
 

 
 

 
 

Discussion Papers in Economics 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Department of Economics 
University of Surrey 

Guildford 
Surrey GU2 7XH, UK 

Telephone +44 (0)1483 689380 
Facsimile +44 (0)1483 689548 
Web www.econ.surrey.ac.uk 

ISSN: 1749-5075 

 
CES TECHNOLOGY AND BUSINESS CYCLE FLUCTUATIONS 

 
By  

 
Cristiano Cantore 
(University of Surrey) 

Paul Levine 
(University of Surrey) 
Joseph Pearlman 

(City University London) 
& 

Bo Yang 
(Xi’an Jiaotong-Liverpool University and 

University of Surrey)  
 

DP 04/14 
 



CES Technology and Business Cycle Fluctuations∗

Cristiano Cantore

University of Surrey

Paul Levine

University of Surrey

Joseph Pearlman

City University London

Bo Yang

Xi’an Jiaotong-Liverpool University and

University of Surrey

May 5, 2014

Abstract

This paper contributes to an emerging literature that brings the constant elastic-
ity of substitution (CES) specification of the production function into the analysis
of business cycle fluctuations. Using US data, we estimate by Bayesian methods a
medium-sized DSGE model with a CES rather than Cobb-Douglas (CD) technology.
The main empirical result is to confirm decisively the superiority of CES rather than
CD production functions in terms of model fit. We estimate a elasticity of substi-
tution of elasticity well below unity at 0.15-0.18 and in a marginal likelihood race
assuming equal prior model probabilities, CES beats the CD production decisively.
The marginal likelihood improvement is matched by the ability of the CES model to
fit the data in terms of second moments and a comparison with a DSGE-VAR further
confirms the ability of the CES model to reduce model misspecification. We find that
the CES model performance is further improved when the estimation is carried out
under the imperfect information assumption. The principle reason for our result is
that the CES specification captures movements of factor shares at the business cycle
frequency. Hence the main message for DSGE models is that we should dismiss once
and for all the use of CD for business cycle analysis.

JEL Classification: C11, C52, D24, E32.
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information, DSGE-VAR

∗An earlier version of this paper was presented at the MONFISPOL Conference, Nov 4 – 5, London
Metropolitan University. Thanks are due to participants and the discussant Peter McAdam in particular,
for valuable comments. We acknowledge financial support from the EU Framework Programme 7 and from
the ESRC, project no. RES-062-23-2451.

1



Contents

1 Introduction 1

2 The Augmented SW Model 3

2.1 Final Goods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Intermediate Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Labour Packer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Trade-Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Representation of Price-Wage Dynamics as Difference Equations . . . . . . 9

2.6 Capital Producers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 The Household Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Monetary Authority, Aggregation and Equilibrium . . . . . . . . . . . . . . 11

2.9 The Normalized CES Production Function . . . . . . . . . . . . . . . . . . . 12

2.9.1 Re-parametrization of αn and αk . . . . . . . . . . . . . . . . . . . . 14

2.9.2 The Production Function in Deviation Form . . . . . . . . . . . . . 15

2.10 Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 Shock Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Estimation 17

3.1 Bayesian Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Likelihood Comparison of Models . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Estimation under the Standard Information Assumptions . . . . . . . . . . 20

3.4 Estimation under Symmetric Imperfect Information . . . . . . . . . . . . . 22

4 Model Validation 25

4.1 Standard Moment Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Autocorrelation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 DSGE-VARs and Impulse Responses . . . . . . . . . . . . . . . . . . . . . . 29

5 Variance Decomposition of Business Cycle Fluctuations 33

6 Conclusions 35

A Expressing Summations as Difference Equations 40

B Proof of Price and Wage Dispersion Results 41

C Posterior Distribution 42

D Figures 43



1 Introduction

This paper extends the DSGE model developed by Christiano et al. (2005) and Smets and

Wouters (2007) to allow for a richer and more data coherent specification of the production

side of the economy. The idea is to enrich what has become the workhorse DSGE model

by relaxing the usual Cobb-Douglas production assumption in favour of a more general

CES function which allows for cyclical variations in factor shares, the estimation of the

capital/labour elasticity of substitution and biased technical change.

The CES production function has been used extensively in many area of economics

since the middle of the previous century (Solow (1956) and Arrow et al. (1961)). Thanks to

La Grandville (1989), who introduced the concept of normalization, it has been extensively

used in growth theory. Indeed La Grandville (1989) showed that it was possible to obtain a

perpetual growth in income per-capita, even without any technical progress. Furthermore

factor substitution and the bias in technical change feature an important role in many

other areas of economics1 but, until recently have been largely disregarded in business

cycle analysis. On the empirical side León-Ledesma et al. (2010) show that normalization

improves empirical identification.2

The concepts of biased technical change and imperfect factor substitutability between

factors of production has been introduced in business cycle analysis by Cantore et al.

(2014b). They show that the introduction of a normalized CES production function into

an otherwise standard RBC and/or NK DSGE model significantly changes the response

of hours worked to a technology shock under both price-setting mechanisms and that such

response might change as well within each model depending on the parameters related

to the production process (developing a threshold rule for the ‘impact’ of a technology

shock on hours worked). They also show how the introduction of biased technical change

and imperfect substitutability allow movement in factor shares which appear to fluctuate

at business cycle frequencies in the data but are theoretically constant under the Cobb-

1The value of the substitution elasticity has been linked to differences in international factor returns and
convergence (e.g., Klump and Preissler (2000), Mankiw (1995)); movements in income shares (Blanchard
(1997), Caballero and Hammour (1998), Jones (2003)); the effectiveness of employment creation policies
(Rowthorn (1999)), etc. The nature of technical change, on the other hand, matters for characterizing the
welfare consequences of new technologies (Marquetti (2003)); labour-market inequality and skills premia
(Acemoglu (2002)); the evolution of factor income shares (Kennedy (1964), Acemoglu (2003)) etc.

2They show that using a normalized approach permits to overcome the ’impossibility theorem’ stated
by Diamond et al. (1978) and simultaneously identify the elasticity of substitution and biased technical
change.
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Douglas specification. Indeed there is mounting evidence in the literature3 that whilst

constant factor shares might be a good approximation for growth models where the time

span considered is very long, at business cycle frequencies those shares are not constant.

This is clearly shown in Figure 1 for the US data used to estimate our model.
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Labour Share (84:1−08:2)

Figure 1: US Labour Share (Source: Department of Labor, U.S. Bureau of Labor Statis-
tics)

Furthermore Cantore et al. (2012) test empirically the model(s) developed by Can-

tore et al. (2014b) using rolling-windows Bayesian techniques in order to check if the

documented time-varying relation between hours worked, productivity and output (see

Fernald (2007) and Gaĺı and Gambetti (2009) among others) can be explained using the

threshold rule.

Apart from Cantore et al. (2014b) and Cantore et al. (2012) most DSGE models

continue to use the Cobb-Douglas assumption even if the empirical evidence provided

through the years has ruled out the possibility of unitary elasticity of substitution (see

among others Antràs (2004), Klump et al. (2007), Chirinko (2008) and León-Ledesma et al.

(2010)). In this paper we show that the introduction of a CES production function in a

medium-scale DSGE model in the spirit of Christiano et al. (2005) and Smets and Wouters

(2007) makes it possible to exploit the movements of factor shares we observe in the data

3See for example Blanchard (1997), Jones (2003, 2005), McAdam and Willman (2013) and Ŕıos-Rull
and Santaeulália-Llopis (2010).
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to improve significantly the performance of the model. To the best of our knowledge, we

are the first to compare the empirical implications of CD and CES production functions

in a DSGE context.

The main results of our paper are first, in terms of model posterior probabilities, im-

pulse responses, second moments and autocorrelations, the assumption of a CES technol-

ogy significantly improves the model fit. Second, this finding is robust to the information

assumption assumed for private agents in the model. Indeed allowing the latter to have

the same (imperfect) information as the econometrician (namely the data) further im-

proves the fit compared with the standard assumption that they have perfect information

of all state variables including the shock processes. Third, using US data, we estimate

by Bayesian-Maximum-Likelihood (BML) methods a elasticity of substitution of elasticity

between the capital/labour ratio and the wage rate/capital cost ratio to be 0.15-0.18, a

value broadly in line with the literature using other methods of estimation.4

The rest of the paper is organized as follows. Section 2 describes the model with

particular attention paid to the normalization of the CES production function.5 Section

3 sets out the BML estimation of the model and includes an investigation of the model

performance under both the standard and the imperfect information assumptions. Section

4 examines the ability of the model to capture the main characteristics of the actual data as

described by second moments and the impulse response functions of an estimated “DSGE-

VAR” hybrid. Section 5 compares the variance decomposition of the structural shocks for

the CES and Cobb-Douglas formulations. Section 6 concludes the paper.

2 The Augmented SW Model

Here we present, concisely the augmented SW model with a wholesale and a retail sector,

Calvo prices and wages, CES production function, adjustment costs of investment and

variable capital utilization. Figure 2 illustrates the model structure. The model equilib-

rium conditions are presented in non-linear form. The novel feature is the introduction

of a CES production function in the wholesale sector, instead of the usual Cobb-Douglas

form. This generalization then allows for the identification of both labour-augmenting

4See, for example, Table 2 in Rowthorn (1999), Chirinko (2008), León-Ledesma et al. (2010) and the
survey by Klump et al. (2012).

5We utilize a normalization procedure of re-parametrization proposed by Cantore and Levine (2012).
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and capital-augmenting technology shocks. As in Smets and Wouters (2007) we use a

household utility function compatible with a balance growth path in the steady state, but

we adopt a more standard functional form used in the RBC literature. However we do

not adopt Kimball aggregators for final output and composite labour.6 Again as in their

paper we introduce a monopolistic trade-union that allows households to supply homoge-

neous labour. Then as long as preference shocks are symmetric, households are identical

in equilibrium and the complete market assumption is no longer required for aggregation.

The supply-side of the economy consists of competitive retail sector producing final output

and a monopolistically competitive wholesale sector producing differentiated goods using

the usual inputs of capital and work effort. Households consume a bundle of differentiated

commodities, supply labour and capital to the production sector, save and own the mo-

nopolistically competitive firms in the goods sector. Capital producers provide the capital

inputs into the wholesale sector.7

We set out the model first without specifying the form of the utility and production

functions in order to obtain a flexible framework in which it will be easy to stick different

functional forms.

The sequencing of decisions is as follows8

1. Each household supplies homogeneous labour at a price Wh,t to a trade-union.

Households choose their consumption, savings and labour supply given aggregate

consumption (determining external habit). In equilibrium all household decisions

are identical.

2. Capital producing firms convert final output into new capital which is sold on to

6The motivation for generalizing Dixit-Stiglitz aggregators is to bring estimates of price and wage
contract lengths into line with micro-econometric evidence. In fact our estimates for US data are compatible
with the simpler Dixit-Stiglitz formulation.

