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Abstract

We show that price level stabilization is not optimal in an economy where

agents have incomplete knowledge about the policy implemented and try to

learn it. A systematically more accommodative policy than what agents

expect generates short term gains without triggering an abrupt loss of con-

fidence, since agents update expectations sluggishly. In the long run agents

learn the policy implemented, and the economy converges to a rational ex-

pectations equilibrium in which policy does not stabilize prices, economic

volatility is high, and agents su↵er the corresponding welfare losses. How-

ever, these losses are outweighed by short term gains from the learning

phase.
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No monetary authority sets price level stabilization1 as its o�cial goal, despite

economists’ recommendation that this is the best way to conduct monetary policy.

This is not because policymakers do not take this recommendation seriously. In

fact, Sweden in the 1930s even introduced price level stabilization as the o�cial

goal of its monetary policy, after a public debate in which economists supported

it.2 However, this policy was abandoned within the same decade, and today the

o�cial goal of Swedish monetary policy is inflation stabilization. More recently,

in the aftermath of the 2008 financial crisis, Canada considered introducing long

run price stability as its o�cial monetary policy goal, but decided against it.

Policymakers admit that their main concern with this policy recommendation is

that the public may have di�culties in understanding it because of its complicated

timing and response to shocks.3

This paper rationalizes why monetary authorities are so reluctant to implement

price level stabilization. We examine the implications of this concern in a standard

macroeconomic model, and we demonstrate that price level stabilization is not

optimal if there is even the minimal chance that private sector misunderstands the

policy regime.

In our setup, there is a stabilization role for monetary policy, i.e. reducing

economic fluctuations by dampening the e↵ect of shocks on aggregate variables.

Firms and households know the structure of the economy, but do not perfectly

understand how aggregate allocations are impacted by monetary policy. If their

understanding were perfect, they could form accurate expectations about how

equilibrium allocations depend on shocks. This is the standard rational expecta-

tions assumption, and in this case it is a well established result (see for example

Clarida, Gali, and Gertler (1999) and Ambler (2009)) that price level stabilization

1Price level stabilization implies counteracting the e↵ect of shocks on the price level.
2Swedish economists, like Gustav Cassel, David Davidson and Eli Heckscher held their firm

support in public debates for price level targeting, and had a great influence on the government.
Knut Wicksell in 1898 was the first in Sweden to present the view that the central bank should
aim for price level stabilisation.

3This is very transparent in the “Renewal of the Inflation-Control Target” document of the
Bank of Canada. The authors write: “[...] these models assume that agents are forward looking,
fully conversant with the implications of [price level stabilization] and trust policy-makers to
live up to their commitments.” (p14.) They argue that it is not clear that these conditions
are “su�ciently satisfied in the real world for the Bank to have confidence that price level
[stabilization] could improve on the current inflation targeting framework.”
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is optimal.

We slightly depart from the assumption of rational expectations by postulating

that agents do not know the exact mapping between shocks and aggregate variables

induced by monetary policy.4 We assume agents learn the mapping between shocks

and aggregate variables by extrapolating from historical patterns in observed data.

More specifically, they rely on econometric methods to estimate a model of the

economy and use it for forecasting future aggregate variables. In each period, as

new observations are available, they update their model in order to have more

precise beliefs. Therefore, they have a chance to learn the exact mapping (i.e.,

one that is consistent with rational expectations beliefs), provided they can collect

enough data. The novelty of our setup is that a benevolent, fully rational monetary

authority can “teach” agents the exact mapping by selecting an appropriate path

for policy. In fact, the exact mapping is endogenous to policy choices. By choosing

a particular policy response to shocks, the central bank a↵ects agent’s beliefs about

the mapping. Those beliefs feed back into the evolution of aggregate variables, and

thus into the mapping between shocks and aggregate variables. To find the optimal

policy, we follow the methodology of Gaspar, Smets, and Vestin (2006) and Molnar

and Santoro (2014), and assume that the central bank takes into account that its

actions a↵ect the data used in agents’ estimations, and how those data a↵ect their

future beliefs.

Our main result is that price level stabilization is no longer optimal if agents are

learning. We show that the policymaker wants to give up the benefits of stabilizing

the price level in favour of short term gains.

The advantage of price level stabilisation arises from its history dependence:

after a temporary shock that increases the price level, the policymaker should

engineer a series of aggregate demand contractions in order to bring the price

level back to its target; in other words, it can spread out the e↵ect of the shock

on the price level through several periods. If agents are aware of this history

4We find this assumption an appealing way to introduce agents’ misunderstanding in an oth-
erwise standard model. Agents’ knowledge of their own optimization problem does not imply
they can derive aggregate allocations that arise in equilibrium (Adam and Marcet (2011)). More-
over, an individual might be uncertain about other agents’ knowledge about the exact mapping,
which in turn would impact the evolution of aggregate variables (see Brock and Hommes (1997),
Branch and McGough (2011), Molnar (2007)).
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dependence, the policymaker can lower agents’ expectations about future inflation

by contracting current output.5 Lower inflation expectations then decrease current

inflation through the Phillips Curve.6

Under learning the central bank can attain short term gains because agents

revise their beliefs very sluggishly. We show that under learning it is optimal

to contract current output very aggressively, instead of spreading out the output

contractions over several periods. The policymaker can do this because agents

need to gather su�cient amount of data to uncover that the policy has become

less history dependent. In the meantime the policymaker can still anchor inflation

expectations, and lower current inflation by contracting output. With such a

policy, future output contractions are small or absent, and therefore they are

not su�cient to bring the price level back to target. Hence, the price level rises

permanently.

In the long run, monetary policy completely looses its ability to engineer a

history dependent policy that could anchor agents’ inflation expectations, because

agents eventually learn that the policymaker is not implementing a price level

stabilization policy. This policy can be described as stabilizing inflation instead

of the price level. Under this policy, the central bank responds to shocks as long

as they a↵ect inflation. A temporary shock that increases the price level a↵ects

inflation on impact, but not in the future. Therefore the central bank counteracts

the e↵ect of the shock in the current period, but it does not spread it over future

periods (see Gali (2003)). The long run policy recommendation is therefore in line

with what many central banks set as their o�cial goal.

