �1 1 2 1 1, ,y y z uK   and 

� �2 2 1 2 2, ,y z z uK   where 1y � , 1
2

ny �� , 1
1

kz �  and 2
2

kz � . To find an observationally 

equivalent structure we consider � � � � � �� �*
1 1 2 1 1 1 1 2 1 2 2 1 2, , , , , , ,y y z f y y z y z zK K K  and 

� � � � � �� �*
2 2 1 2 2 1 1 2 1 2 2 1 2, , , , , , ,y z z f y y z y z zK K K . Once again we assume differentiability of all 

functions involved. Notice that if 2n  , 1 0k   and 2 1k  , this reduces to the model considered by 

Matzkin (2008) in Section 5.2: � �1 1 2 1,y y uK   and � �2 2 2,y z uK   where 1 2 1 2, , , ,y y z u u � . 

Since � �*
1 1 2 2, ,y y zK  does not depend on 2z , 

� � � �� � � �� �
� �

� �
2 2

2 2 1 2
1 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2, ,

, , , , , , , , , , 0z x zx y z z
D f y y z y z z D f y y z x D y z z

K
K K K K

 
  .  

If � �� �2 2 2 1 2 2, , 1zrank D y z z n kK  � d  , then one must have � �� �
� �2 2 1 2

1 1 2 1 , ,
, , , 0x x y z z

D f y y z x
K

K
 

  so that 

� � � �� �*
1 1 2 1 1 1 1 2 1, , , ,y y z f y y zK K . Using a similar argument 

 � � � �� �
� �

� �
1

1 1 2

1 1 2 1*
2 2 1 2 2 2 2 1 2 ,

1

, ,
, , , , , 0y x x y y

y y z
D y z z D f x y z z

yK

K
K K

 

w
  

w
. 
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Assuming � �1 1 2 1

1

, ,
0

y y z
y

Kw
z

w
, � �

1

*
2 2 1 2, ,yD y z zK  is a multiple of � �� �

� �1 1 2 1
2 2 2 1 2 , ,

, , ,x x y y z
D f x y z z

K
K

 
,  

which must therefore be zero. Thus, � � � �� �*
2 2 1 2 2 2 2 1 2, , , ,y z z f y z zK K . Differentiating the first 

equation we have  

 

� � � � � �

� � � � � �

� � � � � �

2 2

1 1

*
1 1 2 1 1 1 1 1 2 1

1 1 1

1 1*
1 1 2 1 1 1 2 1

1

1 1*
1 1 2 1 1 1 2 1

1

, , , ,

, , , ,

, , , , .

y y

z z

y y z f y y z
y y

f
D y y z D y y z

f
D y y z D y y z

K K K
K
K

K K
K
K

K K
K

w w w
 

w w w

w
 

w

w
 

w

 

Assuming that � �1 1 2 1

1

, ,
0

y y z
y

Kw
z

w
, it follows that  

 

� �

� �

� � � �

� �

� �

� � � �

2 2

1 1

*
1 1 2 1

* 1
1 1 2 1 1 1 2 1

1 1 2 1

1
*

1 1 2 1

* 1
1 1 2 1 1 1 2 1

1 1 2 1

1

, ,

, , , ,
, ,

, ,

, , , , .
, ,

y y

z z

y y z
yD y y z D y y z

y y z
y

y y z
yD y y z D y y z

y y z
y

K

K K
K

K

K K
K

w
w

 
w

w

w
w

 
w

w

. 

If we use the implicit function theorem for fixed z  to determine 1y  as a function of 2y  in 

� �1 1 2 1 1, ,y y z uK  , we obtain � � � � � �
2 2

1
1 1 2 1

1 2 1 1 2 1
1

, ,
, ,y y

y y z
D y y D y y z

y
K

K
�

§ w ·
 �¨ ¸w© ¹

 so that � �
2 1 2yD y y  is 

identified. This reduces to the identification condition for the ratio 

� � � �1 1 2 1 1 21

2 2 1

, ,
/

y y y yy
y y y

K K§ w · § w ·w
 �¨ ¸ ¨ ¸w w w© ¹ © ¹

 obtained by Matzkin (2008) if 2n  , 1 0k   and 2 1k  .  

Differentiating � � � �� �*
2 2 1 2 2 2 2 1 2, , , ,y z z f y z zK K  yields 

 

 

� � � � � �
� � � � � �
� � � � � �

1 2 1

2 2 2

2 2 2

*
2 2 1 2 2 2 2 2 1 2

*
2 2 1 2 2 2 2 2 1 2

*
2 2 1 2 2 2 2 2 1 2

, , , ,

, , , ,

, , , , .

z z

z z

y y

D y z z D f D y z z

D y z z D f D y z z

D y z z D f D y z z

K

K

K

K K K

K K K

K K K

 

 

 

  

If � �� � � �� �2 2

*
2 2 1 2 2 2 1 2, , , , 1y yrank D y z z rank D y z z nK K  � , we obtain 
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� �� � � � � �� � � �

� �� � � � � �� � � �
2 1 2 1

2 2 2 2

1 1* *
2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2

1 1* *
2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2

, , , , , , , ,

, , , , , , , ,

y z y z

y z y z

D y z z D y z z D y z z D y z z

D y z z D y z z D y z z D y z z

K K K K

K K K K

� �

� �

 

 
, 

Therefore, using the implicit function theorem for � �2 2 1 2 2, ,y z z uK  , we observe that � � � �
1 2 2 1 2, ,z zD y z z  

is identified. In particular, if 2n  , 1 0k   and 2 1k  , the ratio � � � �2 2 2 22

2

, ,
/

y z y zy
z z y

K K§ w · § w ·w
 �¨ ¸ ¨ ¸w w w© ¹ © ¹

 

is identified (c.f. Matzkin (2008)). 