7There are other differences with Smets and Wouters (2007): (i) Our price and wage mark-up shocks
follow an AR(1) process instead of the ARMA process chosen by SW; (ii) in SW the government spending
shock is assumed to follow an autoregressive process which is also affected by the productivity shock;
(iii) we have a preference shock instead of the risk-premium shock. Chari et al. (2009) criticized the risk
premium shock arguing that has little interpretation and in unlikely to be invariant to monetary policy.
We prefer our somewhat simpler set-up and we expect none of the differences to affect the main focus of
the paper which is on the comparison between CD and CES production functions.

8Sequencing matters for the monopolistic trade-unions and intermediate firms who anticipate and ex-
ploit the downward-sloping demand for labour and goods respectively. Different set-ups with identical
equilibria are common in the literature. Monopolistic prices can be transferred to the retail sector. When
it comes to introducing financial frictions, for example, as in Gertler and Karadi (2011) the introduction
of separate capital producers as in our set-up is convenient, but not essential in the SW model without
such frictions.
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intermediate firms.

3. A monopolistic trade-union differentiates the labour and sells type Nt(j) at a price

Wt(j) to a labour packer in a sequence of Calvo staggered wage contracts. In equilib-

rium all households make identical choices of total consumption, savings, investment

and labour supply.

4. The competitive labour packer forms a composite labour service according to a

constant returns CES technology Nt =
(

∫ 1
0 Nt(j)(ζ−1)/ζdj

)ζ/(ζ−1)
and sells onto the

intermediate firm.

5. Each intermediate monopolistic firm f using composite labour and capital rented

from capital producers to produce a differentiated intermediate good which is sold

onto the final goods firm at price Pt(f) in a sequence of Calvo staggered price

contracts.

6. Competitive final goods firms use a continuum of intermediate goods according

to another constant returns CES technology to produce aggregate output Yt =
(

∫ 1
0 Yt(f)(µ−1)/µdf

)µ/(µ−1)
.

We now solve the model by backward induction starting with the production of final goods.

2.1 Final Goods

Each final goods firms minimizes the cost
∫ 1
0 Pt(f)Yt(f)df of producing the final output

Yt =
(

∫ 1
0 Yt(f)(ζ−1)/ζdf

)ζ/(ζ−1)
. This leads to the standard result for the Dixit-Stigliz

aggregator

Yt(f) =

(

Pt(f)

Pt

)−ζ

Yt (1)

Pt =

[
∫ 1

0
Pt(f)

1−ζdf

]

1
1−ζ

(2)

PtYt =

∫ 1

0
Pt(f)Yt(f)df (3)

where Pt is an aggregate price index. Note that (1) and (3) imply (2).
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Figure 2: Model Structure

2.2 Intermediate Firms

In the intermediate goods sector each good f is produced by a single firm f using composite

labour and capital with a technology:

Yt(f) = (1− c)F (ZKt, ZNt, Nt, UtKt) (4)

where c are fixed costs of production and Ut allows for variable capital utilization. The

parameter c is pinned down by a free-entry condition that drives profits in the steady

state to zero. Given that at this stage we do not specify the form of the production

function we allow for all the possible specification of technology shocks. Calling ZKt

capital-augmenting and ZNt labour-augmenting we are in the case of Hicks neutrality if

ZKt = ZNt > 0, Solow neutrality if ZKt > 0 and ZNt = 0 and Harrod neutrality in the

case of ZKt = 0 and ZNt > 0. Then minimizing costs PtRRK
t Ut(f)Kt(f)+WtNt(f) leads

6



to

Wt

Pt
≡ MPLt = MCt(f)FN,t (5)

RRK
t ≡ MPKt = MCt(f)FK,t (6)

where MPLt and MPKt are the marginal products of labour and capital respectively,

RRK
t is the real cost of capital. As usual the firm’s cost minimizing real marginal costs

(MCt(f)) is given by the Lagrange multiplier related to the production function constraint.

Pricing by the firm follows the standard Calvo framework supplemented with indexa-

tion. At each period there is a probability of 1 − ξp that the price is set optimally.9 The

optimal price derives from maximizing discounted profits. For those firms and workers

unable to reset, prices are indexed to last period’s aggregate inflation, with indexation pa-

rameter γp. With indexation parameter γp ≥ 0, this implies that successive prices with no

re-optimization are given by P 0
t (f), P 0

t (f)
(

Pt
Pt−1

)γp
, P 0

t (f)
(

Pt+1

Pt−1

)γp
, ... . For each inter-

mediate producer f the objective is at time t to choose {P 0
t (f)} to maximize discounted

profits

Et

∞
∑

k=0

ξkpΛt,t+kYt+k(f)

[

P 0
t (f)

(

Pt+k−1

Pt−1

)γ

− Pt+kMCt+k

]

(7)

subject to Yt+k(f) =
(

P 0
t (f)
Pt+k

(

Pt+k−1

Pt−1

)γp)−ζ
Yt+k (from (1)), where Λt,t+k ≡ β

UC,t+k/Pt+k

UC,t/Pt
,

is the nominal stochastic discount factor over the interval [t, t+ k] and ζ is the elasticity

of substitution across intermediate goods. Since firms are atomistic, the aggregate price

index and the discount factor are given in their calculations.

This leads to the following first-order condition:

Et

∞
∑

k=0

ξkpΛt,t+kYt+k(f)

[

P 0
t (f)

(

Pt+k−1

Pt−1

)γp

−MSp,tPt+kMCt+k

]

= 0 (8)

where we introduced, as usual in the literature, a time varying mark-up of prices over

marginal costs MSp,t =
ζ

(ζ−1)ePt with ePt being the price mark-up shock process. Then

by the law of large numbers the evolution of the price index is given by

P 1−ζ
t+1 = ξp

(

Pt

(

Pt

Pt−1

)γp)1−ζ

+ (1− ξp)(P
0
t+1(f))

1−ζ (9)

9Thus we can interpret 1

1−ξp
as the average duration for which prices are left unchanged.
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2.3 Labour Packer

As with final goods firms, the labour packer minimizes the cost
∫ 1
0 Wt(j)Nt(j)dj of pro-

ducing the composite labour service Nt =
(

∫ 1
0 Nt(j)(µ−1)/µdj

)µ/(µ−1)
. This leads to the

standard result for the Dixit-Stigliz aggregator

Nt(j) =

(

Wt(j)

Wt

)−µ

Nt (10)

Wt =

[
∫ 1

0
Wt(j)

1−µdj

]

1
1−µ

(11)

WtNt =

∫ 1

0
Wt(j)Nt(j)dj (12)

where Wt is an aggregate wage index. Note that (10) and (12) imply (11).

2.4 Trade-Unions

Wage setting by the trade-union again follows the standard Calvo framework supplemented

with indexation. At each period there is a probability 1−ξw that the wage is set optimally.

The optimal wage derives from maximizing discounted profits. For those trade-unions

unable to reset, wages are indexed to last period’s aggregate inflation, with wage indexation

parameter γw. Then as for price contracts the wage rate trajectory with no re-optimization

is given by W 0
t (j), W 0

t (j)
(

Pt
Pt−1

)γw
, W 0

t (j)
(

Pt+1

Pt−1

)γw
, · · ·. The trade union that buys

homogeneous labour at a price Wh,t and converts it into a differentiated labour service of

type j. The trade union time t then chooses W 0
t (j) to maximize

Et

∞
∑

k=0

ξkwΛt,t+kNt+k(j)

[

W 0
t (j)

(

Pt+k−1

Pt−1

)γw

−Wh,t+k

]

(13)

where Nt(j) is given by (10) so that Nt+k(j) =
(

W 0
t (j)

Wt+k

(

Pt+k−1

Pt−1

)γw)−η
Nt+k and η is the

elasticity of substitution across labour varieties. By analogy with (8) this leads to the

following first-order condition

Et

∞
∑

k=0

ξkwΛt,t+kNt+k(j)
[

W 0
t (j)

(

Pt+k−1

Pt−1

)γw

−MSw,tWh,t+k

]

= 0 (14)

8



where MSw,t = η
(η−1)eWt is the time varying wage mark-up with eWt being the wage

mark-up shock process. Then by the law of large numbers the evolution of the wage index

is given by

W 1−η
t+1 = ξw

⎛

⎝Wt

(

Pt
Pt−1

)γw

Pt+1

Pt

⎞

⎠

1−η

+ (1− ξw)(W
0
t+1(j))

1−η (15)

2.5 Representation of Price-Wage Dynamics as Difference Equations

We now proceed to represent the price and wage dynamics as difference equations. This is

necessary to set up the model in standard software such as DYNARE and is also convenient

when it comes to linearizing the model about a steady state. Both sides of the foc for

pricing (8) and wage (14), are of the form considered in Appendix A. Using the Lemma,

first define

Πp,t ≡
Pt

Pt−1
= πt + 1 (16)

P 0
t

Pt
≡

Jp,t
Hp,t

(17)

Π̃p,t ≡
Πp,t

Π
γp
p,t−1

(18)

and then aggregate inflation dynamics are given by

Hp,t − ξpβEt[Π̃
ζ−1
p,t+1Hp,t+1] = YtUC,t (19)

Jp,t − ξpβEt[Π̃
ζ
p,t+1Jp,t+1] = MSp,tYtMCtUC,t (20)

1 = ξpΠ̃
ζ−1
p,t + (1− ξp)

(

Jp,t
Hp,t

)1−ζ

(21)

For staggered wage setting, symmetrically, wage dynamics are given by defining:

Πw,t ≡
Wt

Wt−1
Πp,t (22)

W 0
t

Pt
≡

Jw,t

Hw,t
(23)

MSw,t ≡
µ

µ− 1
eWt (24)

9



Aggregate wage dynamics are then given by

Hw,t − ξwβEt

⎡

⎣Πµ
w,t+1

(

Πp,t+1

Πγwp,t

)µ−1
⎤

⎦Hw,t+1 = Nt UC,t (25)

Jw,t − ξwβEt

[

Πµ
w,t+1

(

Πp,t+1

Πγwp,t

)µ]

= −MSw,tNtMUN
t (26)

ξw

[

Πw,t
Πp,t

Πγwp,t−1

]µ−1

+ (1− ξw)

⎛

⎝

Jw,t

Hw,t

Wt
Pt

⎞

⎠

1−µ

= 1 (27)

2.6 Capital Producers

Capital producing firms convert It of output into (1 − S(Xt))It of new capital sold at a

real price Qt. They then maximize expected discounted profits

Et

∞
∑

k=0

Λr
t,t+k [Qt+kZIt+k(1− S (It+k/It+k−1))It+k − It+k]

where Λr
t,t+k ≡ β

UC,t+k

UC,t
is the real stochastic discount factor over the interval [t, t + k].

