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Abstract

We model the di↵usion of two types of information through a population under the
assumption that communication time is limited. When a meeting between individuals oc-
curs, at most one information can be communicated. Preferences over information types
divide the population into two groups, and if a choice has to be made about which infor-
mation to communicate, members of either group will choose their preferred information.
We find that crowding out of information does occur, but information is rarely eradicated
entirely. Somewhat surprisingly, the parameter values under which a unique information
would survive in the population are su�cient for both information to survive. Only if in-
formation preferences in the entire population are aligned, i.e., every individual prefers to
communicate the same information, does the second information die out. We apply our
framework to answer questions on the impact that segregation has on information di↵u-
sion and polarization. We find that segregation unambiguously increases polarization and
decreases the proportions of informed individuals, and derive the conditions under which
agents endogenously choose to segregate.
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1 Introduction

Social networks are acknowledged as a crucial factor in the di↵usion of information in a society, as

highlighted in seminal work of Lazarsfeld, Berelson, and Gaudet (1968) and Katz and Lazarsfeld

(1970). Given the importance of information in the choices that agents make, or in how they form

beliefs about the state of the world, a large literature has studied the di↵usion of information on

social networks.1 However, so far the literature has focused almost exclusively on the di↵usion

of one unique information (or, in general, a unique state).2 Instead, it seems more plausible

that whenever two agents meet, the set of topics they could potentially discuss is larger than

the set of topics they talk about. Given that communication time, or the number of mutually

interesting topics, is limited, agents choose what to talk about. This creates opportunity costs

in information transmission, as talking about one topic implies not to talk about another. How

this will a↵ect the di↵usion process of information is not immediately obvious.

In the present paper, we address this question by introducing two distinct types of informa-

tion, or topics (A and B), into a standard di↵usion process, the Susceptible-Infected-Susceptible

(SIS) framework.3 This allows us to answer a number of questions relating to the di↵usion

of information, in particular, the extent to which two information crowd each other out, how

this is related to the network characteristics, and how it depends on the relative interest in the

population for either topic.

Our model exhibits three main features. First, as in the standard SIS framework, we

consider a population of an infinite number of agents, in which individuals transition between

being uninformed (susceptible, S) or informed (infected, I). Agents transition between states

either if an agent uninformed of a topic becomes informed about it during a meeting, or if he

forgets the topic. While forgetting occurs at a constant, exogenous rate, how likely agents are

to become informed about a topic will depend on the proportion of the population informed

1These studies include questions of how information is aggregated, the impact of social networks on labor
market outcomes, voting, product or technology adoption, and many more. It is not our aim to provide an
exhaustive list here. For an excellent overview of the literature, see, e.g., Goyal (2012) or Jackson (2008b) and
the references therein.

2Notable exceptions are a few papers that discuss the impact of competition in models of influence maximiza-
tion, e.g., Goyal and Kearns (2012), which we discuss in more detail below. Their di↵usion processes and the
questions they pose di↵er significantly from ours.

3This framework has been developed in an epidemiological context, see Bailey et al. (1975), or Pastor-Satorras
and Vespignani (2001a,b, 2002). Within economics, it has been adapted in recent years to study the di↵usion of
a harmful state, information, or a behavior, by, e.g., Jackson and Rogers (2007), López-Pintado (2008), Jackson
and Yariv (2010), Jackson and López-Pintado (2013), Galeotti and Rogers (2013b), or Galeotti and Rogers
(2013a).
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of it. In the long run, the proportion of the population in each state will remain constant,

and our focus is this steady-state, or prevalence, of information. By introducing two types of

information, we increase the set of infectious states to I = {I
A\B , IB\A, IAB

}, but otherwise the

process is standard.

The second main feature, which goes beyond the standard model, is an introduction of

opportunity costs into the model, which we achieve by assuming that information A and B

have to share an agent’s limited communication time. Whenever two agents meet, each can

communicate at most one information.

Finally, we relate the choice of which information to communicate to intrinsic preferences

of agents. We assume that some agents, group A, prefer topic A, and the complement, group

B, prefer topic B. If an agent is in state I
AB

, he will communicate information A only if he

belongs to group A, and information B otherwise.

While the model is highly stylized, it captures a basic trade-o↵ that exists in information

di↵usion, and its simplicity allows us to derive clean and stark results. Our first set of results

(section 2.1) shows that information is extremely resilient. This is in line with casual observation

that so many obscure bits of information survive.4 As long as a strictly positive fraction of the

population prefers either information l, both of them exhibit a strictly positive steady-state (in

which a positive fraction of the population is informed about l), under the exact same network

parameter values that are necessary for a single information to exhibit a positive steady-state.

While crowding out does occur, and can be quantitatively significant, it is only ever complete if

the entire population strictly prefers one topic over another. In this case, there are no parameter

values that would allow the second information to survive in the population.

We analyze the extent of crowding out in section 3. Our results confirm the intuitive asser-

tions that the information preferred by more agents will also have a larger prevalence, which is

always bounded above by the prevalence in the one-information case. A less obvious result is

that crowding out depends not only on the measure of interest a given information receives, but

also on the underlying parameters of the di↵usion process. Relative crowding out of the two

information is una↵ected by changes in these parameters, and only depends on relative inter-

est. However, the prevalence of information A relative to the prevalence of B depends on the

4It is also in line with the general observation that once something is made public, it seems to be virtually
impossible to retract it.
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network parameters in such a way that fostering the spread of information overall reduces the

relative prevalence of A over B if A is preferred by the majority of the population. While both

information benefit from improvements in the information transmission process, the minority

information gains relatively more.

These results highlight the importance of interest in the population for the possibility and

extent to which policy makers might be able to suppress news items.5 Conversely, the di�culties

in eradicating (mis-)information.

Our final set of results relates information di↵usion to homophily, the tendency of individuals

to interact relatively more with others that are similar to themselves. We address this question

in section 4, in which we compare a society in which agents interact randomly, as in the earlier

sections, with one in which agents are perfectly segregated according to their information inter-

ests. As a corollary from our earlier results, we find that if groups are segregated, within each

group, only the preferred information exhibits a strictly positive prevalence. In addition, in an

integrated society, the prevalence of both information is larger than under segregation. On the

other hand, fewer agents are informed about their preferred topic in an integrated society. We

go beyond the simple di↵usion of information and explicitly endow agents with utilities from

being informed, and being informed of the preferred topic provides a higher utility. We use this

framework to derive the conditions under which agents themselves would prefer to segregate.

In particular, we find that (i) segregation is more likely to occur if the ratio of the preferred

over the non-preferred information is larger, that (ii) the minority group prefers segregation for

smaller values of this ratio, and that (iii) segregation is less likely the denser the network.

The rise of the Internet and, more recently, Online Social Networks (OSNs) has arguably

made it easier for individuals to segregate. This has sparked a discussion on how such segregation

might bias news/information consumption and learning and increase polarization in a population

(see, e.g., Baccara and Yariv (2008), Rosenblat and Mobius (2004), or Sunstein (2009)). While

empirical results suggest that online news consumption, while biased, does not have a significant

impact on polarization (Flaxman, Goel, and Rao (2013), Gentzkow and Shapiro (2010)), our

results suggest that even with an unbiased consumption of news, or without any additional

5It seem taken for granted that policy makers might be induced to try and “bury” unfavorable news by
releasing them simultaneously with other major events. In the UK, one high-profile example of this was the case
of spin doctor Jo Moore. She resigned her position after emails of hers were leaked in which she suggested on 11
September 2001 that it was “a very good day to get out anything we want to bury”. Our model shows that if
this practice works, it is unconnected to media coverage, but purely due to di↵erential interest in the population.
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assumptions on biased learning/updating, segregation might well lead to polarization due to the

fact that the less preferred information is simply not talked about as much in a segregated group.