In our framework, the standard assumptions for proving convergence commonly

used in the learning literature are not satisfied. This complication arises because

of the interaction between atomistic learning agents and a rational strategic player

(the central bank), which the previous literature did not consider. We therefore

derive a novel convergence theorem that can accommodate the interaction between

5Evans and Honkapohja (2006) shows a policy that can convince learning agents that price
level stabilization is in place. Note that, once agents have learned the mapping that would
arise under rational expectations, the advantage of price level stabilization is similar under both
learning and rational expectations.

6Our model is a sticky price framework. Inflation depends on inflation expectations because
firms know they might not be able to reset their price in the future, therefore have to be forward
looking when setting their price.
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updating rules for agents’ beliefs and the choices of the rational central bank. This

methodological contribution might be of separate interest to some readers, as our

theorem and our line of proof could be applied in similar problems with a linear-

quadratic setup.

There are several strands of existing literature on price level stabilization that

are relevant to this paper. Many authors have shown its robustness: it anchors

inflation expectations even if the central bank makes mistakes in forecasting out-

put (Gorodnichenko and Shapiro (2007)) or faces model uncertainty (Aoki and

Nikolov (2006)). By committing to a price level path, policy can alleviate the

risks of hitting the zero lower bound (Eggertsson and Woodford (2003), Wolman

(2005)). Contrary to these findings, our result is that price level stabilization is

not the best policy if agents are not fully rational when facing a strategic central

bank. Our results, however, do not call into question the long run advantages

of price level stabilization. As we discussed before, in our model long run bene-

fits arise purely from anchoring future inflation expectations. In a more general

model, there are further advantages from the reduced long term variability of the

price level for long-run nominal contracts and long run intertemporal decisions.

For example Meh, Ros-Rull, and Terajima (2010) shows that price stabilization

reduces long run redistributional e↵ects from lenders to borrowers. Our result

introduces an additional argument into this policy debate: the incentives of a

rational policymaker change when there is even the smallest chance that agents

could misunderstand policy choices.

This paper belongs to an extensive literature examining monetary policy when

agents are learning. Bullard and Mitra (2002), Evans and Honkapohja (2003) and

Bullard, Evans, and Honkapohja (2008), among others, show that policy rules

that have good properties under rational expectations can have unintended and

undesirable consequences if instead agents are learning. Our paper furthers this

line of inquiry by considering how learning allows the central bank to do something

better than price level stabilization, even if the latter remains a feasible and, in

the long run, attractive strategy.

Our work is also related to a wider literature that proposes learning as a useful
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way to evaluate and modify the traditional equilibrium concepts.7 Learning mech-

anisms proposed by the literature range from simple rules of thumb, to more so-

phisticated rules like Bayesian learning (see for example Beggs (2005) and Borgers

and Sarin (1997)) and adaptive learning (i.e. learning with econometric methods),

like the one we use in this paper. Adaptive learning is especially useful when agents

learn about a self referential variable (i.e. one which depends on the agents’ ac-

tions), mostly because in this case Bayesian learning rules are intractable.8 In self

referential models, least squares learning has long been used for refining rational

expectation equilibria. Several authors in particular have used least squares learn-

ing for equilibrium selection, and for asking how policy can guarantee a learnable

equilibrium (see, among others Eusepi and Preston (2010), Marcet and Sargent

(1989a), Marimon and Sunder (1993), Adam (2003), Bullard and Mitra (2002), and

Evans and Honkapohja (2001) for an extensive survey). This paper refines the ex-

isting concept of learnability, by taking into account strategic interaction among

players with di↵erent expectations formation mechanisms. Our model features two

rational expectations equilibria which are both learnable; yet, the incentives of an

optimizing rational agent eliminate one of the learnable equilibria.

Our analysis highlights an important message about adaptive learning: even if

agents learn rational expectations equilibria and their forecasts cannot be distin-

guished from a rational agent, they do not form strategies like a rational player.

Therefore, a rational agent facing learners will not behave in the same way as when

facing rational agents. When a rational policymaker faces rational agents, a devia-

tion from the price stabilizing policy would be immediately realized by agents, who

in turn would change their beliefs abruptly and assume the central bank is follow-

ing an alternative policy. This o↵-equilibrium threat of rational agents can keep

the central bank from deviating from the price stabilizing policy (see Kurozumi

(2008)). In contrast, adaptive learners do not have separate o↵-equilibrium strate-

gies. They only learn from realized outcomes, and their strategies are the same with

a deviating and not-deviating central bank. This lack of o↵-equilibrium strategies

7A learning model in the broad sense is “any model that specifies the learning rules used by
individual players, and examines their interaction”(Fudenberg and Levine (1998) p3).

8A rational Bayesian learner would understand how its actions impact on the variable in
question, and would not treat the posterior as random, but instead would have to calculate the
posterior as a complicated fixed point problem.
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provides strong incentives for the rational policymaker to deviate from the price

stabilization policy.

1 The Model

We consider the baseline version of the New Keynesian model, and as it is standard,

we log-linearize the equilibrium equations and take a second-order Taylor approx-

imation of the agent’s utility function. The economy is therefore characterized by

two structural equations.9 The first one is an IS equation:

x
t

= E⇤
t

x
t+1 � ��1(r

t

� E⇤
t

⇡
t+1), (1)

where x
t

, r
t

and ⇡
t

denote the time t output gap (i.e. the di↵erence between

actual and natural output), the short-term nominal interest rate and inflation,

respectively; � is a parameter of the household’s utility function, representing risk

aversion. Note that the operator E⇤
t

represents agents’ conditional expectations,

which are not necessarily rational. The above equation is derived by log-linearizing

the household’s Euler equation and imposing the equilibrium condition that con-

sumption equals output.