This results in the first-order condition

QtZIt(1− S(Xt)−XtS
′(Xt)) + Et

[

Λr
t,t+1 Qt+1ZIt+1S

′(Xt+1)
I2t+1

I2t

]

= 1 (28)

Capital accumulation is given by

Kt+1 = (1− δ)Kt + (1− S(Xt))ItZIt; (29)

where δ is the depreciation rate, ZIt is the investment specific shock, Xt =
It

It−1
and S()

satisfies S′, S′′ ≥ 0 ; S(1 + g) = S′(1 + g) = 0.

Demand for capital by firms must satisfy

Et[Rt+1] =
Et [FK,t + (1− δ)Qt+1]

Qt
(30)

In (30) the right-hand-side is the gross return to holding a unit of capital in from t to

t+ 1. The left-hand-side is the gross return from holding bonds, the opportunity cost of

10



capital. We complete this set-up with the functional form

S(X) = φX(Xt − (1 + g))2 (31)

where g is the balanced growth rate.

Owners of physical capital can control the intensity at which capital is utilized in

production. As in Christiano et al. (2005) and Smets and Wouters (2007) we assume

that using the stock of capital with intensity Ut produces a cost of a(Ut)Kt units of the

composite final good. The functional form is chosen consistent with the literature:

a(Ut) = γ1(Ut − 1) +
γ2
2
(Ut − 1)2 (32)

and satisfies a(1) = 0 and a′(1), a′′(1) > 0. Note that γ1
γ2

= 1−φ
φ in the Smets and Wouters

(2007) set-up. In order to compare results we will estimate φ.

2.7 The Household Problem

The Household problem is standard and can be summarized by:

Utility : Ut = U(Ct, Lt) (33)

Euler : UC,t = βEt [Rt+1UC,t+1] (34)

Labour Supply :
UN,t

UC,t
= −MRSt ≡ −

Wh,t

Pt
(35)

Leisure : Lt ≡ 1−Nt (36)

2.8 Monetary Authority, Aggregation and Equilibrium

Nominal and real interest rates are related by the Fischer equation

Et[Rt+1] = Et

[

Rn,t

Πt+1

]

(37)

where the nominal gross interest rate Rn,t is a policy variable, typically given by a simple

Taylor-type rule:

log

(

Rn,t

Rn

)

= αR log

(

Rn,t−1

Rn

)

+ απ log

(

Πt

Π

)

+ αY log

(

Yt

Y

)

+ ϵm,t (38)

11



where, we define the output gap as the deviation between the output and its steady-state

value.

The resource constraint must take into account relative price dispersion across varieties

and wage dispersion across firms. By writing Yt(f)W = F (Zt, Nt(j), UtKt−1).10 At firm

level supply must equal demand:

(1− c)F (Zt,

(

Wt(j)

Wt

)−µ

Nt, UtKt−1) = (Ct + It +Gt + a(Ut)Kt−1)

(

Pt(m)

Pt

)−ζ

(39)

Integrating across all firms, taking into account that the capital-labour ratio is common

across firms and that the wholesale sector is separated from the retail sector we obtain

(1−c)F (Zt,

∫ 1

0

(

Wt(j)

Wt

)−µ

djNt, UtKt−1) = (Ct+It+Gt+a(Ut)Kt−1)

∫ 1

0

(

Pt(f)

Pt

)−ζ

df

(40)

where the price dispersion is given by ∆p,t =
∫ 1
0

(

Pt(f)
Pt

)−ζ
df and wage dispersion is given

by ∆w,t =
∫ 1
0

(

Wt(j)
Wt

)−µ
dj. As shown in Appendix B:

∆p,t = ξΠ̃ζt∆p,t−1 + (1− ξ)

(

P 0
t

Pt

)−ζ

(41)

∆w,t = ξwΠ̃
µ
w,t∆w,t−1 + (1− ξw)

(

W 0
t

Wt

)−µ

(42)

(43)

Then (39) takes the form:

Yt = (1− c)
Y W
t

∆p,t∆w,t
= Ct + It +Gt + a(Ut)Kt−1 (44)

2.9 The Normalized CES Production Function

The production function is assumed to be CES as in Cantore et al. (2014b) which nests

Cobb-Douglas as a special case and admits the possibility of neutral and non-neutral

technical change. Here we adopt the ‘re- parametrization’ procedure described in Cantore

10Where by simplicity we call Zt a vector containning each type of biased and un-biased technical change
defined in (4).

12



and Levine (2012) in order to normalize the CES production function:

Y W
t =

[

αk(ZKtUtKt)
ψ + αn(ZNtNt)

ψ
]

1
ψ
; ψ ̸= 0 & αk + αN ̸= 1

= (ZKtUtKt)
αk(ZNtNt)

αn ; ψ → 0 & αk + αN = 1 (45)

where Y W
t , Kt, Nt are wholesale output, capital and labour inputs respectively at time t

and ψ is the substitution parameter and αk and αn are sometimes referred as distribution

parameters. As explained earlier, the terms ZKt and ZNt capture capital-augmenting and

labour-augmenting technical progress respectively. Calling σ the elasticity of substitution

between capital and labour,11 with σ ∈ (0,+∞) and ψ = σ−1
σ then ψ ∈ (−∞, 1). When

σ = 0 ⇒ ψ = −∞ we have the Leontief case, whilst when σ = 1 ⇒ ψ = 0 (45) collapses

to the usual Cobb-Douglas case.

From the outset a comment on dimensions would be useful. Technology parameters

are not measures of efficiency as they depend on the units of output and inputs (i.e., is

not dimensionless12) and the problem of normalization arises because unless ψ → 0, αn

and αk in (45) are not shares and in fact are not dimensionless.

Marginal products of labour and capital are respectively

FN,t =
Y W
t

Nt

[

αn(ZNtNt)ψ

αkZKtUtK
ψ
t + αn(ZNtNt)ψ

]

= αnZNψ
t

(

Y W
t

Nt

)1−ψ

(46)

FK,t =
Y W
t

Kt

[

αkZKtUtK
ψ
t

αkZKtUtK
ψ
t + αn(ZNtNt)ψ

]

= αk(UtZKt)
ψ

(

Y W
t

Kt

)1−ψ

(47)

The equilibrium of real variables depends on parameters defining the RBC core of the

model ϱ, σc, δ, ψ, αk and αn, and those defining the NK features. Of the former, ϱ, ψ and

11The elasticity of substitution for the case of perfect competition, where all the product is used to
remunerate factor of productions, is defined as the elasticity of the capital/labour ratio with respect to the
wage/capital rental ratio. Then calling W the wage and R+ δ the rental rate of capital we can define the
elasticity as follows:

σ =
dK

L
L
K

d W
R+δ

R+δ
W

.

See La Grandville (2009) for a more detailed discussion.
12For example for the Cobb-Douglas production function in the steady state, Y = Kα(AN)1−α, by

dimensional homogeneity, the dimensions of A are (output per period)
1

1−α / ((person hours per period

)× (machine hours per period )
α

1−α ). For some this poses a fundamental problem with the notion of a
production function - see Barnett (2004). Units can be chosen so that when N = 1 and K = 1, then Y = 1
implying A = 1. For the equilibrium to be independent of the choice of units, it follows that it must be
independent of the steady state value A. This is readily demonstrated in what follows.
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σc are dimensionless, δ depends on the unit of time, but unless ψ = 0 and the technology

is Cobb-Douglas, αk and αn depend on the units chosen for factor inputs, namely machine

units per period and labour units per period. To see this rewrite the wholesale firm’s foc

(5) and (6) in terms of factor shares

WtNt

PW
t Y W

t

= αnZNψ
t

(

Y W
t

Nt

)−ψ

(48)

(Rt − 1 + δ)Kt

PW
t Y W

t

= αk(UtZKt)
ψ

(

Y W
t

Kt

)−ψ

(49)

where PW
t ≡ MCtPt is the price of wholesale output. Then we have

WtNt

(Rt + δ)
=
αn

αk

(

ZKtUtKt

ZNtNt

)−ψ

(50)

Thus αn (αk) can be interpreted as the share of labour (capital) iff ψ = 0 and the pro-

duction function is Cobb-Douglas. Otherwise the dimensions of αk and αn depend on

those for
(

ZKtUtKt
ZNtNt

)ψ
which could be for example, (effective machine hours per effective

person hours)ψ. In our aggregate production functions we choose to avoid specifying unit

of capital, labour and output.13 It is impossible to interpret and therefore to calibrate or

estimate these ‘share’ parameters.

There are two ways to resolve this problem; ‘re-parameterize’ the dimensional parame-

ters αk and αn so that they are expressed in terms of dimensionless ones all parameters to

be estimated or calibrated (see Cantore and Levine (2012)), or ‘normalize’ the production

function in terms of deviations from a steady state. We consider these in turn.

2.9.1 Re-parametrization of αn and αk

On the balanced-growth path (bgp) consumption, output, investment, capital stock, the

real wage and government spending are growing at a common growth rate g driven by

exogenous labour-augmenting technical change ZN t+1 = (1 + g)ZN t, but labour input

N is constant.14 As is well-known a bgp requires either Cobb-Douglas technology or that

13Unlike the physical sciences where particular units are explicitly chosen so dimension-dependent pa-
rameters pose no problems. For example the fundamental constants such as the speed of light is expressed
in terms of metres per second; Newtons constant of gravitation has units cubic metres per (kilogram ×

second2) etc.
14If output, consumption etc are defined in per capita terms then N can be considers as the proportion

of the available time at work and is therefore both stationary and dimensionless.
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technical change must be driven solely by the labour-augmenting variety (see, for example,

Jones (2005)). Then ZKt = ZK must also be constant along the bgp.

On the bgp let capital share and wage shares in the wholesale sector be α and 1 − α

respectively. Then using (48) and (49) we obtain our re-parameterization of αn and αk:

αk = α

(

Ȳt

ZKŪtK̄t

)ψ

(51)

αn = (1− α)

(

Ȳt

ZN tN

)ψ

(52)

Note that αk = α and αn = 1 − α at ψ = 0, the Cobb-Douglas case.15 This completes

the stationarized equilibrium defined in terms of dimensionless RBC core parameters ϱ,

σc, ψ,α and δ which depends on the unit of time, plus NK parameters. In (51) and (52)

dimensional parameters are expressed in terms of other endogenous variables Y W , N and

K which themselves are functions of θ ≡ [σ,ψ,α, δ, · · ·]. Therefore αn = αn(θ), and

αk = αk(θ) which expresses why we refer to this procedure as reparameterization.

There is one more normalization issue: the choice of units at some point say t = 0

on the steady state bgp. We use for simplicity Ȳ0 = ZN0 = ZK = 116 but, as it

is straightforward to show that having expressed the model in terms of dimensionless

parameters through re-parameterization makes the steady state ratios of the endogenous

variables of the model independent of this choice.