In this sense, OSNs might indeed increase polarization. On the other hand, online technology

might also increase the density of the social network. This in turn will lower the likelihood that

the population segregates into interest groups.

Related Literature

Within economics, the literature we are most closely related to is the network literature

on di↵usion processes that build on the SIS framework, such as Jackson and Rogers (2007),

López-Pintado (2008), or Jackson and Yariv (2010), but also Galeotti and Rogers (2013b), and

Galeotti and Rogers (2013a).6 While we share the basic methodology of the SIS framework

with this literature, in all of the above papers the focus is the di↵usion of a unique state.

Di↵usion of competing products or innovations has been analyzed in models of influence

maximization, in particular by Bharathi, Kempe, and Salek (2007), Borodin, Filmus, and Oren

(2010), Dubey, Garg, and De Meyer (2006) and Goyal and Kearns (2012). Models of influence

maximization di↵er significantly from an SIS di↵usion process, both with respect to the mod-

eling characteristics, and the questions that they wish to answer. They are based on threshold

models, in which contagion occurs on a fixed network and nodes never recover. The central

question in this strand of literature is which nodes a player with a fixed budget would choose to

infect to maximize the contagion of his product (in Goyal and Kearns (2012), the focus is on how

the e�ciency of a “seeding” strategy depends on the precise di↵usion process and its interaction

with the network structure) rather than questions of prevalence, or crowding out, such as we

consider. In all of the above papers, being infected with one product precludes infection with

another. Consequently, while this literature also considers competing di↵usion processes, our

own results are complementary to the findings in this literature.

To the best of our knowledge, ours is the first paper that studies how multiple information

di↵use simultaneously on a network under communication constraints. The intrinsic trade-o↵

between information in the present paper is essential to study questions such as the resilience of

6This literature itself builds on work on epidemiological models in the natural sciences, such as Bailey et al.
(1975), Dodds and Watts (2004) Pastor-Satorras and Vespignani (2001b,a), Pastor-Satorras and Vespignani
(2002), or Watts (2002). More broadly, the paper is also related to network di↵usion processes such as, e.g.,
learning, best response dynamics, or explicit adoption decisions. These processes however di↵er significantly
from the SIS model we employ. See, e.g., Jackson (2008b) for an excellent introduction to the literature.
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information, or the impact of di↵erential media attention on information prevalence. Similarly,

our results on the impact of homophily on information di↵usion rests exclusively on the fact

that agents choose which information to pass on, which is a very di↵erent, and complementary

channel to earlier results on the impact of homophily on information transmission, such as in

Golub and Jackson (2012) or even the seminal work of Granovetter (1973). Indeed, our results on

the impact of segregation on polarization are complementary to the work of Baccara and Yariv

(2008), Flaxman, Goel, and Rao (2013), Gentzkow and Shapiro (2010), or Rosenblat and Mobius

(2004), who study the impact of biased news/information consumption on polarization. In our

model, agents in each group are initially informed to the same amount of both information, and

the non-preferred information is not strategically withheld. Polarization arises from the rather

intuitive assumption that agents will choose to communicate their preferred information.

We are most closely related to Prakash, Beutel, Rosenfeld, and Faloutsos (2012) and Beutel,

Prakash, Rosenfeld, and Faloutsos (2012), who model the di↵usion of two competing products

on a graph in an SIS framework. They find that the stronger product, which is defined as

the product that has a larger infection rate, is the only product that survives if competition is

“strong enough”. This is in stark contrast to our case, in which for almost all parameter values

both information survive. The di↵erence to our results stems from the fact that in Prakash,

Beutel, Rosenfeld, and Faloutsos (2012) and Beutel, Prakash, Rosenfeld, and Faloutsos (2012),

the harshness of competition is determined by the likelihood that an agent may use more than

one product. In particular, Prakash, Beutel, Rosenfeld, and Faloutsos (2012) establishes that if

the use of one product perfectly “immunizes” against a second product, the stronger product

is the only one surviving. I.e., their model disregards one of the potential states in which an

individual can be in our model, that of being aware of both information. Their results are a

natural analogue to our corner case in which one information is deemed more interesting by the

entire population. The extension in Beutel, Prakash, Rosenfeld, and Faloutsos (2012) shows that

the result of Prakash, Beutel, Rosenfeld, and Faloutsos (2012) continues to hold if immunization

is not complete, but above a certain threshold. Again, in contrast to our model, competition

is at the level of the infection, not at the level of the di↵usion, which is a crucial distinction.

While using at most one of two competing products is likely a natural assumption for products

(or in some cases diseases), we believe that for information, the state of possessing multiple
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information at the same time is a more reasonable assumption.

2 Di↵usion Process

2.1 Propagation Mechanism

The model of information transmission in the present paper builds on the SIS (Susceptible-

Infected-Susceptible) model of the propagation of a disease or (harmful) state. We consider a

population with an infinite number of agents. In this population, two topics A and B, are of

interest to agents. Each agent can either be informed or uninformed about each topic. Then,

an agent can be in one of four states: He may be uninformed of both A and B (which we call

Susceptible, S), or in one of three “infection” states: informed of A but not B (I
A\B); informed

of B but not A (I
B\A); or informed of both A and B (I

AB

). The set of possible states is then

{S, I
A\B , IB\A, IAB

}. At any time t, each agent meets k others. If an agent susceptible to

information l 2 {A,B} gets informed about it at a meeting, or when he forgets information

l 2 {A,B}, he transitions between states. We denote by ⌫ the rate at which information is

transmitted at a meeting and by � the rate at which it is forgotten. In line with the previous

literature and the epidemiological roots of the model, we refer to ⌫ as the (per contact) infection

rate and � as the recovery rate.

At each meeting, at most one information can be communicated. This assumption is central

and embodies the fact that communication time between individuals is limited; only a finite

number of topics can be discussed at any meeting.7 This constraint is only relevant for indi-

viduals in state I
AB

, who have to choose which information to pass on. We endow agents with

preferences over the two information and assume that the preferred information is the one that

is communicated, conditional on communication taking place at all. A proportion ⌫
A

2 [0, 1]

of the population prefers A, while the remaining proportion ⌫
B

= 1 � ⌫
A

prefers information

B.8 Agents who prefer A are denoted group A and agents who prefer B are members of group

7Equivalently, one can think of the constraint being on the number of topics that may be of interest to the
parties at a meeting. We call the constraint communication time for convenience and because we believe that it
possesses the clearest interpretation within our model.

8This preference can be interpreted as an agent finding a particular topic simply more interesting. Our
results will not change if we instead assume that ⌫l is the probability that a single agent in state IAB passes on
information l. This assumption would not allow us to investigate questions of the e↵ect of segregation according
to information interests, though.
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B. Note that if agents are either in state I
A\B or I

B\A, their information preferences will not

matter for the rate at which they pass on information l.

Formally, we define ⇢
A\B , ⇢B\A and ⇢

AB

as the proportion of the population in the three

infection states, I
A\B , IB\A, and I

AB

, respectively. By definition, the following relationships

hold

⇢
A

= ⇢
A\B + ⇢

AB

⇢
B

= ⇢
B\A + ⇢

AB

⇢ = ⇢
A\B + ⇢

B\A + ⇢
AB

.