The second equation is the so-called New Keynesian Phillips Curve (NKPC):

⇡
t

= �E⇤
t

⇡
t+1 + x

t

+ u
t

, (2)

where � denotes the subjective discount rate,  is a function of structural parame-

ters, and u
t

⇠ N(0, �2
u

) is a white noise cost-push shock10; this relation is obtained

from optimal pricing decisions of monopolistically competitive firms whose prices

are staggered à la Calvo (1983).11

9For details of the derivation of the structural equations of the New Keynesian model see,
among others, Yun (1996), Clarida, Gali, and Gertler (1999) and Woodford (2003).

10Note that the cost-push shock is usually assumed to be an AR(1) process, however we instead
assume it to be iid to make the problem more tractable. This assumption is also supported by
Milani (2006), who shows that learning can endogenously generate persistence in inflation data,
and assuming a strongly autocorrelated cost-push shock becomes redundant.

11In other words, the probability that a firm in period t can reset the price is constant over
time and across firms.
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The central bank (CB in short) is benevolent and therefore acts as the social

planner. It then maximizes the agents’ utility function subject to the structural

equations described above. By deriving a second-order approximation for the

utility function, we can express the objective of the central bank as a loss function

in the following form:

E0(1� �)
1X

t=0

�t

�
⇡2
t

+ ↵x2
t

�
, (3)

where ↵ is the relative weight put by the CB on the objective of output gap

stabilization.12

1.1 Price level targeting vs inflation targeting under RE

Assume that the private sector has rational expectations (RE in short), and that

the CB can credibly commit to a future course of action. The policy problem is

to minimize the social welfare loss (3), subject to the structural equations (1) and

(2), where E⇤
t

is replaced by E
t

:

min
{⇡

t

,x

t

,r

t

}1
t=0

E0

1X

t=0

�t

�
⇡2
t

+ ↵x2
t

�
(4)

s.t.(1), (2)

As shown, among others, in Clarida, Gali, and Gertler (1999), the optimality

conditions of this problem are:

⇡0 = �↵


x0 (5)

⇡
t

= �↵


x
t

+
↵


x
t�1, t � 1 (6)

12 Rotemberg and Woodford (1997) show how (3) can be obtained as a quadratic approxima-
tion to the expected household’s utility function. The parameter ↵ is a function of structural
parameters.
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Hence, the optimality condition at time 0 is di↵erent from that holding at t � 1.

The term in x
t�1 that appears when t � 1 represents the past promises that

the CB committed to realize at time t; hence, is absent for t = 0, when there

are no promises to be kept. A policy characterized by the equations (5)-(6) is

prone to time inconsistency: if the policymaker could reoptimize at a date T > 0,

the optimality condition at T would be di↵erent from that implied by (6). We

follow Woodford (2003)’s “timeless perspective” and use (6) as the only relevant

optimality condition.

Combining (6) with the NKPC (2), Clarida, Gali, and Gertler (1999) shows

that output gap and inflation evolve according to the following law of motion:

x
t

= bxx
t�1 + cxu

t

(7)

⇡
t

= b⇡x
t�1 + c⇡u

t

(8)

where the coe�cients are given by:

bx =
2 + ↵(1 + �)�p(2 + ↵(1 + �))2 � 4↵2�

2↵�
(9)

b⇡ =
↵


(1� bx) (10)

cx = �bx

↵
(11)

c⇡ = �↵


cx (12)

Clarida, Gali, and Gertler (1999) show that the policy implied by (7)-(8) is equiv-

alent to price level targeting (PLT in short): the central bank responds to changes

in the price level, and tries to keep prices close to a predetermined value.

Now assume the central bank cannot commit to future policy, and therefore

it acts discretionarily when a shock hits the economy. In this case, the monetary

authority solves the problem 4 by taking future expected policy as given. Clarida,

Gali, and Gertler (1999) shows that the optimal allocation obeys the following

equation

⇡
t

= �↵


x
t

(13)

Using the NKPC (2), it is easy to show that output gap and inflation are charac-
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terized by

x
t

= � 

↵ + 2
u
t

(14)

⇡
t

=
↵

↵ + 2
u
t

(15)

We call this inflation targeting (IT in short), since as shown in Clarida, Gali, and

Gertler (1999) the central bank responds to changes in inflation, trying to stabilize

the inflation rate.

These policies di↵er in a crucial respect. The PLT policy is an inertial policy

in the sense of Woodford (1999): the current allocations depend on past levels of

output gap. At the contrary, the IT policy only depends on current shocks.

1.2 Learning specification

In the rest of the paper, we dispose of the assumption that the private sector has

RE. Following Molnar and Santoro (2014), we posit that the central bank is fully

rational. However, we assume that agents are adaptive learners. This assumption

postulates that agents know the structure of the economy, and they are able to

calculate the rational expectations equilibrium. However, they are uncertain about

some parameters’ values. Hence, they estimate equilibrium conditions by observing

past and current allocations.13

More precisely, we assume that agents do not know the exact process followed

by the endogenous variables, but recursively estimate a Perceived Law of Motion

(PLM) consistent with the law of motion that they would observe if the central

bank followed the PLT policy under RE, i.e. (7)-(8). Hence, the PLM is:

⇡
t

= b⇡x
t�1 + c⇡u

t

(16)

x
t

= bxx
t�1 + cxu

t

, (17)

Under learning, agents estimate the coe�cients in equations (16)-(17), and use

13The modern literature on adaptive learning was initiated by Marcet and Sargent (1989b),
who were the first to apply stochastic approximation techniques to study the convergence of
learning algorithms. For an extensive monograph on this paradigm, see Evans and Honkapohja
(2001).
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their estimates of b⇡
t�1 and bx

t�1 to make forecasts:

E⇤
t

⇡
t+1 = b⇡

t�1xt

(18)

E⇤
t

x
t+1 = bx

t�1xt

(19)

Notice that equations (16)-(17) are consistent with both PLT and IT policies.

Hence, this specification allows agents to potentially learn both those policies.

Intuitively, if the central bank consistently implements a PLT policy, agents would

learn this policy. On the other hand, if the central bank consistently implements

the IT policy, agents’ beliefs about equations (16)-(17) will eventually be consistent

with an IT policy. In other words, the model that agents estimate is consistent

with both policies, and hence the central bank can potentially make them learn

one or the other.