2.9.2 The Production Function in Deviation Form

This simply bypasses the need to retain αk and αn and writes the dynamic production

function in deviation form about its steady state as

Y W
t

Ȳ W
t

=

[

αk(ZKtUtKt)ψ + αn(ZNtNt)ψ

αk(ZKŪtK̄t)ψ + αn(ZN tN)ψ

]

1
ψ

=

⎡

⎢

⎣

αk

(

ZKtUtKt

ZKŪtK̄t

)ψ

αk + αn

(

ZNtN
ZKŪtK̄t

)ψ
+

αn

(

ZNtNt

ZNtNt

)ψ

αk

(

ZKŪtK̄t

ZNtN

)ψ
+ αn

⎤

⎥

⎦

1
ψ

15And as argued before if α ∈ (0, 1) αk + αn = 1 iff ψ = 0.
16By assuming Ȳ0 = 1 we implicitely assume Ȳ W

0 = Ȳ0

1−c
.
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Then from (51) and (52) we can write this simply as

Y W
t

Ȳ W
t

=

[

(1− α)

(

ZKtUtKt

ZKŪtK̄t

)ψ

+ α

(

ZNtNt

¯ZN tN

)ψ
]

1
ψ

(53)

as in Cantore et al. (2014b). The steady-state normalization now consists of ZN0 =

Ȳ0 = ZK = 117 and is characterized entirely by fixed shares of consumption, investment

and government spending and by labour supply as a proportion of available time, all

dimensionless quantities apart from the unit of time.

Using either of these two approaches, as showed by Cantore and Levine (2012), the

steady state ratios of the endogenous variables and the dynamics of the model are not

affected by the starting values of output and the two source of shocks (Ȳ0, ZN0, ZK)

which only represent choice of units. Crucially, this implies also that changing σ does not

change our steady state ratios and factor shares, impulse response functions are directly

comparable, and parameter values are consistent with their economic interpretation.

2.10 Utility Function

The household utility function is chosen to be compatible with a balanced-growth steady

state and allows external habit-formation:

Ut =
eBt((Ct − χCt−1)(1−ϱ)(1−Nt)ϱ)1−σc − 1

1− σc
(54)

UC,t = eBt(1− ϱ)(Ct − χCt−1)
(1−ϱ)(1−σc)−1((1−Nt)

ϱ(1−σc)) (55)

UN,t = −eBtϱ(Ct − χCt−1)
(1−ϱ)(1−σc)(1−Nt)

ϱ(1−σc)−1 (56)

Where χ represents the habit formation parameter and eBt a preference shock.

2.11 Shock Processes

To close the model we need to specify the law of motion of the shock processes

logZKt − logZK = ρZK(logZKt−1 − logZK) + ϵZK,t (57)

logZNt − logZN t = ρZN (logZNt−1 − logZN t) + ϵZN,t (58)

17Which is almost identical to the one used in Cantore et al. (2014b) although they normalize as well
hours worked to 1 using the accounting identity Ȳ = (R̄+ δ)K̄ + W̄ N̄ .
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logZIt − logZI = ρZI(logZIt−1 − logZI) + ϵZI,t (59)

logGt − logGt = ρG(Gt−1 −Gt) + ϵG,t (60)

log ePt − log eP = ρP (ePt−1 − eP ) + ϵP,t (61)

log eWt − log eW = ρW (eWt−1 − eW ) + ϵW,t (62)

log eBt − log eB = ρW (eBt−1 − eB) + ϵB,t (63)

In total the model has these 7 AR(1) shocks plus the shock to the monetary policy rule.

3 Estimation

We estimate the linearized version of the model around zero steady state inflation by

Bayesian methods using DYNARE. We use the same observable set as in Smets and

Wouters (2007) in first difference at quarterly frequency but extend the sample length to

the second quarter of 2008, the point before the outbreak of 2008 crisis. Namely, these

observable variables are the log differences of real GDP, real consumption, real investment

and real wage, log hours worked, the log difference of the GDP deflator and the federal

funds rate. As in Smets and Wouters (2007), hours worked are derived from the index

of average hours for the non-farm business sector and we divide hourly compensation

from the same sector by the GDP price deflator to obtain the real wage. All series are

seasonally adjusted. All data are taken from the FRED Database available through the

Federal Reserve Bank of St.Louis and the US Bureau of Labour Statistics. The sample

period is 1984:1-2008:2.

The corresponding measurement equations for the 7 observables are, using lower case

letters to express variables in log-deviations from the steady state,:

dy = yt − yt−1 + ctrend (64)

dc = ct − ct−1 + ctrend (65)

di = it − it−1 + ctrend (66)

dw = wt − wt−1 + ctrend (67)

Πobs = πt + conspie (68)

Robs = rnt + consrn (69)
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hobs = nt + conslab (70)

The four observable are taken in first difference while inflation, nominal interest rate and

hours worked are used in levels. We introduce a common trend to the real variables and

a specific one to inflation, nominal interest rate and hours worked.

3.1 Bayesian Methodology

Bayesian estimation entails obtaining the posterior distribution of the model’s parameters,

say θ, conditional on the data. Using the Bayes’ theorem, the posterior distribution is

obtained as:

p(θ|Y T ) =
L(Y T |θ)p(θ)

∫

L(Y T |θ)p(θ)dθ
(71)

where p(θ) denotes the prior density of the parameter vector θ, L(Y T |θ) is the like-

lihood of the sample Y T with T observations (evaluated with the Kalman filter) and
∫

L(Y T |θ)p(θ)dθ is the marginal likelihood. Since there is no closed form analytical ex-

pression for the posterior, this must be simulated.

One of the main advantages of adopting a Bayesian approach is that it facilitates a

formal comparison of different models through their posterior marginal likelihoods, com-

puted using the Geweke (1999) modified harmonic-mean estimator. For a given model

mi ∈ M and common data set, the marginal likelihood is obtained by integrating out

vector θ,

L
(

Y T |mi
)

=

∫

Θ
L
(

Y T |θ,mi
)

p (θ|mi) dθ (72)

where pi (θ|mi) is the prior density for model mi, and L
(

Y T |mi
)

is the data density for

model mi given parameter vector θ. To compare models (say, mi and mj) we calculate

the posterior odds ratio which is the ratio of their posterior model probabilities (or Bayes

Factor when the prior odds ratio, p(mi)
p(mj)

, is set to unity):

POi,j =
p(mi|Y T )

p(mj |Y T )
=

L(Y T |mi)p(mi)

L(Y T |mj)p(mj)
(73)

BFi,j =
L(Y T |mi)

L(Y T |mj)
=

exp(LL(Y T |mi))

exp(LL(Y T |mj))
(74)

in terms of the log-likelihood. Components (73) and (74) provide a framework for com-
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paring alternative and potentially misspecified models based on their marginal likelihood.

Such comparisons are important in the assessment of rival models, as the model which

attains the highest odds outperforms its rivals and is therefore favoured.

Given Bayes factors, we can easily compute the model probabilities p1, p2, · · ·, pn for

n models. Since
∑n

i=1 pi = 1 we have that 1
p1

=
∑n

i=2BFi,1, from which p1 is obtained.

Then pi = p1BF (i, 1) gives the remaining model probabilities.

3.2 Likelihood Comparison of Models

We compare four different model specifications in order to see if the introduction of factor

substitutability and/or the biased technical change improves the fit of the estimation.

In the first row of Table 1 we present the likelihood density of the model with the CD

production function where only the labour-augmenting technology shock is present. In

the second row we introduce the CES and calibrate the elasticity of substitution to 0.4,

following the literature as in Cantore et al. (2014b) and Klump et al. (2012), and introduce

the capital-augmenting shock whilst in rows 3 and 4 we estimate σ in a model with

and without the latter shock. Strictly speaking a meaningful likelihood comparison that

provides information about σ is only possible between row 1 and 3 (where we can compare

like for like without adding a further exogenous shock).

Table 1 reveals that Models with the CES production function clearly outperforms its

CD counterpart with a posterior probability of 100%. This suggests that incorporating a

CES production function offers substantial improvements in terms of the model fitness to

the data in the US economy. The differences in log marginal likelihood are substantial.

For example, the log marginal likelihood difference between the first two specifications is

12.47 corresponding to a posterior Bayes Factor of 2.6041e+05. As suggested by Kass and

Raftery (1995), the posterior Bayes Factor needs to be at least e3 ≈ 20 for there to be a

positive evidence favouring one model over the other.

Model σ Technology shocks Log data density Difference with CD

CD 1 ZL -544.60 0
CES0 calibrated=0.4 ZK & ZL -532.13 12.47
CES1 estimated=0.15 ZL -528.50 16.10
CES2 estimated=0.15 ZK & ZL -528.31 16.29

Table 1: Marginal Likelihood Comparison Between CD and CES Specifications
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3.3 Estimation under the Standard Information Assumptions

In this section we made the standard information assumption in solving rational expec-

tations models that economic agents have perfect information about the realizations of

current shocks and other relevant macroeconomic variables, alongside their knowledge of

the model, parameter values and the policy rule, whereas the econometrician uses only ob-

servable data. In effect the private sector has more information than the econometrician,

so we refer to this case as asymmetric information (AS).

The joint posterior distribution of the estimated parameters is obtained in two steps.

First, the posterior mode and the Hessian matrix are obtained via standard numerical op-

timization routines. The Hessian matrix is then used in the Metropolis-Hastings (MH) al-

gorithm to generate a sample from the posterior distribution. Two parallel chains are used

in the Monte-Carlo Markov Chain Metropolis-Hastings (MCMC-MH) algorithm. Thus,

250,000 random draws (though the first 30% ‘burn-in’ observations are discarded) from the

posterior density are obtained via the MCMC-MH algorithm, with the variance-covariance

matrix of the perturbation term in the algorithm being adjusted in order to obtain rea-

sonable acceptance rates (between 20%-30%).

Estimation results from posteriors maximization are presented in Appendix C. We

used the same priors as Smets and Wouters (2007) for common parameters whereas we

used a loose prior for the elasticity of substitution between capital and labour in order

to see if the data are informative about the value of this parameter. A few structural

parameters are kept fixed or calibrated based on some parameters being estimated in the

estimation procedure, in accordance with the usual practice in the literature (see Table 2).

This is done so that the calibrated parameters reflect steady state values of the observed

variables.