(1)

Denote by ✓
l

the probability that, conditional on information being communicated, a ran-

domly encountered individual will transmit information l. In the one-information case, ✓
l

would

be every individual aware of information l, but in the present model it is given by

✓
A

= ⇢
A\B + ⌫

A

⇢
AB

= ⇢
A

� ⌫
B

⇢
AB

,

✓
B

= ⇢
B\A + ⌫

B

⇢
AB

= ⇢
B

� ⌫
A

⇢
AB

,

(2)

as not everybody aware of an information will also pass it on. This is the essence through which

the existence of a second information �l imposes an externality on the di↵usion of l.

The rate at which a susceptible individual becomes infected with information l is k⌫✓
l

. We

assume that the infection rate ⌫ is su�ciently small that these rates approximate the chance

that an individual becomes informed of l through his k independent interactions at t. Similarly,

we assume that the recovery rate � is su�ciently small such that � approximates the probability

that an agent forgets a particular topic at time t.9We assume that A and B di↵use through

the population independently of each other. Knowledge of one does not make knowledge of the

other any more or less likely. The information propagation process exhibits a steady-state if the

9In essence, this assumption implies that at most one information is forgotten at any t, as the probability that
both information are forgotten within a small time frame, ��2, goes to zero as � goes to zero. This assumption
simplifies the analytical derivations considerably, but also ensures that no bias against information is introduced:
As at most one information can be transmitted at a meeting, to allow more than one information to be forgotten
at any t would introduce an additional negative impact on the survival of information.
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following three di↵erential equations are satisfied,

@⇢
A

@t
= (1� ⇢

A

)k⌫✓
A

� ⇢
A

� = 0, (3)

@⇢
B

@t
= (1� ⇢

B

)k⌫✓
B

� ⇢
B

� = 0, (4)

@⇢
AB

@t
= (⇢

A

� ⇢
AB

)k⌫✓
B

+ (⇢
B

� ⇢
AB

)k⌫✓
A

� 2⇢
AB

� = 0, (5)

i.e., the proportion of agents who become aware of an information at t equals the proportion of

agents who forget it.10

2.2 Steady-States and Di↵usion Threshold

Define � = k⌫

�

as the di↵usion rate of information. The (implicit) steady-states of ⇢
A

, ⇢
B

, and

⇢
AB

are

⇢
A

=
�✓

A

1 + �✓
A

, (6)

⇢
B

=
�✓

B

1 + �✓
B

, (7)

⇢
AB

=
�2✓

A

✓
B

(1 + �✓
A

)(1 + �✓
B

)
= ⇢

A

⇢
B

, (8)

and we denote the values of ⇢
A

and ⇢
B

that solve equations (6)-(8) as the prevalence of infor-

mation A and B. Due to the inherent symmetry of the model, in the remainder of the paper

we focus, without loss of generality, on the case in which ⌫
A

� ⌫
B

.

Remark 1. For any given di↵usion rate � � 0, there exists a steady-state in which ⇢
l

= 0 for

l 2 {A,B}.

The existence of a steady-state in which nobody is informed is trivial. If the initial conditions

are such that no agent is informed about a topic, nobody ever will be. Questions of interest

instead concern the existence of a steady-state in which ⇢
l

> 0 for either or each l 2 {A,B},
10We assume that � is the unique rate at which both A and B are forgotten. There are numerous alternative

ways to model forgetting, e.g., the preferred information might be forgotten at a lower rate, or being aware of
multiple pieces of information increases the rate at which all of them are forgotten. On the other hand, it might
also be the complexity of an information that is the determining factor in forgetting, something that is entirely
exogenous to the model. The unique value of � allows us to derive very cleanly the impact that the existence of
a second information has on the di↵usion process, without additional complications.
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and its characteristics. To analyze these, we first define the following concept, which is adapted

from López-Pintado (2008).

Definition 1. For each l 2 {A,B}, let �⇤
l

be such that the following two conditions are satisfied

for all � > �⇤
l

:

1. There exists a positive steady-state for information l, i.e., a steady-state in which a strictly

positive fraction of the population is informed about it. For all �  �⇤
l

, such a positive

steady-state does not exist for information l.

2. The positive steady-state is globally stable. That is, starting from any strictly positive

fraction of agents informed about l, the dynamics converge to the positive steady-state.

For all �  �⇤
l

, the dynamics converge to a steady-state in which no agent is informed

about l.

We call �⇤
l

the di↵usion threshold of information l.11

Furthermore, we are interested in how the di↵usion threshold and the prevalence of either

information l compare to the case in which information l was the unique information di↵using

on the network. We therefore define the following concepts.

Definition 2. Let �
d

be the di↵usion threshold of information in case a unique information

di↵uses through the network.

Definition 3. Let ⇢̃ denote the positive steady-state of an information if it is the unique

information that di↵uses through the network.

For the present di↵usion process, it has been established (see, e.g., López-Pintado (2008)

or Jackson (2008b) and the reference therein) that �
d

= 1 and ⇢̃ = 1 � ��1. We are now

in a position to state our first set of results regarding the existence and stability of positive

steady-states for either information l 2 {A,B}.

Proposition 1. The di↵usion threshold �⇤
l

depends on the value of ⌫
l

:

1. If ⌫
l

2 (0, 1) for each l 2 {A,B}, then �⇤
A

= �⇤
B

= �
d

= 1.

11López-Pintado (2008) actually defines a critical threshold that determines whether a positive steady-state
exists, and a di↵usion threshold which determines the stability properties of this positive steady-state. In the
present setting, in which every agent has the same number of meetings, the two thresholds always coincide,
allowing us to define the di↵usion threshold over both the existence and the stability of a positive steady-state.
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2. If ⌫
l

= 0 for some l 2 {A,B}, there exists no finite value of �⇤
l

.

3. If ⌫
l

= 1 for some l 2 {A,B}, �⇤
l

= �
d

= 1. For � > 1, ⇢
l

= ⇢̃.

Independent of the value of ⌫
l

, there exists at most one positive steady-state.

Proof. See Appendix A.

Our result that �⇤
l

is identical to �
d

for almost all values of ⌫
l

highlights the enormous

resilience of information. Any parameter values of infection rate ⌫, recovery rate �, and density

of the network (the number of meetings k) that are su�cient for a positive prevalence of one

information are also su�cient for positive prevalences of two information, as long as a strictly

positive proportion of the population prefers either information.

The independence of the di↵usion threshold from the number of topics that propagate

through the network is striking and deserves some closer attention. In epidemiology, it is a

well-established result that an infection exhibits a positive prevalence if its basic reproduction

number (R), the number of agents to which an infected agent spreads the disease on average,

is larger than 1. This in turn explains why for a unique information, the di↵usion threshold is

�
d

= 1. As � = ⌫k

�

, it is exactly the average number of nodes that “catch” information from an

informed node, i.e., � = R. In the present model, though, R
l

 �, as not every agent that is

given the chance to communicate l will do so. Instead, out of all nodes that are aware of A, a

proportion ⇢
B

are also aware of B, and of those, a proportion ⌫
B

will never communicate A at

a meeting. Hence, only a proportion 1� ⌫
B

⇢
B

of all agents aware of A would ever communicate

it. I.e., the basic reproduction number for information l is

R
l

= �(1� ⌫�l

⇢�l

). (9)

Remark 2. For either l 2 {A,B}, the following is true for R
l

: (i) If ⌫
l

2 (0, 1), then R
l

> 1 if

and only if � > 1. (ii) If ⌫
l

= 1, then R
l

= �. (iii) If ⌫
l

= 0, then R
l

= 1, independent of the

value of �.