In the above equations we are assuming that x
t

is part of the time t informa-

tion set of the agents. This introduces a simultaneity problem between E⇤
t

y
t+1 and

y
t

that complicates the analysis of asymptotic convergence of the beliefs. In the

learning literature this simultaneity problem is often solved by adopting a di↵er-

ent timing convention, such that realized values of the endogenous variables y are

included in the time t information set only up to time t�1. However, this alterna-

tive information assumption would increase the dimension of the state space: the

forecasts of ⇡
t+1 and x

t+1 would become:

E⇤
t

⇡
t+1 = b⇡

t�1

�
bx
t�1xt�1 + cx

t�1ut

�
(20)

E⇤
t

x
t+1 = bx

t�1

�
bx
t�1xt�1 + cx

t�1ut

�
. (21)

Since expectations depend also on the estimated values of the coe�cients c⇡ and

cx, an optimizing CB should take those (and their recursive estimation algorithm)

into account. The central bank problem would then have two more state variables,

with significant additional complications in the numerical exercise. To avoid this

complications, we assume that agents’ estimates are obtained with stochastic gra-

dient learning. This assumption substantially implies that we can abstract from

the evolution of the estimated second moments of the regressors, and hence for-

get about c⇡ and cx. The recursive updating formula for the remaining estimated
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coe�cients is then

b⇡
t

= b⇡
t�1 + �

t

x
t�1

�
⇡
t

� x
t�1b

⇡

t�1

�
(22)

bx
t

= bx
t�1 + �

t

x
t�1

�
x
t

� x
t�1b

x

t�1

�
, (23)

where �
t

is the so called gain parameter. When deriving our analytical results,

we use �
t

= 1
t

(in the literature this is called decreasing gain learning). For the

numerical exercises, we use �
t

= � for some small number � (this is defined as

constant gain learning). The latter is done for presentational purposes only, and

numerical results with decreasing gain are available upon request.

2 Optimal monetary policy

In this section, we derive the optimal monetary policy and prove the main conver-

gence result. To ease analytical tractability, we assume agents follow decreasing

gain learning, so that their estimates can eventually settle down to a limit point.

Since the dynamic problem is non-standard, we first show that it has a recursive

formulation where the state variables are the output gap, the parameters of the

PLM, and the gain parameter. We then show that under the optimal policy, the

IT equilibrium is stable under learning.

2.1 Recursivity

We start stating the control problem of the central bank in the case of decreasing

gain. We write it as a maximization (instead of a minimization) problem, in order

to refer more directly to the dynamic programming results.
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sup
{⇡

t

,x

t

,r

t

,b

⇡

t

,b

x

t

}1
t=0

E0(1� �)
1X

t=0

�t


�1

2

�
⇡2
t

+ ↵x2
t

��

s.t.

x
t

=
���1r

t

1� bx
t�1 � ��1b⇡

t�1

⇡
t

= (�b⇡
t�1 + )x

t

+ u
t

b⇡
t

= b⇡
t�1 + �

t

x
t�1

�
⇡
t

� x
t�1b

⇡

t�1

�

bx
t

= bx
t�1 + �

t

x
t�1

�
x
t

� x
t�1b

x

t�1

�
,

x�1, b
⇡

�1, b
x

�1, �0 given

Since the IS curve is never a binding constraint (the central bank can always

choose an interest rate that satisfy it, given the allocations and the beliefs), we

can dispense from it. Using the NKPC to substitute out ⇡ the problem can be

written in a simpler form:

sup
{x

t

,b

⇡

t

,b

x

t

}1
t=0

E0(1� �)
1X

t=0

�t

⇢
�1

2

h�
(�b⇡

t�1 + )x
t

+ u
t

�2
+ ↵x2

t

i�
(24)

s.t.

b⇡
t

= b⇡
t�1 + �

t

x
t�1

�
(�b⇡

t�1 + )x
t

+ u
t

� x
t�1b

⇡

t�1

�
(25)

bx
t

= bx
t�1 + �

t

x
t�1

�
x
t

� x
t�1b

x

t�1

�
, (26)

x�1, b
⇡

�1, b
x

�1, �0 given (27)

There are five state variables. Three are endogenous (x
t�1, b

⇡

t�1, b
x

t�1), and take

values in R3. One is exogenous and stochastic (u
t

), defined over some underlying

probability space, and takes values in a measurable space (Z,Z). Finally, there

is one exogenous and deterministic state (�
t

) that takes values in a countable

set G ⇢ [0, 1] and evolves following the recursion 1
�

t

= 1
�

t�1
+ 1. We denote the

state space S ⌘ R3 ⇥ Z ⇥ G. The actions decided by the central bank are three

(x
t

, b⇡
t

, bx
t

); we denote this vector as a and the action space is R3. The feasibility
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correspondence � : S ! R3 is defined as follows:

for any s 2 S, � (s) =
�
a 2 R3 : equations (25) and (26) hold

 

This optimization problem has some non-standard features. First of all, the

graph of the feasibility correspondence is not convex, which implies that usual

tools of concave programming cannot be used. Moreover, � is not compact-valued.

Finally, the quadratic return function is unbounded below. For these reasons, in

the statement of the problem we used the sup operator instead of the max, since

the existence of a maximizing plan cannot be taken for granted.

We aim at proving that there exists an optimal time-invariant policy function

that maximizes the objective function in (24). To do so, the strategy we adopt

is the following: we write down a new maximization problem augmented by some

arbitrary constraints that guarantee that the feasibility correspondence is compact-

valued, and show that in this case there exists a time-invariant optimal policy

function; then, we argue that these arbitrary constraints can be chosen so that

they don’t bind in an optimum, and that no optimum of the original problem can

lie outside these constraints. Hence, we conclude that the standard FOCs can be

used to characterize the optima of the original problem.

Note that we do not prove uniqueness of the optimal policy function, but it

is not essential: in the analytical part we show asymptotic results valid for any

optimal policy function, while in the numerical part we check that only one solution

of the FOCs can be found.