First we focus on the posterior estimates obtained using the most general CES model,

CES2. As shown in Tables 7 and 8, the point estimates under the CES assumption are

tight and plausible. In particular, focusing on the parameters characterizing the degree

of price stickiness and the existence of real rigidities, we find that the price indexation

parameters are estimated to be smaller than assumed in the prior distribution (in line with

those reported by Smets and Wouters (2007)). The estimates of the γ′s imply that inflation

is intrinsically not very persistent in the CES model specifications. The posterior mean
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Calibrated parameter Symbol Value
Discount factor β 0.99
Depreciation rate δ 0.025
Growth rate g δ

4
Substitution elasticity of goods ζ 7
Substitution elasticity of labour µ 7
Variable capital utilization γ1

1
β + δ − 1

Fixed cost c 1−MC = 0.1429
Preference parameter ϱ 1−h

1+h(cy(1−χ)/α−1)

Implied steady state relationship
Government expenditure-output ratio gy 0.2

Investment-output ratio iy
(1−α)δ

(1/β−1+δ)

Consumption-output ratio cy 1− gy − iy

Table 2: Calibrated Parameters

estimates for the Calvo parameters, ξp and ξw, imply an average price contract duration

of around 2.31 quarters and an average wage contract duration of around 1.84 quarters,

respectively. These results are in general consistent with the findings from empirical works

on the DSGE modelling in the US economy. It is interesting to note that the risk-aversion

parameter (σc) is estimated to be less than assumed in the prior distribution, indicating

that the inter-temporal elasticity of substitution (proportional to 1/σc) is estimated to

be about 0.86 in the US, which is plausible as suggested in much of RBC literature. As

expected, the policy rule estimates imply a fairly strong response (απ) to expected inflation

by the US Fed Reserve and the degree of interest rate smoothing (αr) is fairly strong.

Figure 5 in Appendix C plots the prior and posterior distributions for the above CES

model. The location and the shape of the posterior distributions are largely independent

of the priors we have selected since priors are broadly less informative. Most of the

posterior distributions are roughly symmetric implying that the mean and median coincide.

According to Figure 5, there is little information in the data for some parameters where

prior and posterior overlap.18 Perhaps the most notable finding comes from the estimation

of the parameter σ - our key parameter in the CES setting. As a result of assuming a

very diffuse prior with large standard deviation, we find that the data is very informative

about this parameter (as clearly shown in the figure, curves do not overlap each other and

are very different) and the point estimate of σ in Table 7 is close to the plausible values.

18 In particular parameters ρZK , σc, γp, γw and α are weakly identified.BO pi in Figure 5 should be

α. Could we have Greek letters in the Figure as in the main paper.
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This further provides strong evidence to support the empirical importance of the CES

assumption.

We now turn to the comparisons between parameter estimates under CD and CES

specifications. Parameter posteriors that are quantitatively different19 from the estimation

using a Cobb-Douglas specification are underlined in Tables 7 and 8.

Starting with the parameters related to the exogenous shocks (Table 7) we notice that

the estimated standard deviations of the newly introduced capital-augmenting technology

shock is very small but, probably because of its introduction, the standard deviation of

the investment specific shock reduces significantly (from 4.16 in the CD specification to

3.06 in the CES case).20 We also notice that the estimated standard deviations of the

mark-up shocks are lower under the CES specification and the standard deviation of the

preference shock is slightly higher. The autoregressive parameters of the exogenous shocks

are not affected significantly by the CES choice.

Posterior estimation of the investment adjustment costs parameter (φX) reduces by

0.75 points when we estimate the model under CES showing once again how introducing

factor-biased technical change affects significantly the estimation of ‘investment-related’

parameters. The parameters of the utility function also appear to be affected by the choice

of the production function (σc reduces by 0.94 and χ reduces by around 0.21). Regarding

the parameters associated with sticky prices and wages both the probabilities of no price-

adjustment (ξp) and no wage-adjustment (ξw) change significantly, decreasing from 0.77

to 0.57 and 0.60 to 0.46, respectively. Monetary policy weights (except the weight on

inflation which increases slightly), real and nominal trends estimations are not affected by

the introduction of factor substitutability and biased technical change.

3.4 Estimation under Symmetric Imperfect Information

In this section, which is based on Levine et al. (2012), we relax the extreme perfect

information assumptions for the private sector (the standard asymmetric information (AI)

case in Levine et al. (2012)) and assume that both private agents and the econometrician

have the same imperfect information (II) set. We provide the estimation results from

19Difference in posteriors up to 0.05 were not considered quantitatively relevant here.
20The two shocks are clearly related and it is very likely that when ZK is absent ZI is capturing

“capital-biased” technological progress.
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posteriors maximization for Model CES2, the ‘best’ model in Table 1, under II. The

following table provides a formal Bayesian comparison between CES2 under AI and II

respectively.21.

Model σ Technology shocks Log data density Difference with CD

CES2-AI estimated=0.15 ZK & ZL -528.31 16.29
CES2-II estimated=0.18 ZK & ZL -524.59 20.01

Table 3: Marginal Likelihood Comparison Between AI and II

It is clear from Table 3 that the assumption of imperfect information leads to a better

fit as implied by the marginal likelihoods. Recalling Kass and Raftery (1995), a Bayes

factor of 10-100 or a log data density range of [2.30, 4.61] is ‘strong to very strong evi-

dence’. For our Model CES2, there is ‘strong’ evidence in favour of the II assumption.

The differences in log data density or the posterior odds ratio are substantive when com-

paring models assuming both CES and II with the model with CD. For example, the log

marginal likelihood difference between Model CES2 under II and Model CD is 20.01. In

order to choose the former over Model CD, we need a prior probability over Model CD

4.9004e+08(= e20.01) times larger than our prior probability over Model CES2 under II

and this factor is decisive.

parameter prior mean post. mean CES (AI case) 5% CES 95% CES Prior pstdev CES

ρZL 0.5 0.9470 (0.9443) 0.9059 0.9932 beta 0.2
ρZK 0.5 0.4980 (0.4441) 0.1887 0.8325 beta 0.2
ρG 0.5 0.9613 (0.9631) 0.9418 0.9782 beta 0.2
ρZI 0.5 0.7961 (0.7429) 0.6817 0.9117 beta 0.2
ρP 0.5 0.9672 (0.9744) 0.9399 0.9955 beta 0.2
ρW 0.5 0.9750 (0.9656) 0.9565 0.9938 beta 0.2
ρB 0.5 0.8728 (0.9311) 0.7977 0.9503 beta 0.2
εZL 0.1 0.6905 (0.6833) 0.5944 0.7793 invg 2.0
εZK 0.1 0.0804 (0.0744) 0.0240 0.1492 invg 2.0
εG 0.5 1.9947 (1.9904) 1.7650 2.2374 invg 2.0
εZI 0.1 2.8668 (3.0647) 1.4762 4.2147 invg 2.0
εP 0.1 0.3771 (0.3756) 0.3093 0.4370 invg 2.0
εW 0.1 0.9781 (0.9482) 0.8328 1.1282 invg 2.0
εM 0.1 0.1604 (0.1579) 0.1371 0.1832 invg 2.0
εB 0.1 1.0863 (1.4997) 0.7681 1.3876 invg 2.0

Table 4: Posterior Results for the Exogenous Shocks (II)

21To complete the comparison of CD and CES under either AI or II we have also compared the two
production function assumption under II. Similar results to those under AI were obtained and are not
reported
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parameter prior mean post. mean CES (AI case) 5% CES 95% CES Prior pstdev CES

σ 1 0.1788 (0.1542) 0.0735 0.2841 gamma 1
h 0.4 0.5343 (0.5136) 0.4184 0.6758 beta 0.1
φ 0.5 0.7959 (0.7860) 0.7052 0.8838 beta 0.15
φX 2 1.7097 (1.9210) 0.5106 2.6885 norm 1.5
σc 1.5 1.2609 (1.1571) 0.6997 1.8070 norm 0.3750
χ 0.7 0.3324 (0.3445) 0.2111 0.4341 beta 0.1
ξw 0.5 0.4384 (0.4577) 0.3373 0.5373 beta 0.1
ξp 0.5 0.5634 (0.5677) 0.4788 0.6538 beta 0.1
γw 0.5 0.4578 (0.4489) 0.2123 0.7005 beta 0.15
γp 0.5 0.3656 (0.3512) 0.1434 0.5742 beta 0.15
α 0.3 0.3489 (0.3553) 0.2629 0.4379 norm 0.05
απ 1.5 2.3968 (2.3771) 2.1130 2.6680 norm 0.25
αr 0.75 0.7959 (0.7911) 0.7598 0.8336 beta 0.1
αy 0.125 0.0592 (0.0667) 0.0174 0.0974 norm 0.05

conspie 0.625 0.5462 (0.5732) 0.4783 0.6118 gamma 0.1
ctrend 0.4 0.4609 (0.4975) 0.4110 0.5113 norm 0.1

Table 5: Posteriors Results for Model Parameters (II)

We now turn to the comparisons between parameter estimates under AI and II (Tables

4 and 5). Overall, the parameter estimates are plausible and reasonably robust across

information specifications, despite the fact that the II alternative leads to a better model

fit based on the corresponding posterior marginal likelihood. It is interesting to note that

assuming II for the private sector reinforces the evidence that the ZK and ZI shocks are

related when CES is introduced. We notice that in the II case the estimated standard

deviations of the capital-augmenting technology shock (ZK ) is slightly larger and as a

result the standard deviation of the investment specific shock (ZI ) further reduces (from

3.06 under AI to 2.87 in the II case). This again confirms our finding early that when

ZK is absent ZI is capturing “capital-biased” technological progress and the degree of

which depends on whether the shocks are observed or not by the private sector. The other

significant change in estimates from AI to II is from the investment adjustment costs

parameter (φX) and this shows how assuming II helps provide evidence that introducing

factor-biased technical change affects significantly the estimation of ‘investment-related’

parameters. Our model comparison analysis contains one important result suggesting

that a combination of incorporating CES and with information set II offers a decisive

improvement in terms of the model fit, dominates the standard CD model with a very

large LL difference of around 20.
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4 Model Validation

After having shown the model estimates and the assessment of relative model fit to its

other rivals with different restrictions, we use them to investigate a number of key macroe-

conomic issues in the US. The model favoured in the space of competing models may still

be poor (potentially misspecified) in capturing the important dynamics in the data. To

further evaluate the absolute performance of one particular model against data, it is nec-

essary to compare the model’s implied characteristics with those of the actual data (and

an identified VAR model).

In this section, we address the following questions: (i) can the models capture the

underlying characteristics of the actual data? (ii) what are the impacts of the structural

shocks on the main macroeconomic time series?

4.1 Standard Moment Criteria

Summary statistics such as first and second moments have been standard as means of

validating models in the literature on DSGE models, especially in the RBC tradition. As

the Bayes factors (or posterior model odds) are used to assess the relative fit amongst

a number of competing models, the question of comparing the moments is whether the

models correctly predict population moments, such as the variables’ volatility or their

correlation, i.e. to assess the absolute fit of a model to macroeconomic data.

To assess the contributions of assuming different specifications of production function

in our estimated models, we compute some selected second moments and present the

results in this section. Table 6 presents the (unconditional) second moments implied

by the above estimations and compares with those in the actual data. In particular,

we compute these model-implied statistics by solving the models at the posterior means

obtained from estimation. The results of the model’s second moments are compared with

the second moments in the actual data to evaluate the models’ empirical performance.

In terms of the standard deviations, Models CD and CES generate relatively high

volatility (standard deviations) compared to the actual data (except for the interest rate

and the CD production assumes constant labour share). Overall, the estimated models

are able to reproduce broadly acceptable volatility for the main variables of the DSGE

model and all model variants can successful replicate the stylized fact in the business cycle
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research that investment is more volatile than output whereas consumption is less volatile.