The results in Remark 2 are derived in Appendix E.12 It is true that, while the basic

reproduction number R
l

is in general di↵erent from � (except for the case of ⌫
l

= 1), it is

12The argument makes use of the explicit solutions of ⇢A and ⇢B , which are derived in Appendix B.
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nevertheless larger than 1 only if � > 1. Intuitively, this is because an increase in � increases

both ⇢
A

and ⇢
B

: If � is just slightly above 1, information l has only a very low di↵usion rate, but

so does information �l, which implies a low value of ⇢�l

, in which case the proportion of agents

aware of l and willing to spread it is almost 1. The positive, direct, e↵ect of an increase in � on

l through increasing its di↵usion rate is always larger than the indirect, negative, e↵ect it has

on l through increasing ⌫�l

⇢�l

. The two e↵ects are identical and o↵set each other if ⌫�l

= 1.

In this case, it can be shown13 that ⇢�l

= 1� ��1, which leads to R
l

= 1, independently of �.

Proposition 1 explains the longevity of diverse rumors, gossips, or beliefs: As long as some

people care about these topics enough to talk about them, once the seed exists, the information

will never die out. Media coverage matters for prevalence only insofar as it needs to provide

some initial seed. As the positive steady-states are unique and globally stable, the prevalence

of an information is, per se, unrelated to the size of any media coverage it receives. In other

words, if people are interested in a piece of news, it can never be buried completely. However,

in the proceeding section we show that the magnitude of an information’s prevalence depends

positively on the overall interest that exists in the population, ⌫
l

. While quite intuitive in itself,

this result also implies that if the amount of media coverage adequately reflects interest in the

population, we will observe that news that have received higher media coverage will also exhibit

a larger prevalence.

3 Crowding Out of Information

Independently of ⌫
l

, if �  1, no positive steady-state exists, neither in the single information

case nor in the case of two information di↵using. Hence, in the remainder of the paper, we focus

on the more interesting case of � > 1 and on positive prevalences.

We know from Proposition 1 that if ⌫
l

= 1, ⇢
l

= 1���1, identical to the one-information case.

This identity is not surprising: As ⌫
l

= 1, information l does not in fact face any competition

from �l. We define crowding out of an information as follows:

Definition 4. For any ⌫
l

2 [0, 1], crowding out of information l is given by ⇢̃� ⇢
l

.

13see Appendix A
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Note that for ⌫
l

= 1, crowding out of information l is zero, while it is complete for information

�l. To analyze crowding out of information for values of ⌫
l

2 (0, 1), we derive the positive

prevalence of A and B. Let

C ⌘ �(1� �⌫
A

⌫
B

) +
⇥

(1� �⌫
A

⌫
B

)2 � 4⌫
A

⌫
B

(1� �)
⇤

1
2 ,

then we can express the positive steady-states of A and B as:

✓
A

= C

2�⌫B
) ⇢

A

= C

2⌫B+C

(10)

✓
B

= C

2�⌫A
) ⇢

B

= C

2⌫A+C

. (11)

The derivations of (10) and (11) can be found in Appendix B. The following Lemma for-

malizes that the existence of two information di↵using simultaneously indeed causes them to

(partially) crowd each other out, and establishes the dependence of the steady-states on ⌫
l

and

�.

Lemma 1. 1. For any finite � > 1 and any ⌫
l

2 (0, 1), ⇢
l

is strictly increasing in ⌫
l

. If, in

addition, ⌫
A

� ⌫
B

, then

0 < ⇢
B

 ⇢
A

< ⇢̃

holds, with strict inequality if ⌫
A

> ⌫
B

.

2. For any ⌫
l

2 (0, 1), ⇢
l

is strictly increasing in �.

Proof. See Appendix C.

As stated in the preceding section, it is indeed interest in an information that determines

its prevalence in the population. Lemma also 1 shows that, although crowding out is never

complete for interior values of ⌫
l

, it is also never zero. The fact that communication time is

fixed and has to be split between di↵erent topics by itself demands that fewer people are aware

of each information in the two-information scenario than in the single-information case. In fact,

crowding out may be substantial. In figure 1, we compare the positive steady-states for ⇢
l

for

varying values of ⌫
l

and � to the corresponding values of ⇢̃. The horizontal axes plot ��1 ranging
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from 1 to 0, while the vertical axes give ⇢̃, ⇢
A

, and ⇢
B

. In panel 1a, we set ⌫
A

= ⌫
B

= 0.5, while

in panel 1b, the values are ⌫
A

= 0.8 and ⌫
B

= 0.2.

(a) ⌫A = ⌫B = 0.5 (b) ⌫A = 0.8, ⌫B = 0.2

Figure 1: Population information rates in steady-state as functions of the inverse of the di↵usion
rate, ��1.

The e↵ect on ⇢
l

in moving from ⌫
B

= 0.5 to ⌫
B

= 0.2 is indeed substantial. As an example,

a value of � = 2 is su�cient for 50% of the population to be informed about B if it was the only

information di↵using. The same value of � leads to roughly 38.2% of the population informed

about B if both A and B are preferred by half the population. However, if 80% of the population

prefer to talk about A, a value of � = 2 implies that the prevalence of B drops to 18.78% of the

population.14 These are large di↵erences, especially considering that we consider preferences

over topics to be ordinal. The fact that 80% of the population prefer to talk about topic A does

not imply that these agents have no interest in B whatsoever. The di↵erence in valuation might

be small.15

Figure 1 highlights a second interesting aspect of the crowding out process. The impact

of ��1 on ⇢
l

is convex, i.e., crowding out depends on the exact parameters of the di↵usion

process. This is due to the two e↵ects that an increase in � has on ⇢
l

, discussed before: It

directly increases ⇢
l

as information di↵uses more easily, but as it also increases ⇢�l

there exists

14Conversely, to inform half of the population about B if ⌫B = 0.2 would require a value of � ⇡ 5.55.
15This interpretation would di↵er if we had considered ⌫l to be the likelihood with which each agent com-

municates information l at a meeting. Under such an interpretation, the di↵erence between ⌫A and ⌫B should
be treated as cardinal. Also in our current interpretation, a cardinal interpretation of ⌫A � ⌫B is possible: It
might be plausible that a vast majority of the population will prefer one information over another only if there
is also a large di↵erence in interest. However, our present setup does not exclude the possibility that small
di↵erences in information valuation might lead to big di↵erences in the proportion of informed agents. We return
to implications of cardinal di↵erences in information valuation in section 4.
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a negative, indirect, e↵ect on ⇢
l

. The following Proposition establishes how crowding out and

relative prevalence depend on network characteristics.

Proposition 2. For any ⌫
l

2 (0, 1) and finite � > 1, the following holds:

1. There exists a unique value of �, denoted �
c

that maximizes crowding out of both infor-

mation,

�
c

=
1

1� ⌫
A

⌫
B



1 +
1� 2⌫

A

⌫
B

(⌫
A

⌫
B

)1/2

�

,

which is decreasing in ⌫
A

⌫
B

.

2. The ratio of crowding out of A relative to B is independent of �, ⇢̃�⇢A

⇢̃�⇢B
=

⇣

⌫B
⌫A

⌘2
.

3. If, in addition, ⌫
A

> ⌫
B

, the ratio ⇢A

⇢B
is decreasing in �.

Proof. See Appendix D.

The first part of Proposition 2 establishes that the existence of �l harms the prevalence of

l most for “intermediate” values of the di↵usion rate. An increase in � always increases the

prevalence of any information, independent of whether it is the unique information or not. But,

starting from � = 1, initially an increase in � would have a larger e↵ect on the prevalence of

a unique information, as compared to multiple information. This order is reversed above �
c

.