3.4. A simultaneous equations model of Berry and Haile (2013) 

As a special case of the model considered in Section 3.1, suppose that � � � �
� �

� �
1

,
n

y z r y g zK
u

 � , ny�  

and kz�  (e.g. Berry and Haile (2013) and Section 4.2 of Matzkin (2008)). We consider an 

alternative structure of the form � � � �
� �

� �* * *

1
,

n
y z r y g zK

u

 �  All observationally equivalent structures 

must be of the form � � � � � �� �* ,y z f r y g zK  � . We assume differentiability of all functions, so that 

 
� � � � � �

� � � �
� �

� � � � � �
� � � �

� �

* *

* *

,

, .

y y yr y g z

z z zr y g z

D y z D r y D f D r y

D y z D g z D f D g z

K K

K K

K K

K K

 �

 �

  

 �  �
  

Notice that that the right hand side of the first equation depends on z  but the left hand side does not. 

Similarly, the right hand side of the second equation depends on y  but the left hand side does not. 

This means that � �
� � � �r y g z

D fK K
K

 �
 must equal a constant matrix, F  say. So 

� � � � � �� �* ,y z F r y g zK  �  and � � � �� �*r y F r y c �  and � � � �� �*g z F g z c �  where c  is a vector 

of constants. Notice that F  must be invertible to make the transformation f  bijective. Assuming that 

� �yD r y  and � �*
yD r y  are non-singular (e.g. Assumption 1 of Berry and Haile (2013)) we can write  

 � �� � � � � �� � � �1 1* *
y z y zD r y D g z D r y D g z

� �
 , 

so that � �zD y z  is identified.  

If n k  and � � � � � � � �� �1 1 2 2, ,...., n ng z g z g z g z  as in equation (9) of Berry and Haile (2013), 

then F  must be diagonal (or � �*g z  could not have the same form as � �g z ). By introducing the 

normalizations in equations (10), (11) and (12) of Berry and Haile (2013), one imposes 0c   and 

nF I  so that � � � �*r y r y  and � � � �*g z g z . Notice once again that no restrictions on the errors 

have been imposed.  
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3.5. Control function separability 

Blundel and Matzkin (2013) investigate under what conditions the structure � �, uPK   with 

� �1 2 2 1,y y uK    and � �2 2 2,y z uK   (their Model T) is observationally equivalent to a structure 

� �*
*,

u
PK  with � � � �*

1 1 2 1 1 2, ,y y y yK K  and � �* *
2 1 2 2, ,y y z uK   (their Model I). It follows immediately 

from Theorem 1 that � � � � � �� �*
2 1 2 1 1 2 2 2, , , , ,y y z f y y y zK K K . Up to this point we have no assumption 

on the functions involved apart from measurability. Now we introduce some further assumptions as 

done by Blundel and Matzkin (2013). We assume that all functions are differentiable, and  

 
� � � � � � � �* *

1 1 2 2 1 2 1 1 2 2 1 2

1 2 2 1

, , , , , ,
0, 0, 0

y y y y z y y y y z
y y y y

K K K Kw w w w
! ! �

w w w w
,  

(see the proof of Lemma 1 in Blundel and Matzkin (2013). Then,  

 
� � � �� �

� �

� �

1 1 1 2

*
1 2 22 1 2 1 1 2

1 1 1,

, ,, , ,

y y

f y zy y z y y
y y

K K

K KK K
K

 

ww w
 

w w w
. 

Multiplying both sides by � �1 1 2

2

,y y
y

Kw
w

 we obtain 

 
� � � � � �� �

� �

� � � �

1 1 1 2

*
1 2 21 1 2 2 1 2 1 1 2 1 1 2

2 1 1 1 2,

, ,, , , , ,
0

y y

f y zy y y y z y y y y
y y y y

K K

K KK K K K
K

 

ww w w w
 �

w w w w w
.  

Since � �1 1 2

1

,
0

y y
y

Kw
!

w
, it must be that  

(10) 
� �� �

� �

� �

1 1 1 2

1 2 2 1 1 2

1 2,

, , ,
0

y y

f y z y y
y

K K

K K K
K

 

w w
�

w w
. 

Now we consider 

� � � �� �
� �

� � � �� �
� �

� �

1 1 1 2 2 2 2

*
1 2 2 1 1 2 22 1 2 1 1 2 2 2

2 1 2 2 2, ,

, , , ,, , , ,
0

y y y z

f y z f y yy y z y y y z
y y y

K K K K

K K K KK K K
K K

  

w ww w w
 � !

w w w w w
, 

so that 

 
� �� �

� �

� � � �� �
� �

� �

2 2 2 1 1 1 2

1 1 2 2 1 2 22 2 1 1 2

2 2 1 2, ,

, , , ,, ,

y z y y

f y y f y zy z y y
y y

K K K K

K K K KK K
K K

  

w ww w
! �

w w w w
. 

Notice that the right hand side is positive because of (10), so that � �1 2

2

,f K K
K

w
w

 and � �2 2

2

,y z
y

Kw
w

 must 

have the same sign and Theorem 1 of Blundel and Matzkin (2013) is satisfied without imposing 

conditions on the error terms. 
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4. Conclusions 
This paper has studied necessary and sufficient conditions for two structures to be 

observationally equivalent. It has shown that observational equivalence can be established for very 

general structures defined by systems of equations that may not even be continuous. The main result 

of the paper and the applications tend to stress the importance of the system of structural equations 

over the distribution of the error terms. Some existing results have been shown to hold under much 

weaker conditions than previously thought. This suggests that others identification conditions 

available in the literature may be weakened. 
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