In line with the Bayesian model comparison, the NK models with CES technology fit the

data better in terms of implied volatility, getting closer to the data in this dimension (we

highlight the ‘best’ model (performance) in bold). Note that all our CES models clearly

outperform the CD model in capturing the volatilities of all variables except for hours) and

CES2 with II does extremely well at matching the investment and real wage volatilities

in the data. Furthermore by not imposing a constant labour share as in the CD model

CES2 with II generates the standard deviation very close to the data but performs badly

for hours. As suggested by the likelihood comparison, the differences in generating the

moments between the CES specification with only the shock ZK and the CES with both

ZK and ZL shocks are qualitatively very small.

Standard Deviation
Model Output Consumption Investment Real wage Inflation Interest rate Hours Labour share
Data 0.58 0.53 1.74 0.66 0.24 0.61 2.47 2.07
Model CD 0.78 0.69 1.87 0.99 0.43 0.44 2.84 0
Model CES1 0.69 0.66 1.82 0.73 0.43 0.50 5.76 3.83
Model CES2 0.69 0.66 1.81 0.73 0.43 0.50 5.79 3.85
CES2 with II 0.69 0.66 1.80 0.72 0.36 0.50 4.09 2.59

Cross-correlation with Output
Data 1.00 0.61 0.64 -0.11 -0.12 0.22 -0.25 -0.05
Model CD 1.00 0.76 0.57 0.59 -0.11 -0.37 0.11 -
Model CES1 1.00 0.43 0.63 0.13 -0.08 -0.11 0.03 -0.23
Model CES2 1.00 0.43 0.63 0.13 -0.07 -0.11 0.03 -0.23
CES2 with II 1.00 0.47 0.63 0.15 -0.06 -0.15 0.06 -0.28

Autocorrelations (Order=1)
Data 0.28 0.17 0.56 0.17 0.54 0.96 0.93 0.90
Model CD 0.37 0.42 0.58 0.50 0.69 0.89 0.93 -
Model CES1 0.29 0.32 0.61 0.38 0.79 0.94 0.99 0.99
Model CES2 0.29 0.31 0.61 0.37 0.79 0.94 0.99 0.99
CES2 with II 0.28 0.33 0.63 0.36 0.66 0.91 0.98 0.98

Table 6: Selected Second Moments of the Model Variants

Table 6 also reports the cross-correlations of the eight observable variables vis-a-vis

output. All models perform successfully in generating the positive contemporaneous cor-

relations of consumption and investment observed in the data. All CES models fit the

output-investment correlation with the data very well. The highlighted numbers in this

category together with the evidence above show that the feature of CES in the model is

particularly important in characterizing the investment dynamics. However, as evidence

from the implied volatilities confirms, the main shortcoming of all the models, including
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the preferred ones, is the difficulty at replicating the cross-correlations of output with

hours and the real wage, and mimicking the volatility observed in the hours data. This

is not a very surprising result because there are no labour market frictions assumed in

all the models under investigation. All models fail to predict the positive correlation be-

tween output and interest rate and CES models have problem in replicating the negative

contemporaneous cross-relation between inflation and output. This is consistent with the

work of Smets and Wouters (2003) as they find that the implied cross-correlations with

the interest rate and inflation are not fully satisfactory. Nevertheless, the results in gen-

eral show that, in the models where the CES specification is present, cross-correlations of

endogenous variables are generally closer to those in the actual data. It is the empirical

relevance of the CES feature that helps to explain the better overall fit as found in the LL

race.

To summarize this section, overall Bayesian Maximum-likelihood based methods sug-

gest that the ability of the model’s second moments to fit those of the data generally

match the outcome of the likelihood race. The CES model assuming the II set delivers a

better fit to the actual data for most of the second moment features in Table 6. However,

as noted above, the differences in the second moments of the two competing CES variants

are very small.

4.2 Autocorrelation Functions

We have so far considered autocorrelation only up to order 1. To further illustrate how

the estimated models capture the data statistics and persistence in particular, we now

plot the autocorrelations up to order 10 of the actual data and those of the endogenous

variables generated by the model variants in Figure 3.

The CES models all stay within the 95% uncertainty bands and II CES2 model per-

forms a little better than its AI counterpart. The inflation autocorrelations generated by

CD model lie outside the 95% uncertainty bands. Of particular interest is that, when

assuming CES production, the implied autocorrelograms fit very well the observed au-

tocorrelation of inflation, interest rate, investment and real wage, whilst the CD model

generates much less sluggishness and is less able to match the autocorrelation of inflation,

interest rate and real wage observed in the data from the second lag onwards. Overall
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Figure 3: Autocorrelations of Observables in the Actual Data and in the Estimated
Models∗

∗ The approximate 95 percent confidence bands are constructed using the large-lag standard
errors (see Anderson (1976)).

we find that, with nominal price stickiness in the models and highly correlated estimated

price markup shocks, inflation persistence can be captured closely in DSGE models when

CES production is assumed.

When it comes to output, all models perform well in matching the observed output

persistence. However, the hours is more autocorrelated in all models than in the data,

but now the model with the CD feature gets much closer to the data for higher order

autocorrelations. All models match reasonably well the autocorrelations of investment

and consumption. To summarize, the results for higher order autocorrelations for the

most part show that the DSGE models under the more general CES production function

are better at capturing the main features of the US data, strengthening the argument that
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the assumption of CES helps to improve the model fit to data.

4.3 DSGE-VARs and Impulse Responses

An alternative way of validating the model performance is to follow Del Negro and

Schorfheide (2004) and Del Negro et al. (2007) and to compare it with a hybrid model that

is a combination of an unrestricted VAR and the VAR implied by the estimated DSGE

model. We then go on to compare the estimated DSGE model and this ‘DSGE-VAR’ in

terms of their impulse response functions (IRFs). We also investigate the impact on IRFs

of changing the production function and information assumption. Since we have demon-

strated that there is little difference between the CES variants in terms of matching the

data, this exercise is only performed for the ‘best’ CES model (i.e. CES2 with AI and II).

The DSGE-VAR approach uses DSGE model itself to construct a prior distribution

for the VAR coefficients so that DSGE-VAR estimates are tilted toward DSGE model

restriction, thus identifying the shocks for the IRFs. This method constructs the DSGE

prior by generating dummy observations from the DSGE model, and adding them to the

actual data and leads to an estimation of the VAR based on a mixed sample of artificial

and actual observations. The ratio of dummy over actual observations (called the hyper-

parameter λ) controls the variance and therefore the weight of the DSGE prior relative to

the sample. For extreme values of this parameter (0 or ∞) either an unrestricted VAR or

the DSGE is estimated. If λ is small the prior is diffuse. When λ = ∞, we obtain a VAR

approximation22 of the log-linearized DSGE model. As λ becomes small the cross-equation

restrictions impled by the DSGE model are gradually relaxed. The empirical performance

of a DSGE-VAR will depend on the tightness of the DSGE prior. Details on the algorithm

used to implement this DSGE-VAR are to be found in Del Negro and Schorfheide (2004)

and Del Negro et al. (2007).

We fit our VAR to the same data set used to estimate the DSGE model. We consider

a VAR with 4 lags.23 We use a data-driven procedure to determine the tightness of prior

endogenously based on the marginal data density. Our choice of the optimal λ is 1.0 for

all models, and this is found by comparing different VAR models using the estimates of

22The accuracy of the approximation depends on the invertibility of the DSGE model’s moving average
components and on the number of autoregressive lags included (Del Negro et al. (2007)).

23This choice of the lag length maximizes the marginal data density associated with the DSGE-VAR(λ̂).
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the marginal data density (Figure 4). In particular, we iterate over a grid that contains

the values of λ = [0.43; 0.8; 1; 1.2; 1.4; 1.5; 2; 5; 10;∞], we find that λ = 1.0 has the highest

posterior probability for all models. Note that 0.43 is the smallest λ value for which we

have a proper prior. Overall, the DSGE-VAR(4)’s with λ = 1.0 have the highest posterior

probability.24 This implies that the mixed sample that is used to estimate the VAR has

a higher weight on the DSGE model (artificial observations) than on the VAR (actual

observations). λ̂ represents how much the economic model (DSGE) is able to explain the

real data. More importantly, the results from comparing across different models show that

Models CES consistently outperform Model CD and CD is strongly rejected in favour of

CES when the weight on the DSGE model becomes higher(when λ tends to ∞).

The improved performance of the CES models over the CD applies at the optimum

λ, and the log of the marginal likelihood difference (LL) is around 8. This implies a

Bayes Factor of exp(8) ≃ 2981 favouring the CES models. Beyond the optimum the

LL falls far more rapidly for the CD model reaching a difference close to that for the

actual linearized DSGE model reported earlier. Overall the LL plots then confirm the

fact and the degree to which the CES models are less misspecified. The LL differences,

LL(λ̂) − LL(DSGE), provide measures of the degree of the overall mis-specification for

all our models – here [LL(λ̂) − LL(DSGE)]CD > [LL(λ̂) − LL(DSGE)]CES(σ=0.4) >

[LL(λ̂)− LL(DSGE)]CES2 > [LL(λ̂)− LL(DSGE)]CES2−II

Turning to the impulse responses, Figures 6–13 in Appendix D depict the mean re-

sponses corresponding to a positive one standard deviation shock. The endogenous vari-

ables of interest are the observables in the estimation and each response is for a 20 period

(5 years) horizon. All DSGE impulse responses are computed simulating the vector of

DSGE model parameters at the posterior mean values reported in Tables 4, 5, 7 and 8.

The impulse responses for VAR(4) are obtained using the DSGE-VAR identification pro-

cedure using the best-fitting DSGE-VAR(4) with λ = 1. The surface between the black

dashed lines in each panel covers the space between the first and ninth posterior deciles

of the VAR’s IRFs.

Overall, we find that the sign and magnitude of the DSGE and VAR impulse responses

are quite similar implying that the DSGE model mimics the DSGE-VAR model in, at least,

24Alternatively, one can simply find the ‘optimal’ λ̂ by estimating the parameter λ as one of the deep
parameters (see, for more details, Adjemian et al. (2008)).
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Figure 4: Marginal Likelihood as a Function of λ

some dimensions. Clearly the most important difference comes from fluctuations in factor

shares under the CES specification. Fluctuations of shares translate as well in different

IRFs of interest rate and wage in the two models. Indeed in Figure 6 (labour-augmenting

shock) we can see how the response of the nominal interest rate is significantly different.

Figure 8 (the investment shock) turns out be very interesting, given the highlighted dif-

ference in the estimation of parameters related to investment in section 3.3. We note how

both, wage and interest rate, present a more sluggish response to an investment specific

shock under CES and, as a result, a quite different response of consumption and inflation.