Instead, as part two of the Proposition shows, the relative harm that information impose on

each other depends entirely on relative interest in the population. Small changes in ⌫
l

can lead

to big changes in relative crowding out; the information that is preferred by the majority of the

population imposes a more than proportional externality on the minority information. Finally,

while an increase in � never reverses the order of ⇢
A

and ⇢
B

, we find that the information

preferred by the minority gains relatively more from such an increase.

4 Segregation and Integration

4.1 Information Prevalence

In the preceding analysis, agents of groups A and B interact randomly with each other, ir-

respective of group membership. It is however a well-documented fact that individuals have
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a tendency to interact relatively more with others that are similar to them, i.e., interaction

patterns exhibit homophily.16Questions of how homophily might impact the di↵usion of various

states or ideas have gained further prominence with the rise of the Internet and Online Social

Networks (OSNs), as these arguably make it easier for individuals to segregate according to their

background or interests (see, e.g., Jackson (2008a), Jackson and López-Pintado (2013), Golub

and Jackson (2012) for questions on how homophily impacts di↵usion of a state or the speed of

learning, or Sunstein (2009), Flaxman, Goel, and Rao (2013), or Gentzkow and Shapiro (2010)

for the impact of homophily on news consumption). So far, results point in the direction that

increased segregation does not lead to more segregated news consumption, and that homophily

may both help the di↵usion of a state (if groups have di↵erence di↵usion rates, �, see Jackson

and López-Pintado (2013)), but that it also can slow down learning (in a model in which agents

update their beliefs by taking averages over their neighbors’ beliefs, see Golub and Jackson

(2012)).

Our framework focuses on the impact that homophily has on the long run prevalence of

information. It highlights a complementary channel to those discussed in the previous literature:

Homophily can a↵ect information prevalence in the long run not only because of its (possible)

e↵ect on news consumption, or through biases in updating rules, but because it can a↵ect

the existence of information in the population. Our first result compares the prevalence of

information in a segregated society (agents only meet others of their own group) to that in a

fully integrated society (agents randomly meet, irrespective of group membership). It arises as

a Corollary of Proposition 1.

Corollary 1. Assume that the society is fully segregated according to interest groups. Then,

for any finite � > 1, the prevalence of information l among members of group l is ⇢̃, while the

prevalence of information �l in group l is zero.

The implications of Corollary 1 are stark. Independent of the amount of media coverage, or

the di↵usion rate of information �, information B will never become endemic in group A and vice

versa. This in itself gives credence to the idea that segregation might lead to polarization. If we

interpret A and B as two alternative points of view on the same topic, segregation immediately

implies polarization: Under full segregation, there exists no positive steady-state for ⇢
AB

and

16One of the earliest work on this is Lazarsfeld, Merton, et al. (1954). See also the survey by McPherson,
Smith-Lovin, and Cook (2001).
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agents are informed of at most one point of view. This occurs even if initial news consumption is

entirely unbiased, and is also independent of biases in messages, updating, or bounded memory.

While the potential for polarization due to segregation is in itself important, our next result

establishes that the prevalence of either information is lower under segregation compared to an

integrated society.

Proposition 3. For ⌫
l

2 (0, 1) and finite � > 1, the prevalence of information l is ⇢
l

in an

integrated society and it is ⌫
l

⇢̃ in a segregated society. We find that:

1. The prevalence of information l is larger in an integrated society than in a segregate society.

2. The prevalence of information l among group l, ⌫
l

⇢
l

, is larger in a segregated society than

in an integrated society.

Proof. See Appendix F

Proposition 3 shows that not only does segregation potentially lead to polarization, it also

reduces the overall proportion of the population informed about either topic. This e↵ect goes

beyond the potentially negative impact on society of having no agent informed about both A

and B in the steady-state. Indeed, there are many instances in which information A and B could

be entirely unrelated (such as “music” and “world news”), in which case there is no immediate

perceived benefit to society to have individuals informed about both topics at the same time.

Nevertheless, even in such a case, the impact of segregation is to harm information prevalence.

In a segregated society, there are fewer agents informed about either “music” and “world news”.

However, we also find that the prevalence of “music” among agents who prefer “music” is larger

in a segregated society, the same for agents who prefer “world news”. This leads to question us

under which conditions agents themselves have incentives to segregate, which we address now.

4.2 Endogenous Segregation

We need to impose some additional structure on the utility agents gain from information, to

address questions of endogenous segregation. To keep the analysis as simple as possible, we

assume that agents derive utility directly from being informed about topics A and B. We

assume that an agent in group l receives a flow utility of h if he is informed about topic l and
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a flow utility of s if he is informed about topic �l, where h � s � 0.17 The prevalence of

information l, ⇢
l

, denotes the time that an agent spends being informed about l in steady-state.

We also assume that agents care only about the steady-state values of ⇢
l

and ⇢�l

. The utility

of an agent in group l in an integrated and a segregated society is then

U
l|int = ⇢

l

h+ ⇢�l

s, and (12)

U
l|seg = ⇢̃h. (13)

Corollary 2 follows immediately from these utilities and the fact that ⇢
l

< ⇢̃.

Corollary 2. Assume that � > 1 and finite. If h > 0 and s = 0, all agents prefer segregation

over integration. If s = h > 0, all agents prefer integration.

Given the results on the prevalence of information under segregation and integration, the

decision to segregate depends, quite naturally, on how valuable the less preferred information

is to agents. In particular, if agents have extreme preferences for just one unique information,

they will always choose to segregate. It is noteworthy that agents of either group, A and B,

value a segregated society equally. The utility that an agent receives in an integrated society,

on the other hand, depends on the values of ⇢
l

and ⇢�l

: The larger the group size of l, ⌫
l

, the

larger will be ⇢
l

and the smaller ⇢�l

. In general, group l prefers segregation over integration if

⇢̃� ⇢
l

⇢�l

>
s

h
. (14)

By definition, h > s, which implies that s

h

2 [0, 1]. Equation (14) allows us to strengthen

the result of Corollary 2 to all interior values of s

h

.

Proposition 4. For any ⌫
l

2 (0, 1) and finite � > 1, a decrease in s

h

makes segregation more

attractive to either group.

17Such utility flows could arise if agents truly valued information in itself, but also if they value it because
there is the possibility that it will be useful at an uncertain, future, date. E.g., agents might value to be informed
about current events / history / politics, not so much because it provides them with any benefit as such, but
because there is a chance that these topics might be discussed in their presence, and not being informed would
brand them as ignorant. Alternatively, the information might pertain to the state of the world and an agent
knows that at an uncertain point in the (distant) future he will have to take an action to match that state. In
either case, the expected utility of an agent would be increasing in the amount of time he is informed.
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Proof. Obvious given equation (14).

I.e., the more extreme information preferences are, the more likely it is that we observe a

segregated society. The exact value of s

h

for which segregation will occur, on the other hand,

depends on the parameters on the network. In particular, it depends on ⌫
l

and �, as these are

the parameters that determine the value of ⇢̃�⇢l

⇢�l
. Their impact is analyzed in Proposition 5.

Proposition 5. For all finite � > 1 and h > s > 0, ⇢̃�⇢l

⇢�l
is decreasing in both ⌫

l

and �.

Proof. See Appendix F.