We now write the new optimization problem:

sup
{x

t

,b

⇡

t

,b

x

t

}1
t=0

E0(1� �)
1X

t=0

�t

⇢
�1

2

h�
(�b⇡

t�1 + )x
t

+ u
t

�2
+ ↵x2

t

i�
(28)

s.t.

b⇡
t

= b⇡
t�1 + �

t

x
t�1

�
(�b⇡

t�1 + )x
t

+ u
t

� x
t�1b

⇡

t�1

�
(29)

bx
t

= bx
t�1 + �

t

x
t�1

�
x
t

� x
t�1b

x

t�1

�
, (30)

x (s
t

) � x
t

� �x (s
t

) , (31)

x�1, b
⇡

�1, b
x

�1, �0 given (32)
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where we used the arbitrary continuous function of the states x (s
t

). Let’s now fix

some notation. The vector of the state variables at time t is s
t

⌘ [x
t�1, b

⇡

t�1, b
x

t�1, ut

, �
t

]0,

while the vector of choice variables at t is a
t

⌘ [x
t

, b⇡
t

, bx
t

]0. We denote with a su-

perscript i the i-th element of a vector. Hence, the evolution of the state variables

can be summarized as follows:

s1
t+1 = a1

t

s2
t+1 = a2

t

s3
t+1 = a3

t

s4
t+1 = ⇠

s5
t+1 =

s5
t

1 + s5
t

where ⇠ is the realization of a random variable with the same distribution as u.

We can represent the above relations in a more compact way:

s
t+1 =  (s

t

, a
t

, ⇠) (33)

Note that the operator  is trivially continuous.

The transition probability from the graph of the feasibility correspondence to

a Borel set D ⇢ S is defined as:

Q (D|s, a) =
Z

Z

1
D

( (s, a, ⇠)) dP (⇠) (34)

where 1
D

is the indicator function relative to set D, and P is the probability

distribution of ⇠.

We can now state and prove this simple Lemma.

Lemma 1. The following results hold:

(i) The feasibility correspondence:

for any s 2 S, �c (s) =
�
a 2 R3 : equations (29), (30) and (31) hold

 

is compact-valued.
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(ii) The feasibility correspondence:

for any s 2 S, �c (s) =
�
a 2 R3 : equations (29), (30) and (31) hold

 

is upper hemi-continuous.

(iii) For any bounded continuous function v : S ! R, the function:

F (s, a) =

Z

S

v (y)Q (dy|s, a)

is continuous.

Proof. (i) For any value of s 2 S, equation (29) is a linear function of b⇡
t

and x
t

,

and analogously equation (30) is a linear function of bx
t

and x
t

. Moreover,

define:

b
⇡

(s
t

) = max
�
b⇡
t�1 + �

t

x
t�1

�
(�b⇡

t�1 + )x (s
t

) + u
t

� x
t�1b

⇡

t�1

�
,

b⇡
t�1 + �

t

x
t�1

�
(�b⇡

t�1 + ) (�x (s
t

)) + u
t

� x
t�1b

⇡

t�1

� 

and:

b⇡ (s
t

) = min
�
b⇡
t�1 + �

t

x
t�1

�
(�b⇡

t�1 + )x (s
t

) + u
t

� x
t�1b

⇡

t�1

�
,

b⇡
t�1 + �

t

x
t�1

�
(�b⇡

t�1 + ) (�x (s
t

)) + u
t

� x
t�1b

⇡

t�1

� 

and analogously for b
x

(s
t

) and bx (s
t

). Hence, it is clear that:

�c (s) ⇢ [�x (s) , x (s)]⇥ [b⇡ (s) , b
⇡

(s)]⇥ [bx (s) , b
x

(s)] (35)

Moreover, by linearity (conditional on s) of the equations (29) and (30), we

can argue that �c (s) is closed; since it is a closed subset of a compact set,

we conclude that it is compact. Since s is arbitrary, �c is compact-valued.

(ii) Let’s consider an arbitrary sequence {s
n

} with s
n

2 S for any n, converging

to a point bs, and an arbitrary sequence {x
n

} with x
n

2 [�x (s
n

) , x (s
n

)].
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Then by continuity of x (·) it is easy to show that there exists a convergent

subsequence {x
n

k

} whose limit is in [�x (bs) , x (bs)]; moreover, the functional

form of (29) and (30) (they are formed by sums and products of elements

of {s
n

} and {x
n

}) implies that if the subsequences
�
b⇡
n

k

 
and

�
bx
n

k

 
satisfy

equations (29) and (30) for any n
k

, then they converge and the limit satisfies

(29) and (30) evaluated in the limits of {s
n

k

} and {x
n

k

}. Since the sequences
{s

n

} and {x
n

} are arbitrary, upper hemi-continuity of �c is proved.

(iii) Consider an arbitrary sequence {s
n

, a
n

} with (s
n

, a
n

) 2 S ⇥ R3 for any n,

converging to a limit (s, a) 2 S ⇥ R3. We can use the Bounded Conver-

gence Theorem (remember that the function v is bounded by assumption),

continuity of v and  and equation (34) to claim that:

lim
n!1

F (s
n

, a
n

) = lim
n!1

Z

S

v (y)Q (dy|s
n

, a
n

) = lim
n!1

Z

Z

v ( (s
n

, a
n

, ⇠)) dP (⇠)

=

Z

Z

lim
n!1

v ( (s
n

, a
n

, ⇠)) dP (⇠) =

Z

Z

v ( (s, a, ⇠)) dP (⇠)

= F (s, a)

Since the sequence {s
n

, a
n

} is arbitrary, continuity of F is proved.

We are now ready to prove the following Proposition.

Proposition 1. There exists a time-invariant policy function for the CB that

solves the optimization problem 28.

Proof. This result follows from Theorem 1 of Jaskiewicz and Nowak (2011).14 The

assumptions of their Theorem are satisfied in our setup; most of them are proved

in our Lemma 1, while the existence of a one-sided majorant function that satisfies

their conditions (M1) and (M2) (see the Appendix for their exact formulation) is

trivial in our model: since the quadratic return function of the CB is non-positive,

a constant function ! (s) = 1 for any s 2 S has the required properties.