Although they have similar shapes, the IRFs under CES are quantitatively different. In

particular, the shock amplifies the initial responses of some variables. The disagreement

in the IRFs to this particular shock can be explained by the large estimate of the shock

standard deviation reported in Tables 4 and 7.

If we look closely at the responses to monetary policy shock (Figure 9), we find that

both in the models and in the data, consumption, investment and output display a hump-

shaped response to the policy shock. For this shock the IRFs from both CES and CD

models are in agreement with the data and when comparing the performance from CES
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and CD the difference is quantitatively small. Turning to the IRFs to productivity shock

(labour-augmenting), using both the CES and CD settings is able to provide reasonable

responses. More importantly, if we compare each response from each DSGE model with

that from the VAR model, we find that overall the discrepancy between VAR and DSGE

is relatively smaller under the CES production assumption. This suggests that the DSGE

model misspecification is larger with the CD production than with the CES. If we study

carefully the responses to the other shocks, we can generally find the similar conclusion

that CES helps reduce the discrepancy although the IRFs to the investment-specific shock

are the exception. In Figure 10 we can see how the reaction of wage and interest rate are

once again very different after a government spending shock. Indeed it the introduction

of CES specification increases the magnitude of the responses a lot. As a result of those

differences in the dynamics of factor prices we notice how investment and consumption

also present an increase in the amplification of the government spending shock. For price

and wage mark-up shock (Figures 12 and 13) we notice non-negligible differences in the

responses of interest rate, inflation and hours worked.

Some interesting differences between information sets AI and II emerge from the anal-

ysis. We see pronounced hump-shaped responses to a technology shock for the CES model

for the II case (for example in Figure 7 with the capital-augmenting technology shock).

This reflects the learning-about-the-shock effect: that is arising from the rational learning

of the private sector about the unobserved shock using Kalman updating (Levine et al.

(2012)). As a result in this learning process we observe additional persistence from the

responses to the shocks. It is interesting to find that the learning process presents more

sluggish responses of interest rate to an investment specific shock and inflation to the

mark-up shocks under CES2 and II.

To sum up, there also exists some evidence from IRFs in favour of the CES assumption

in DSGE models, but the evidence from the IRFs is not as strong as that obtained by

comparing the moments and the marginal likelihood comparison amongst models which

more clearly reject the CD specification. Overall in terms of matching IRFs both CES

models (with AI and II) provide a good fit of the transmission mechanism from all model

shocks.

32



5 Variance Decomposition of Business Cycle Fluctuations

This section investigates the contribution of each of the structural shocks to the forecast

error variance of the observable variables in the models, i.e. the underlying sources of fluc-

tuations, at various horizons. The results are based on the models’ posterior distribution

reported in Tables 7 and 8. The results are summarized in Figures 14 and Tables 9 and

10 in Appendix D.

In the short run, within a year (t=1,4), movements in real GDP are primarily driven

by the exogenous government spending shock and supply-side shocks (with the dominant

influence of around 70%). For instance, most of the unexpected output fluctuations are

mainly explained by the government spending shock (around 30-40% depending on the

model specifications) and the two mark-up shocks (around 10-20% from each shock).

Within the one-year horizon, the government spending shock dominate, accounting for

the biggest part of the output forecast error variance under Model CD.

Not surprisingly, in the medium to long run the supply shocks and the exogenous

spending shock together continue to dominate, but the contribution of government spend-

ing shock to output variability become smaller from medium to long run and the wage

mark-up shock explain a bigger part of the long-run variations in output. This is espe-

cially the case when the model adopts the CES function form. In contrast, the monetary

policy shock and preference shock have little impact on for output variability, regardless

of forecast horizon. Based on the estimation sample, the investment shock and labour-

augmenting productivity shock are found to be moderate factors behind both short-run

and longer-run movements in output (account for around 10%-11% and around 7%-8%,

respectively). In terms of determining the main driving forces of output, we compare all

three specifications under investigation and find similar and consistent results. Results

from the CES model with two technology shocks show that, in line with its estimated

standard deviation, the capital-augmenting technology shock offers a qualitatively very

small impact to the output fluctuations.

Under the estimated interest rate rule we find that the monetary policy shock is by far

the most determinant influence to the nominal interest rate in the short run (1 quarter),

which explains around 40% of its variance under the assumption of CES technology. The

second largest component is the investment shock. In fact, this shock starts to dominate
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from the medium to long run and the contributions of policy shock declines quite sharply

toward the longer horizon. However, models with CES specification tells a slightly different

story. They show that the main driving factor in the long-run development of nominal

interest rate is mark-up shocks. As expected, the preference shock explains a big part of

consumption variation in the short-medium run, whilst the investment shock contributes

the largest fraction of investment movements in the short run (within a year). In terms of

explaining the consumption and investment fluctuations, we do not find notable differences

whether CD or CES is assumed.

Interestingly, the CD model suggests that the shocks that explain most of inflation

variance in the short run are the two mark-up shocks but the investment shock becomes

more influential from medium to long run (nearly 20%). In contrast, our estimated CES

models show that inflation fluctuations are mostly affected by the policy shock in the

short and medium runs but the the main driving factor becomes the wage mark-up shock,

dominates the investment shock, in the long run. There are only limited effects on inflation

from the productivity shocks and various demand shocks. One possible reason for this is,

according to Smets and Wouters (2007), that the estimated slope of the NK Phillips curve

is small so that only large and persistent changes in the marginal cost will have an impact

on inflation. Finally, the short to medium run contributions of the selected shocks to

the forecast error variance of hours worked are broadly similar across the three models.

In the long run, there are different results between the CES and CD assumptions. In

particular, the model adopting the CD production suggests that the two mark-up shocks

both contribute significantly to the variation in hours worked whereas, when we use the

more general CES setting in our DSGE model, the wage mark-up shock clearly becomes

the completely dominant force behind the long-run movements in hour worked from the

mid-80’s onwards. This finding from the CES model seems to be more plausible.

Overall, the results in this exercise mainly show that, over the sample period, the

supply-side shocks account for much of the medium to long-run variance which is in line

with the business cycle literature and identified VAR studies in industrialized economies.

The disturbances from government expenditures are also important at explaining the

dynamics of macro-variables in the US economy.

34



6 Conclusions

This paper contributes to a rapidly rising literature that brings the CES specification of the

production function into the analysis of business cycle fluctuations. Whilst other papers

including Cantore et al. (2012) and Cantore et al. (2014b) have explored this issue, this

is the first one to confirm decisively the importance of CES rather than CD production

functions by a comparison, in a Bayesian framework, of marginal likelihoods. Indeed in

a marginal likelihood race our estimated best CES model (estimated under II) with an

elasticity well below unity at 0.18 beats the CD production function by a substantial log-

likelihood of 20.01. Assuming equal prior model probabilities, this implies that posterior

model probabilities are 4.8517e+08:1 in favour of the CES.25 The principle reason for this

result is that movements of factor shares with the CES specification help substantially to

fit the data. The marginal likelihood improvement is matched by the ability of the CES

model to get closer to the data in terms of second moments, especially the volatilities of

output, consumption and the real wage, and the autocorrelation functions for inflation and

the nominal interest rate. A comparison with a DSGE-VAR further confirms the ability

of the CES model to reduce model misspecification. The main message then for DSGE

models is that we should dismiss once and for all the use of CD for business cycle analysis.

Despite these positive results, one area where the CES model remains a concern in

terms of model misspecification is in the second moments involving wages and hours. For

example both CD and CES models fail to reproduce the negative correlation between out-

put and hours; furthermore the CES model produces far too much persistence in hours. As

pointed out by Rowthorn (1999), a low capital-labour substitutability is crucial for under-

standing unemployment persistence. This suggests that future research should also look

more closely at the labour market and introduce search-match frictions and unemployment

alongside CES production.26

We pose the question of whether the superior fit of CES over CD production functions is

robust to the information assumptions and whether imperfect information (II) can further

improve the model fit using the CES specification. Indeed we find this is the case. Our

25But see Geweke and Amisano (2011) for an alternative to a marginal likelihood race proposing instead
a ‘prediction pool’ consisting of an optimal linear combination of the marginal likelihoods for the two
models.

26See Cantore et al. (2014a) using a simpler calibrated model.
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model comparison analysis suggests that a combination of incorporating CES and with

information set II offers a decisive improvement in terms of the model fit, dominates the

standard CD model with a very large LL difference. When using II we also find that

the poor performance from the CES models in terms of capturing hours volatility can be

improved. Imposing the II assumption provides strong support to the empirical relevance

of introducing factor-biased technical change and CES production into DSGE models, and

can help improve the potential model misspecification, based on the moment analysis and

estimated DSGE-VARs.

Our CES specification allows us to introduce a capital-augmenting shock alongside the

labour-augmenting variety. However we find this does not bring about an improvement

in the model fit and the contribution of the a capital-augmenting shock in the variance

decomposition is small. We have noted the well-known result that a balanced-growth

path (bgp) requires either CD technology or that technical change must be driven solely

by the labour-augmenting variety. This raises an obstacle to the prospect of unifying

business cycle analysis with long-term endogenous growth based on CES technology. One

possible way forward is to follow León-Ledesma and Satchi (2011); they provide a model

of optimal choice of CES production technology that results in a bgp with both labour

and capital-augmenting technical change. Then CES prevails in the short-run but CD in

the long run, thus allowing a capital-augmenting technical change contribution to long-run

growth. These authors provide an alternative production function with these properties.

A possible line for further research would be to incorporate this into the SW-type model

of this paper and to assess its empirical performance.
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Appendix

A Expressing Summations as Difference Equations

In the first order conditions for Calvo contracts and expressions for value functions we are

confronted with expected discounted sums of the general form

Ωt = Et

[

∞
∑

k=0

βkXt,t+kYt+k

]

(A.1)

where Xt,t+k has the property Xt,t+k = Xt,t+1Xt+1,t+k (for example an inflation, interest

or discount rate over the interval [t, t+ k]).

Lemma

Ωt can be expressed as

Ωt = Xt,tYt + βEt [Xt,t+1Ωt+1] (A.2)
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Proof

Ωt = Xt,tYt + Et

[

∞
∑

k=1

βkXt,t+kYt+k

]

= Xt,tYt + Et

[

∞
∑

k′=0

βk
′+1Xt,t+k′+1Yt+k′+1

]

= Xt,tYt + βEt

[

∞
∑

k′=0

βk
′

Xt,t+1Xt+1,t+k′+1Yt+k′+1

]

= Xt,tYt + βEt [Xt,t+1Ωt+1] !