That is, as we decrease the size of the group that prefers information l, segregation is

preferred for larger values of s

h

. As segregation is driven by the group that has a lower valuation

for an integrated society, this result implies that a society in which interest in information A

and B is evenly split, ⌫
A

= ⌫
B

, is least likely to segregate into separate groups. On the other

hand, for both groups the incentive to segregate is decreasing in �. Propositions 4 and 5 paint

a mixed picture of the e↵ect of the Internet and OSNs on segregation. Given our results, we

would expect that groups that make use of the Internet to segregate themselves are those that

(i) are particularly interested in niche or very specialized topics, that are of little interest in

the population in general, and (ii) care about little else outside their topic of interest. On the

other hand, if the change in communication technology has translated into a denser network

(an increase in k that results in an increase in �), all groups will experience lower incentives to

segregate into their respective groups of interest.

5 Conclusion

The present paper models the di↵usion process of two information through a population. In-

formation may be passed between individuals whenever a meeting occurs. Each individual has

a given number of meetings per period, and at each meeting at most one information can be

communicated. Individuals may be aware of either one or both information, and if they are

aware of both, we assume that they pass on the information they find more interesting.

We find that, as long as the population’s views on which is the more interesting informa-

tion are not perfectly aligned, both information will be endemic under exactly the same model
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parameters as in the case of only one information di↵using through the population. This re-

sult provides an insight into how it is possible that even obscure (or even incorrect) pieces of

information survive in a society, and why it appears so di�cult to eradicate information com-

pletely once it has been made public. This resilience of information notwithstanding, the two

information impose (potentially significant) negative externalities on each other, and neither

information has a prevalence as high as it would have if it was the unique information di↵using.

As intuition predicts, the information that is considered more interesting by the larger propor-

tion of the population will have a larger prevalence, and the prevalence of either information is

increasing in the overall di↵usion rate. In relative terms, however, the information preferred by

the minority of the population will gain more from an increase in the di↵usion rate than the

“stronger” information.

One application of our model is the question of how (if at all) di↵erent news stories may

crowd each other out. It is indeed true that a news story receive di↵erential media coverage,

however, this should only a↵ect the initial information seed, i.e., how many individuals are

initially informed about a story. In our model, this will not have an impact on the prevalence of

a particular story. If, on the other hand, the relative importance of di↵erent news stories relates

to the likelihood with which individuals spread these stories, we will expect that in the long

run, the less important story will be known by fewer individuals, independent of initial media

coverage.

A second application relates to the e↵ect that segregation according to topics of interest

will have on information prevalence and polarization in a society. Our model predicts that

if agents communicate exclusively with others that share their preferred information, we will

observe both polarization, and an overall decrease in the number of informed agents. It is indeed

impossible to ensure that a non-preferred information has a positive prevalence in a group that

is entirely segregated from the rest of society. This result is particularly stark as it does not

rely on a biased consumption of news, or any bias in how agents update information or learn.

Segregation in turn tends to be preferred by agents in the minority interest group, and those

that have larger di↵erences in their valuation of the two information. Both of these results

have an intuitive appeal. OSNs and the Internet in general, by making it easier for agents

to segregate according to their interests, might therefore indeed lead not only to polarization,
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but also to an overall loss in information, driven primarily by minority groups and agents with

extreme information preferences. On the other hand, we find that a denser network will reduce

the incentives to segregate. Consequently, with respect to segregation, polarization, and overall

information prevalence, the Internet has an ex ante ambiguous impact.

While our model is obviously highly stylized, our two main assumptions appear to us to

be rather innocuous, especially for the type of information that we model, such as chit-chat

and gossip: (i) Agents face constraints in their communication time, relative to the amount of

information they are aware of; and (ii) if faced with such constraints, agents are more likely to

talk about information they care about more. The resulting loss of information prevalence in the

population can be seen as complementary to theories of loss of information based on cognitive

constraints. We do not impose any limits on the amount of information that agents can store

or process, for example.

Our results on the resilience of information are in stark contrast to earlier results by Prakash,

Beutel, Rosenfeld, and Faloutsos (2012) and Beutel, Prakash, Rosenfeld, and Faloutsos (2012),

who investigated competing viruses or products. These di↵erences stem predominantly from

the di↵erence in which we treat agents that are infected with both information/viruses. In

our model, the competition between information a↵ects the transmission likelihood from an

infected node, while in Prakash, Beutel, Rosenfeld, and Faloutsos (2012) and Beutel, Prakash,

Rosenfeld, and Faloutsos (2012), competition a↵ects the infection likelihood to a susceptible

node. Indeed, in Prakash, Beutel, Rosenfeld, and Faloutsos (2012), no node can be infected

with both viruses at the same time. The fact that such a small di↵erence in the transmission

process yields such divergent results highlights the need to exhibit caution in the modeling of

the di↵usion process. The SIS framework has been used to model the di↵usion of viruses,

products, behavior, information, and more. But we believe that for information transmission,

our assumptions are a better description of the di↵usion process of multiple information than

for, e.g., products or viruses, where complete or partial immunity is much more credible.

Our main results on information prevalence are strongly reminiscent of the SIS model with

only a unique state, e.g., the existence of an identical di↵usion threshold and the uniqueness

of a positive steady-state. This leads us to conjecture that these results will hold even if we

increase the number of information above two, although we leave the formal proof of this for
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further research. Similarly, we believe that further work on di↵erent network structures has the

potential to yield interesting insights into more complex di↵usion processes.
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A Di↵usion Thresholds and Steady-States

Proof of Proposition 1

In steady-state,

⇢
A

=
�✓

A

1 + �✓
A

(15)

⇢
B

=
�✓

B

1 + �✓
B

(16)

with

✓
A

= ⇢
A

[1� ⌫
B

⇢
B

] (17)

✓
B

= ⇢
B

[1� ⌫
A

⇢
A

] (18)

where we made use of the fact that ⇢
AB

= ⇢
A

⇢
B

. Due to the symmetry of information A
and B, note that we can change the labels of the information to apply any arguments that we
make about A also for B. We will therefore prove proposition 1 for information A, without loss
of generality.

First, by substituting equation (17) into (15) and (18) into (16), it is immediate that the
steady-state ⇢

A

= ⇢
B

= 0 always exists. Furthermore, if ⌫
A

= 1, then (15) becomes

⇢
A

=
�⇢

A

1 + �⇢
A

(19)

which is identical to the steady-state condition in the one-information case, i.e., the uniquely
positive steady-state of A is ⇢

A

= 1� ��1, and it is globally stable. This proves the final part
of proposition 1.

We constrain ourselves to look now for the existence and stability properties of steady-states
in which ⇢

l

> 0 for both l. If ⇢
B

> 0, we can rewrite equation (16) as a function of ⇢
A

and
parameters only:

⇢
B

= 1� 1

�(1� ⌫
A

⇢
A

)
(20)

Substituting equations (15) and (20) into equation (17), we can express ✓
A

as

✓
A

= H(✓
A

) =
�✓

A

1 + �✓
A

2

4⌫
A

+
⌫
B

�
⇣

1� ⌫
A

�✓A
1+�✓A

⌘

3

5 , (21)

i.e.,

H(✓
A

) =
�⌫

A

✓
A

1 + �✓
A

+
⌫
B

✓
A

1 + ⌫
B

�✓
A

(22)

And the steady-state of ✓
A

is the fixed point of (22). Following the argument put forward
in López-Pintado (2008), note that H(0) = 0 and that

H(1) =
�⌫

A

1 + �
+

⌫
B

1 + �⌫
B

,

which some manipulation shows to be strictly below 1. I.e., if H 0(✓
A

) > 0, H 0(0) > 1
and H 00(✓

A

) < 0, then any ✓⇤
A

> 0 that solves equation (22) is unique and globally stable.
Consequently, so is any ⇢⇤

A

relating to ✓⇤
A

.
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Indeed,

H 0(✓
A

) =
�⌫

A

(1 + �✓
A

)2
+

⌫
B

(1 + �⌫
B

✓
A

)2
> 0, (23)

H 00(✓
A

) = �2�
⇥

�⌫
A

(1 + �✓
A

)�3 + ⌫2
B

(1 + �⌫
B

✓
A

)�3
⇤

< 0, (24)

and
H 0(0) = �⌫

A

+ ⌫
B

, (25)

which is larger than 1 for ⌫
l

2 (0, 1) if and only if � > 1. This completes the proof that for
⌫
l

2 (0, 1), the di↵usion thresholds for both A and B are identical and equal to 1. If, however,
⌫
A

= 0, we see that independently of the value of �, H 0(0) = 1, i.e., there exists no positive
steady-state for ✓

A

, consequently not for ⇢
A

either. This completes the proof that for ⌫
l

= 0,
information l does not have a strictly positive steady-state.