Finally, note that their Theorem is derived in the case of a maxmin problem of

a controller in a two-players game; assuming that the second player can play only

14We report the statement of the Theorem and its assumptions in the Appendix.
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one strategy allows us to apply their results to our model.

Next, we prove that any optimal time-invariant policy function for the problem

28 is such that the constraint (31) never binds in the optimum, if an appropriate

continuous function x (s) is chosen. We define V c (s) as the value function associ-

ated with the solution of the problem 28 for a given initial vector of states s 2 S.15

In the following simple Lemma we characterize bounds of this value function.

Lemma 2. Assume that the shock u has finite variance �2
u

. The following results

hold:

(i) For any s 2 S and any choice of x (s):

V c (s)  0

(ii) For any s 2 S and any choice of x (s):

V c (s) � �1

2

⇥
(1� �) u2 + ��2

u

⇤

where u is the fourth component of the vector s of initial states.

Proof. (i) This follows trivially from the fact that the one-period return function

of the CB is non-positive.

(ii) For any choice of x (s), the allocation x
t

= 0 for any t � 0 and any history of

states is always feasible; with this allocation the welfare of the CB is given

by:

E0(1� �)
1X

t=0

�t

⇢
�1

2

h�
(�b⇡

t�1 + )x
t

+ u
t

�2
+ ↵x2

t

i�
=

E0(1� �)
1X

t=0

�t

⇢
�1

2
(u

t

)2
�

= �1

2

⇥
(1� �) u2

0 + ��2
u

⇤

Hence, the optimal allocation cannot deliver a welfare smaller than the one

associated with this feasible allocation.
15Note that this value function depends also on the choice of xs, even if we do not make this

dependence explicit.
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We can now state and prove the following Proposition.

Proposition 2. Let x (s) = ✏
q

(1��)u2+��

2
u

↵(1��) , for some ✏ > 1; then any optimal

time-invariant policy function for the problem 28 is such that the constraint (31)

never binds.

Proof. Theorem 1 of Jaskiewicz and Nowak (2011) shows that there exists a re-

cursive formulation of our maximization problem, which is the following:

V c (s) = � (1� �)
1

2

⇥
(�b⇡ + )x⇤ (s) + u)2 + ↵x⇤2 (s)

⇤
+�

Z

S

V c (s)Q (dy|s, a⇤ (s))
(36)

for any s 2 S, where the starred variables denote actions taken under any optimal

policy function. Using Lemma 2 (i) and the fact that� (1� �) 1
2 (�b

⇡ + )x⇤ (s) + u)2

is non-positive, we have that:

V c (s)  � (1� �)
1

2
↵x⇤2 (s)

Now, for the sake of contradiction, let’s assume that for some s 2 S we have that

x⇤ (s) = x (s).16 This means that:

�x⇤2 (s) < �(1� �) u2 + ��2
u

↵ (1� �)

which implies:

V c (s)  � (1� �)
1

2
↵x⇤2 (s) < �1

2

⇥
(1� �) u2 + ��2

u

⇤
(37)

which contradicts Lemma 2 (ii).

2.2 Convergence

So far we proved that there exists an optimal time-invariant solution to the prob-

lem 28 and that it is interior; hence, any such solution can be characterized as

16We can proceed analogously for the case x

⇤ (s) = �x (s).
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the solution of the standard FOCs, without having to worry about the Lagrange

multipliers on the constraints (31). The first order conditions of problem 28 are:

0 =� ↵x
t

� ⇥(�b⇡
t�1 + )x

t

+ u
t

⇤
(�b⇡

t�1 + )� �1,t�txt�1(�b
⇡

t�1 + )� (38)

� E
t

[�1,t+1��t+1((�b
⇡

t

+ )x
t+1 + u

t+1 � b⇡
t

2x
t

)]� �2,t�txt�1

� E
t

[�2,t+1��t+1(xt+1 � bx
t

2x
t

)]

0 =�1,t � �E
t

�1,t+1(1� �
t+1x

2
t

)� �2E
t

[((�b⇡
t

+ )x
t+1 + u

t+1) xt+1]� (39)

�2E
t

[�1,t+1�t+1xt

x
t+1]

0 =�2,t � �E
t

�2,t+1(1� �
t+1x

2
t

), (40)

where �1,t and �2,t are the Lagrange multipliers of (29) and (30), respectively.

These first order conditions together with the law of motion for the learning coe�-

cients constitute the necessary conditions for the optimal evolution of {x
t

, b⇡
t

, bx
t

}.17
From equation (38) it is easy to show that the only stationary solution for �2,t is

�2,t = 0 for any t; hence the FOCs can be rewritten as:

0 =� ↵x
t

� ⇥(�b⇡
t�1 + )x

t

+ u
t

⇤
(�b⇡

t�1 + )� �1,t�txt�1(�b
⇡

t�1 + )� (41)

� E
t

[�1,t+1��t+1((�b
⇡

t

+ )x
t+1 + u

t+1 � b⇡
t

2x
t

)]

0 =�1,t � �E
t

�1,t+1(1� �
t+1x

2
t

)� �2E
t

[((�b⇡
t

+ )x
t+1 + u

t+1) xt+1]� (42)

�2E
t

[�1,t+1�t+1xt

x
t+1]

Remembering that by Proposition 1 we can concentrate on time-invariant laws of

motion for the optimal x, we can rewrite equation (41) as:

x
t

= �1

�
b⇡
t�1

�
u
t

+ �2 (st) (43)

17From the IS curve and the NKPC we can back out the optimal processes for inflation and
the nominal interest rate.
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where the vector s
t

is the vector of state variables defined above, and:

�1

�
b⇡
t�1

� ⌘ � �b⇡
t�1 + 

↵ +
�
�b⇡

t�1 + 
�2 (44)

�2 (st) ⌘ � 1

↵ +
�
�b⇡

t�1 + 
�2
�
�1,t�txt�1(�b

⇡

t�1 + )