B Proof of Price and Wage Dispersion Results

For prices and without indexation, in the next period, ξp of these firms will keep their

old prices, and (1− ξp) will change their prices to PO
t+1. By the law of large numbers, we

assume that the distribution of prices among those firms that do not change their prices

is the same as the overall distribution in period t. It follows that we may write

∆p,t+1 = ξp

∫

m no change

(

Pt(m)

Pt+1

)−ζ

+ (1− ξp)

(

P 0
t+1

Pt+1

)−ζ

= ξp

(

Pt

Pt+1

)−ζ ∫

m no change

(

Pt(m)

Pt

)−ζ

dm+ (1− ξp)

(

P 0
t+1

Pt+1

)−ζ

= ξp

(

Pt

Pt+1

)−ζ ∫

m

(

Pt(m)

Pt

)−ζ

dm+ (1− ξp)

(

P 0
t+1

Pt+1

)−ζ

= ξpΠ
ζ
t+1∆p,t + (1− ξp)

(

P 0
t+1

Pt+1

)−ζ

(B.1)

The generalization to indexation is straightforward.
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C Posterior Distribution

parameter prior mean post. mean CD (SW07) post. mean CES 5% CES 95% CES Prior pstdev CES

ρZL 0.5 0.9600 (0.95) 0.9443 0.9009 0.9924 beta 0.2
ρZK 0.5 N/A (N/A) 0.4441 0.1134 0.7595 beta 0.2
ρG 0.5 0.9509 (0.97*) 0.9631 0.9449 0.9829 beta 0.2
ρZI 0.5 0.6785 (0.71) 0.7429 0.6232 0.8629 beta 0.2
ρP 0.5 0.6877 (0.89*) 0.9744 0.9527 0.9965 beta 0.2
ρW 0.5 0.9124 (0.96*) 0.9656 0.9343 0.9965 beta 0.2
ρB 0.5 0.3765 (N/A) 0.9311 0.0929 0.9623 beta 0.2
εZL 0.1 0.7258 (0.45) 0.6833 0.5894 0.7718 invg 2.0
εZK 0.1 N/A (N/A) 0.0744 0.0247 0.1356 invg 2.0
εG 0.5 2.1599 (0.53*) 1.9904 1.7479 2.2286 invg 2.0
εZI 0.1 4.1634 (0.45) 3.0647 1.7292 4.3950 invg 2.0
εP 0.1 0.6097 (0.14*) 0.3756 0.3092 0.4386 invg 2.0
εW 0.1 1.1304 (0.24*) 0.9482 0.8004 1.0957 invg 2.0
εM 0.1 0.1505 (0.24) 0.1579 0.1360 0.1809 invg 2.0
εB 0.1 1.3639 (N/A) 1.4997 1.0848 1.9270 invg 2.0

Table 7: Posterior Results for the Exogenous Shocks

parameter prior mean post. mean CD (SW07) post. mean CES 5% CES 95% CES Prior pstdev CES

σ 1 1 (1) 0.1542 0.0603 0.2434 gamma 1
h 0.4 0.5970 (N/A) 0.5136 0.3741 0.6509 beta 0.1
φ 0.5 0.8832 (0.54) 0.7860 0.7145 0.8625 beta 0.15
φX 2 2.6754 (2.87) 1.9210 0.8640 2.9677 norm 1.5
σc 1.5 2.0932 (1.38*) 1.1571 0.5539 1.7211 norm 0.3750
χ 0.7 0.5553 (0.71*) 0.3445 0.2191 0.4620 beta 0.1
ξw 0.5 0.6016 (0.7) 0.4577 0.3606 0.5537 beta 0.1
ξp 0.5 0.7770 (0.66) 0.5677 0.4808 0.6484 beta 0.1
γw 0.5 0.4340 (0.58) 0.4489 0.2047 0.6855 beta 0.15
γp 0.5 0.3062 (0.24) 0.3512 0.1325 0.5577 beta 0.15
α 0.3 0.2052 (0.19) 0.3553 0.2721 0.4367 norm 0.05
απ 1.5 2.2379 (2.04) 2.3771 2.0900 2.6506 norm 0.25
αr 0.75 0.8227 (0.81) 0.7911 0.7523 0.8301 beta 0.1
αy 0.125 0.050 (0.08) 0.0667 0.0331 0.1007 norm 0.05

conspie 0.625 0.5502 (0.78) 0.5732 0.5069 0.6371 gamma 0.1
ctrend 0.4 0.4640 (0.43) 0.4975 0.4584 0.5379 norm 0.1

Table 8: Posteriors Results for Model Parameters
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Figure 5: Priors and Posteriors distributions (Model CES2-II)
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Figure 6: Bayesian IRFs - Labour-augmenting shock♦
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Figure 7: Bayesian IRFs - Capital-augmenting shock

♦ BVAR-DSGE(λ̂ = 1.1): the dashed lines are the first and ninth posterior deciles of the VAR’s IRFs. The bold
black curve is the posterior mean of the VAR’s IRfs.
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Figure 8: Bayesian IRFs - Investment-specific shock
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Figure 9: Bayesian IRFs - Monetary policy shock
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Figure 10: Bayesian IRFs - Government spending shock
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Figure 11: Bayesian IRFs - Preference shock
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Figure 12: Bayesian IRFs - Price mark-up shock
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Figure 13: Bayesian IRFs - Wage mark-up shock
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Figure 14: Variance Decomposition
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Shocks of the Estimated DSGE Models
Forecast Observable Productivity Productivity Government Mark-up Investment Mark-up Monetary Preference
horizon variables (K) (L) spending (price) (wage) policy

t=1 Output 0.00 10.12 22.68 25.02 7.97 26.64 5.95 1.61
Consumption 0.04 8.91 23.44 17.08 3.14 21.44 8.46 17.49
Investment 0.00 4.77 0.00 12.74 57.90 13.50 0.38 10.71
Inflation 0.22 10.53 2.41 22.72 12.92 8.06 22.66 20.48
Real wage 0.05 2.75 5.46 36.17 0.34 49.75 1.57 3.92
Interest rate 0.17 6.56 3.16 13.94 11.53 4.13 43.91 16.60
Hours worked 0.01 15.85 21.60 21.75 7.48 26.56 5.38 1.37

t=4 Output 0.02 10.14 19.29 24.25 6.61 28.95 6.22 4.51
Consumption 0.05 8.85 22.17 16.63 3.98 22.40 10.11 15.81
Investment 0.00 5.74 0.01 15.59 46.06 18.29 0.30 14.00
Inflation 0.15 8.56 1.65 16.45 15.47 11.29 23.26 23.18
Real wage 0.05 2.87 5.43 37.01 1.15 48.04 1.70 3.74
Interest rate 0.08 6.35 2.62 10.02 28.31 7.25 12.60 32.77
Hours worked 0.01 3.99 8.86 31.43 6.17 46.90 1.34 1.29

t=10 Output 0.02 10.17 19.16 24.05 7.02 28.85 6.18 4.54
Consumption 0.05 8.39 21.16 15.92 8.02 21.14 9.51 15.81
Investment 0.00 5.26 0.02 14.07 50.39 16.76 0.28 13.22
Inflation 0.14 8.77 1.53 16.64 14.83 14.47 21.00 22.62
Real wage 0.05 2.76 5.24 35.22 2.88 47.77 1.62 4.45
Interest rate 0.06 5.56 2.75 7.67 28.95 7.39 9.55 38.07
Hours worked 0.00 1.68 6.31 32.87 3.42 52.94 0.51 2.28

t=100 Output 0.02 10.29 18.84 23.91 7.00 29.34 6.04 4.57
Consumption 0.05 8.28 20.65 16.14 8.31 21.28 9.11 16.17
Investment 0.00 5.55 0.02 14.27 47.79 17.81 0.26 14.29
Inflation 0.08 7.92 0.91 29.09 9.51 24.34 11.95 16.21
Real wage 0.05 2.83 5.11 34.42 3.26 47.96 1.54 4.82
Interest rate 0.03 6.31 1.73 21.47 16.35 21.26 4.44 28.41
Hours worked 0.00 0.77 4.24 45.15 1.40 46.83 0.20 1.40

Table 9: Variance Decomposition - Model CES (in Percent)♦

♦ All the variance decomposition is computed from the model solutions (order of approximation
= 1). The results are based on the models’ posterior distribution.
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Shocks of the Estimated DSGE Models
Forecast Observable Productivity Productivity Government Mark-up Investment Mark-up Monetary Preference
horizon variables (K) (L) spending (price) (wage) policy

t=1 Output 0.00 3.46 43.84 10.14 11.01 10.43 4.63 16.48
Consumption 0.00 1.62 0.12 5.00 0.42 12.27 8.55 72.02
Investment 0.00 10.76 3.69 13.32 57.16 12.65 1.33 1.08
Inflation 0.00 19.96 3.63 27.93 11.31 24.25 8.88 4.05
Real wage 0.00 1.37 1.98 40.26 1.35 41.45 3.38 10.20
Interest rate 0.00 10.28 3.05 14.01 7.05 12.07 50.67 2.87
Hours worked 0.00 24.55 34.46 6.96 8.57 9.59 3.47 12.41

t=4 Output 0.00 9.50 31.80 12.61 8.36 20.13 3.53 14.08
Consumption 0.00 7.45 1.98 8.88 0.28 26.66 5.68 49.08
Investment 0.00 14.69 5.18 14.09 47.21 16.44 1.22 1.17
Inflation 0.00 17.87 3.38 18.26 17.98 27.14 12.29 3.07
Real wage 0.00 6.11 1.97 43.57 1.93 34.20 3.08 9.14
Interest rate 0.00 16.14 5.78 12.10 24.89 24.08 13.22 3.79
Hours worked 0.00 6.47 13.50 21.83 9.51 42.42 2.59 3.67

t=10 Output 0.00 9.29 30.15 13.51 8.99 20.92 3.79 13.35
Consumption 0.00 7.47 2.10 9.51 0.65 27.38 6.16 46.72
Investment 0.00 13.33 4.82 14.08 48.50 16.66 1.20 1.41
Inflation 0.00 17.82 3.34 18.65 18.30 26.45 12.13 3.30
Real wage 0.00 6.29 2.14 43.05 2.06 34.30 3.48 8.68
Interest rate 0.00 14.77 5.71 9.85 34.94 21.72 10.02 2.98
Hours worked 0.00 3.37 6.93 21.10 5.06 60.59 1.22 1.73

t=100 Output 0.00 9.42 29.38 13.58 8.78 22.12 3.70 13.01
Consumption 0.00 7.46 2.14 9.42 0.99 28.89 5.95 45.15
Investment 0.00 13.56 5.03 14.09 47.74 17.04 1.17 1.37
Inflation 0.00 25.67 3.30 16.50 16.55 24.67 10.45 2.86
Real wage 0.00 6.43 2.09 44.02 2.03 33.54 3.40 8.48
Interest rate 0.00 25.00 6.78 8.48 29.90 19.26 8.15 2.44
Hours worked 0.00 3.21 7.48 19.43 4.54 62.88 1.01 1.45

Table 10: Variance Decomposition - Model CD (in Percent)♦

♦ All the variance decomposition is computed from the model solutions (order of approximation
= 1). The results are based on the models’ posterior distribution.
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