B Derivation of steady-state ✓l

From equation (22), we know that a steady-state of the ✓
A

is such that

✓
A

=
�⌫

A

✓
A

1 + �✓
A

+
⌫
B

✓
A

1 + ⌫
B

�✓
A

. (26)

Note again that ✓
A

= 0 is always a solution. For ✓
A

> 0, re-arranging of (26) yields

(1 + �✓
A

)(1 + �⌫
B

✓
A

) = �⌫
A

(1 + �⌫
B

✓
A

) + ⌫
B

(1 + �✓
A

)

1 + �✓
A

(1 + ⌫
B

) + �2⌫
B

✓2
A

= �⌫
A

+ �2⌫
A

⌫
B

✓
A

+ ⌫
B

+ �⌫
B

✓
A

⌫
A

(1� �) + �2⌫
B

✓2
A

+ �✓
A

(1� �⌫
A

⌫
B

) = 0

which in turn implies that

✓
A1,2 =

1

2�⌫
B

n

�(1� �⌫
A

⌫
B

)±
⇥

(1� �⌫
A

⌫
B

)2 � 4⌫
A

⌫
B

(1� �)
⇤

1
2

o

.

Note that for all � > 1, the square-root is larger than (1� �⌫
A

⌫
B

), which implies that there
exists a unique positive steady-state for ✓⇤

A

, with

✓⇤
A

=
1

2�⌫
B

n

�(1� �⌫
A

⌫
B

) +
⇥

(1� �⌫
A

⌫
B

)2 � 4⌫
A

⌫
B

(1� �)
⇤

1
2

o

=
C

2�⌫
B

, (27)

as stated in equation (10). Finally, as ⇢
A

= �✓A
1+�✓A

, by equation (6), plugging this value of

✓
A

in, we arrive at the result that ⇢⇤
A

= C

2⌫B+C

. The derivations of ✓⇤
B

and ⇢⇤
B

are identical.

C Properties of ⇢l

Proof of Lemma 1, Point 1
The ranking of ⇢

B

, ⇢
A

, and ⇢̃ is established straightforwardly: The fact that ⇢
A

> ⇢
B

if and
only if ⌫

A

> ⌫
B

and that ⇢
A

= ⇢
B

if and only if ⌫
A

= ⌫
B

is obvious from equations (10) and
(11). Also, note that for ⇢

A

> 0, we know that
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⇢
A

= 1� 1

�(1� ⌫
B

⇢
B

)

which can be used to show that

⇢̃� ⇢
A

= 1� 1

�
� 1 +

1

�(1� ⌫
B

⇢
B

)

=
⌫
B

⇢
B

�(1� ⌫
B

⇢
B

)

(28)

which is strictly positive whenever ⇢
B

> 0 and zero if ⇢
B

= 0. This establishes that 0 < ⇢
B


⇢
A

< ⇢̃.
As ⇢

A

= �✓A
1+�✓A

, it is increasing in ⌫
A

whenever ✓
A

is increasing in ⌫
A

, i.e., if

d✓
A

d⌫
A

=
1

2�⌫2
B



C +
dC

d⌫
A

⌫
B

�

> 0, (29)

which in turn holds if C + dC

d⌫A
⌫
B

> 0. Given the definition of C, we work with a change of

variable of x = ⌫
A

⌫
B

, which means that we can calculate dC

d⌫A
= dC

dx

(1� 2⌫
A

), where

dC

dx
= �+

�2 + �(1 + �x)

c1/2

with c = (1��x)2� 4x(1��). This is obviously positive if �2+�(1+�x) > 0 (which holds
for sure for all � > 2). If �2 + �(1 + �x) < 0, some re-arranging yields the same result, i.e.,
dC

dx

> 0 if

�c1/2 > 2� �(1 + �x)

�2(1� �x)2 � 4x�2(1� �) > 4� 4�� 4�2x+ �2 + 2�3x+ �4x2

0 > 4(1� �)

which is true for all � > 1. The sign of dC

d⌫A
is hence ambiguous; it is positive if ⌫

A

< 1
2 , zero if

⌫
A

= 1
2 , and negative otherwise. Hence, for ⌫

A

> 1
2 , the sign of d✓

d⌫A
is not immediately obvious.

In full, d✓

d⌫A
> 0 if

�(1� �x) + c1/2 + [�c�1/2(�2 + �(1 + �x))](⌫
B

� 2x) > 0

�(1� �x)c1/2 + c+ [�c1/2 � 2 + �(1 + �x)](⌫
B

� 2x) > 0

1 + 2�x+ �2x2 � 2⌫
B

+ �⌫
B

(1 + �x)� 2�x(1 + �x) > �c1/2(�1 + �⌫
B

� �x)

(1 + �x)(1 + �⌫2
B

) > c1/2(1� �⌫2
B

).

(30)

Again, we consider two cases, if 1��⌫2
B

< 0, this condition is always satisfied. If 1��⌫2
B

> 0,

we define D ⌘ 1��⌫

2
B

1+�⌫

2
B

and can write

(1 + �x) > c1/2D

(1 + �x)2 > (1� �x)2D2 � 4x(1� �)D2

(1 + �x)2 > (1 + �x)2D2 � 4xD2

(31)

which is always true as D < 1. Consequently, d⇢A

d⌫A
> 0 for all values of ⌫

A

and � > 1.
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Proof of Lemma 1, Point 2
Note that ⇢

l

is increasing in C (strictly if ⌫
l

2 (0, 1)). To prove the dependence of ⇢
l

on �,
it su�ces to show that C is increasing in �. Indeed,

dC

d�
= x+

x(1 + �x)

c1/2
> 0 (32)

Q.E.D.