+E
t

[�1,t+1��t+1((�b
⇡

t

+ )x
t+1 + u

t+1 � b⇡
t

2x
t

)]} (45)

Plugging (43) into equation (29), we get the following law of motion of b⇡ along

any optimal path:

b⇡
t

= b⇡
t�1+�

t

x
t�1

⇥
(�b⇡

t�1 + )�1

�
b⇡
t�1

�
u
t

+ u
t

� x
t�1b

⇡

t�1

⇤
+�

t

x
t�1(�b

⇡

t�1+)�2 (st)

(46)

Using analogous arguments, we get that:

bx
t

= bx
t�1 + �

t

x
t�1

⇥
�1

�
b⇡
t�1

�
u
t

� x
t�1b

x

t�1

⇤
+ �

t

x
t�1�2 (st) (47)

Our aim is to rewrite equations (46)-(47) as a Stochastic Recursive Algorithm

(SRA hereafter) in a form that can be analyzed using the stochastic approximation

tools. To do so, we start defining the vector of the state variables of the algorithm

Y
t

⌘ [x
t

, x
t�1, ut

, �
t

, ]0.18 Hence, we can rewrite (46)-(47) as follows:

b⇡
t

= b⇡
t�1 + �

t

H
⇡

�
b⇡
t�1, Y

2
t

, Y 3
t

�
+ �2

t

⇢
⇡

�
b⇡
t�1, b

x

t�1, Y
2
t

, Y 3
t

, Y 4
t

�

bx
t

= bx
t�1 + �

t

H
x

�
b⇡
t�1, Y

2
t

, Y 3
t

�
+ �2

t

⇢
x

�
b⇡
t�1, b

x

t�1, Y
2
t

, Y 3
t

, Y 4
t

�

where Y i

t

denotes the i-th entry of the Y
t

vector, and:

H
⇡

�
b⇡
t�1, Y

2
t

, Y 3
t

� ⌘ x
t�1

⇥
(�b⇡

t�1 + )�1

�
b⇡
t�1

�
u
t

+ u
t

� x
t�1b

⇡

t�1

⇤

H
x

�
b⇡
t�1, Y

2
t

, Y 3
t

� ⌘ x
t�1

⇥
�1

�
b⇡
t�1

�
u
t

� x
t�1b

x

t�1

⇤

⇢
⇡

�
b⇡
t�1, b

x

t�1, Y
2
t

, Y 3
t

, Y 4
t

� ⌘ x
t�1(�b

⇡

t�1 + )
�2 (st)

�
t

⇢
x

�
b⇡
t�1, b

x

t�1, Y
2
t

, Y 3
t

, Y 4
t

� ⌘ x
t�1
�2 (st)

�
t

18Note that the vector of state variables used for the convergence analysis is di↵erent from
those used in the solution of the optimization problem.
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If we define ✓
t

⌘ [b⇡
t

, bx
t

]0, and:

H (·) ⌘
 

H
⇡

(·)
H

x

(·)

!
, ⇢ (·) ⌘

 
⇢
⇡

(·)
⇢
x

(·)

!

equations (46)-(47) can be written as:

✓
t

= ✓
t�1 + �

t

H (✓
t�1, Yt

) + �2
t

⇢ (✓
t�1, Yt

) (48)

which is a SRA in the standard form studied in the Evans and Honkapohja (2001).

To study the asymptotic behavior of ✓
t

, we analyze the solutions and stability of

the Ordinary Di↵erential Equation (ODE) associated to (48):

d✓

d⌧
= h (✓) ⌘ EH

⇣
b⇡, bY 2

t

, bY 3
t

⌘
(49)

where the expectation is taken over the invariant distribution of the process bY
t

(✓),

which is the stochastic process for Y
t

obtained by holding ✓
t�1 at the fixed value

✓
t�1 = ✓. It is possible to prove that there exists an invariant distribution to which

the Markov process bY
t

(✓) converges weakly from any initial conditions; hence, the

function h (✓) is well defined.19 Note that x
t�1 does not depend on u

t

; this implies

that:

h (✓) =

 
�b⇡Ex2

t�1 (✓)

�bxEx2
t�1 (✓)

!

The only possible rest point of the ODE (49) is clearly ✓ = 0. Moreover it is

(locally) stable, since the Jacobian:

Dh (✓) =

 
�Ex2

t�1 (✓)� b⇡
@Ex

2
t�1(✓)

@b

⇡

�b⇡
@Ex

2
t�1(✓)

@b

x

�bx
@Ex

2
t�1(✓)

@b

⇡

�Ex2
t�1 (✓)� bx

@Ex

2
t�1(✓)

@b

x

!
(50)

19The proof is available from the authors upon request.
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has both eigenvalues smaller than zero when evaluated in ✓ = 0.20 In the termi-

nology commonly used in the adaptive learning literature, we can say that ✓ = 0

is the only E-stable equilibrium. From simple inspection of (50) we conclude that

this E-stability result is independent of parameters’ values.

Remark 1. The Jakobian (50) has negative eigenvalues for any value of the struc-

tural parameters.

Evans and Honkapohja (2001) derive an equivalence result between E-stability

and convergence under learning. This theorem, which draws on arguments con-

tained in Benveniste, Métivier, and Priouret (1990), cannot directly be applied to

our problem, since the state variables’ law of motion does not satisfy the required

assumptions.21 However, it turns out that we can adapt their arguments, and

prove the following result.22

Proposition 3. Let ✓ evolve according to (48). If ✓ is E-stable, then it is locally

stable under adaptive learning.23

Proof. See the Appendix.

Proposition 3 implies that in the limit ✓
t

= [b⇡
t

, bx
t

]0 ! 0. This is the only

possible E-stable equilibrium and it is locally stable. Equations (18) and (19) then

show that in the limit agents expect zero inflation and output-gap. Substituting

this together with �
t

! 0 into the FOC (41) and the PC (2) implies that both

output and inflation converges to the IT equilibrium (14) (15).