D Crowding out

Note that, as the ratio of crowding out for ⌫
l

2 (0, 1) is independent of �, a unique value of �
c

must maximize crowding out of both A and B. At least one finite �
c

must exist, as for both
� = 1 and � ! 1, crowding out of either information is zero, while for finite � > 1, by Lemma
1, crowding out is positive. We proceed to show that �

c

is unique, i.e., it maximizes crowding
out, and is as stated in Proposition 3. We work again with ⇢

A

. It is convenient to work with
⇢
A

= 1� 1
�(1�⌫B⇢B) . In this case,

d(⇢̃� ⇢
A

)

d�
= ⌫

B

�d⇢B

d�

� ⇢
B

(1� ⌫
B

⇢
B

)

�2(1� ⌫
B

⇢
B

)2
(33)

which is equal to zero if

�
d⇢

B

d�
= ⇢

B

(1� ⌫
B

⇢
B

) (34)

substituting ⇢
B

= C

2⌫A+C

and d⇢B

d�

=
2⌫A

dC
d�

(2⌫A+C)2 , this simplifies to

2�
dC

d�
= C(2 + C). (35)

Substituting the values for C from the main text and for dC

d�

from equation (32), this simplifies
to

2�x
c1/2 + 1 + �x

c1/2
= [�(1� �x) + c1/2](1 + �x+ c1/2)

⇥

1 + �2x2 � 4x
⇤2

= (1� �x)2c
⇥

(1� �x)2 + 2x(�� 2)
⇤2

= (1� �x)4 � 4x(1� �)(1� �x)2

x(�� 2)2 = (1� �x)2

�2x(1� x)� 2�x� 1 + 4x = 0

(36)

and the solution of

�
c

=
1

1� x



1± 1� 2x

x1/2

�

. (37)

It is straightforward to show that only �
c

= 1
1�x

⇥

1 + 1�2x
x

1/2

⇤

satisfies the additional condition
that �

c

> 1. Substituting x = ⌫
A

⌫
B

yields the expression in Proposition 2. Finally, taking the
derivative of �

c

with respect to x yields

d�
c

dx
=

1

(1� x)2
� 1

x(1� x)



3

2
x1/2 +

1

2
x�1/2

�

=
1

2x3/2(1� x)2

h

2x3/2 � x2 � 1
i

< 0

(38)
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which is negative as the maximum value that x can take is 1
4 , i.e., the term in square brackets,

which is itself increasing in x, can never be positive.

Relative crowding out, however, does not depend on network characteristics. Using the
expression of crowding out of information l established in equation (28), we can express relative
crowding out as

⇢̃� ⇢
A

⇢̃� ⇢
B

=
⌫
B

⌫
A

⇢
B

(1� ⌫
A

⇢
A

)

⇢
A

(1� ⌫
B

⇢
B

)
(39)

and substituting equations (6) and (7), as well as noting that ✓
l

= C

2�⌫l
, into this expression

yields the result,

⇢̃� ⇢
A

⇢̃� ⇢
B

=
⌫
B

⌫
A

✓
B

(1 + ⌫
B

�✓
A

)

✓
A

(1 + ⌫
A

�✓
B

)

=

✓

⌫
B

⌫
A

◆2

.

(40)

Finally, as ⇢
l

= C

2⌫l+C

, we have ⇢A

⇢B
= 2⌫A+C

2⌫B+C

. The derivative with respect to � is straight-
forward,

d ⇢A

⇢B

d�
=

2dC

d�

(2⌫
B

+ C)2
(⌫

B

� ⌫
A

), (41)

which is decreasing if ⌫
A

> ⌫
B

.

E Basic Reproduction Number

The basic reproduction number for information A is

R
A

= �(1� ⌫
B

⇢
B

). (42)

As the prevalence of A can be written as

⇢
A

= 1� 1

�(1� ⌫
B

⇢
B

)
= 1� 1

R
A

(43)

it is trivial that there exists a positive prevalence of A if and only if R
A

> 1. It is also trivial
that if either ⌫

B

= 0 or ⇢
B

=, then R
A

> 1 , � > 1. It remains to show that this is also true
if ⇢

B

> 0 and ⌫
B

2 (0, 1).
The positive prevalence of B is

⇢
B

=
C

2⌫
A

+ C
. (44)

Substituting this expression into equation (42), we can write

R
A

= �
⌫
A

(2 + C)

2⌫
A

+ C
(45)

and as C = �(1 � �⌫
A

⌫
B

) +
⇥

(1� �⌫
A

⌫
B

)2 � 4⌫
A

⌫
B

(1� �)
⇤

1
2 , we find that if � = 1, then

C = 0. In this case, equation (45) simplifies to
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R
A

= � = 1. (46)

To complete the proof, we show that R
A

is strictly increasing in �, i.e., for any value of
� > 1, R

A

> 1 as well. Note that we have already established in Appendix C that d⇢A

d�

> 0.
But, since we can write ⇢

A

= 1�R�1
A

, it is true that

d⇢
A

d�
= R�2

A

d R
A

d�
(47)

which is positive only if d RA
d�

> 0. QED.

F Segregation and Integration

The fact that in a fully segregated society more agents are in the long run informed about their
preferred information follows trivially from the fact that for finite � and ⌫

l

2 (0, 1), ⇢
l

< ⇢̃. If
the society is fully integrated, the proportion of agents informed about l who also care about l is
simply ⌫

l

⇢
l

. Under full segregation, society is split into two exclusive groups, of (proportionate)
size ⌫

l

and 1�⌫
l

respectively. Hence, a total proportion of ⌫
l

⇢̃ will be informed of their preferred
information in the long run. As ⇢̃ > ⇢

l

, so ⌫
l

⇢̃ > ⌫
l

⇢
l

.

Conversely, integration implies a larger proportion of the population being informed about
l (irrespective of preferences) if ⇢

l

> ⌫
l

⇢̃. Working with l = A, this is true if

⌫
A

⇢̃� ⇢
A

=
2⌫

A

⌫
B

(�� 1)� C(⌫
B

�+ ⌫
A

�(2⌫
B

+ C)
< 0, (48)

i.e., if

(⌫
B

�+ ⌫
A

)[�(1� �⌫
A

⌫
B

) + c1/2] > 2⌫
A

⌫
B

(�� 1)

(⌫
B

�+ ⌫
A

)c1/2 > 2⌫
A

⌫
B

(�� 1) + (⌫
B

�+ ⌫
A

)(1� �x)

(⌫
B

�+ ⌫
A

)2 > ⌫
A

⌫
B

(�� 1) + (⌫
B

�+ ⌫
A

)(1� �⌫
A

⌫
B

)

(⌫
B

�+ ⌫
A

)⌫
B

[�(1 + ⌫
A

)� 1] > ⌫
A

⌫
B

(�� 1)

(1 + ⌫
A

)(�⌫
B

+ ⌫
A

) > 1

(49)

which is always true, as both terms on the left-hand side are strictly larger than 1 for any
� > 1 and any ⌫

l

2 (0, 1). As this expression also holds if we switch the labels of A and B, also
⌫
B

⇢̃ < ⇢
B

, which completes the proof.

Proof of Proposition 5

We provide here the proof of Proposition 5 for the case of group A by showing that
d

⇢̃�⇢A
⇢B

d⌫A
< 0.

The proof for group B is analogous. First, note that

⇢̃� ⇢
A

⇢
B

=
⌫
B

�(1� ⌫
B

⇢
B

)
(50)

Its first derivative with respect to ⌫
A

is then
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d ⇢̃�⇢A

⇢B

d⌫
A

=
��(1� ⌫

B

⇢
B

)� ⌫
B

�
⇣

⇢
B

� ⌫
B

d⇢B

d⌫A

⌘

�2(1� ⌫
B

⇢
B

)2

=
1

�(1� ⌫
B

⇢
B

)2



�1 + ⌫2
B

d⇢
B

d⌫
A

�

< 0

(51)

as d⇢B

d⌫A
< 0. QED.

Similarly, to proof that ⇢̃�⇢l

⇢�l
is decreasing in �, we give only the proof that ⇢̃�⇢A

⇢B
is decreasing

in �, as the derivations for ⇢̃�⇢B

⇢A
proceed in identical fashion.

First, we know that

⇢̃� ⇢
A

=
⌫
B

⇢
B

�(1� ⌫
B

⇢
B

)
.

In Appendix E we defined �(1 � ⌫
B

⇢
B

) = R
A

, and showed that R
A

is increasing in �.
Consequently,

d ⇢̃�⇢A

⇢B

d�
=

d ⌫B
RA

d�

= � ⌫
B

R2
A

dR
A

d�
< 0

(52)

QED.
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