20We are implicitly assuming that Ex

2
t�1 (✓) admits partial derivatives, and that they are

finite.
21From a technical point of view, the Markov chain followed by our state variables Y is not

necessarily geometrically ergodic, hence the assumption A.4 as stated in page 216 of Benveniste,
Métivier, and Priouret (1990) is not satisfied (we cannot prove the existence of a solution to the
Poisson equation).

22Strictly speaking, the following result does not establish an equivalence between E-stability
and convergence under learning, since it does not guarantee that any locally stable equilibrium
is E-stable. However, our numerical investigation shows that this is the case.

23For an explicit definition of what “locally stable under adaptive learning” means, see Evans
and Honkapohja (2001) page 275.
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Main result 1. Optimal policy drives the economy to the inflation targeting equi-

librium

x
t

= � 

↵ + 2
u
t

⇡
t

=
↵

↵ + 2
u
t

.

3 Policy implications

In the previous section we established that the optimal policy drives agents’ beliefs

to the inflation targeting equilibrium. In order to explain the intuition behind this

result, in this section we describe the short and long run policy tradeo↵s.

3.1 Welfare implications

In order to quantify the long run and short run tradeo↵s, we use numerical meth-

ods. We use the FOCs (41)-(42) and solve for �1,t and x
t

, using a collocation

algorithm. We approximate the control variables with Chebychev polynomials, as

functions of the state variables (x
t�1, b⇡

t�1 and u
t

)24. The optimal approximated

policy functions are then used to simulate the series.

The benchmark calibration is taken from Woodford (1999) (see table 1). In

order to avoid the e↵ect of a changing gain parameter, and focus entirely on the

short versus long run trade-o↵, we simulate the model for a small constant gain

parameter. The reason is that, with decreasing gain learning, the first observations

of the simulated series are strongly a↵ected by the value of the gain parameter

�
t

= 1
t

. Simulations starting from period 1, where �1 = 1, are quantitatively

di↵erent from simulations starting from period 1000, where �1 = 0.001. To abstract

from the e↵ect of a changing gain parameter, we prefer to present our results only

24We make use of the Miranda-Fackler CompEcon Toolbox. We use tensor product to project
the multimensional state space on the policy space, and Gaussian quadrature to compute the
expectation operators. The solution is found by using a version of the Broyden algorithm for
nonlinear equations coded by Michael Reiter. Uniqueness of the solution might be an issue, since
the Kuhn-Tucker conditions are only necessary in our setup. However, we experimented with
several initial conditions and di↵erent interpolation techniques, and the solution did not change.
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Table 1: Parameters

Parameter Value
� 0.99
� 0.157
 0.024
↵ 0.04
� 0.05
�2
u

0.07

Gaussian cost-push
shock, Eu = 0.

for constant gain. However, the qualitative behaviour of the series is the same

under constant and decreasing gain. The decreasing gain results are available

upon request. We set � = 0.05, which is a value consistent with estimates for

the US economy (see Milani (2007), Branch and Evans (2006) and Slobodyan and

Wouters (2012)). Robustness checks for several of the model parameters have been

performed and are available upon request.

Figure 1: Dynamics of b⇡ and bx under constant gain, benchmark parameterization,
� = .05
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Figure 1 provides an example of the evolution of the learning coe�cients b⇡
t

and bx
t

for a single simulated path of u: it shows that the optimal policy drives

beliefs to the IT equilibrium, and this equilibrium is stable: once reached this
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equilibrium, agents’ beliefs remain very close to it. The learning coe�cients b⇡
t

and bx
t

converge to zero, thus inflation and output gap expectations (18-19) do not

depend on lagged output gap and converge to zero too.

The welfare benefits of the optimal policy are substantial. In table 2 we com-

pare welfare losses from the optimal policy to the losses obtained with a Taylor-type

rule that keeps learning agents in the PLT equilibrium (as shown in Evans and

Honkapohja (2006)).25 We perform a Monte Carlo with simulation length of 5000

periods and a cross-sectional sample size of 10000, and express welfare losses as

consumption equivalent in terms of steady state consumption. The loss of PLT is

63% percent higher than that of the optimal rule, when starting from beliefs con-

sistent with PLT. The same measure is 35% higher for the optimal policy when we

start from beliefs consistent with IT. Therefore, our optimal policy is significantly

better than a PLT rule.

Table 2: Consumption equivalents

Optimal policy Price level targeting Ratio (PLT
OP )

Initial beliefs

Inflation targeting 0.000744 0.001004 1.35

Price level targeting 0.000411 0.000673 1.63

� = 0.05.

3.2 Welfare decomposition: short vs long run

The optimal policy’s welfare gains (with respect to the PLT Taylor rule) can

be decomposed in short run losses and long term benefits. To illustrate this, in

Figure 2 we produce a consumption equivalent measure of welfare losses over a

rolling window, for the optimal policy (blue line). We then compare our optimal

policy with the Taylor rules that keep beliefs respectively to PLT (red line) and

IT (black line) equilibria26.

The graph should be read in the following way: a point at time t in the blue line

corresponds to the consumption equivalent measure of the optimal policy start-

25This rule also guarantees determinacy under RE.
26The latter is taken from Evans and Honkapohja (2003).
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ing from the belief in period t, averaged over 10000 simulations of 2000 periods’

length. For example, at period 1000 we have the average consumption equivalent

for the optimal policy starting with beliefs at period 1000. PLT and IT policies are

obtained in an analogous way. The only di↵erence is in the initial beliefs: for PLT

and OP, we set them at the PLT value. IT policy instead is simulated starting

from IT beliefs. In this way, we expect to see the optimal policy welfare measure

converge to the IT one.

Figure 2: Consumption equivalents losses, on a rolling window
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Montecarlo of 10000 simulations. Initial beliefs at price level targeting for OP and PLT, at
inflation targeting for IT, � = 0.05.

First of all, Figure 2 shows that the welfare ranking of the two Taylor rules

under learning are similar to the one under RE: the per period welfare losses of

IT are higher than that of PLT in each period. Moreover, from this graph, we

can see that the policymaker sacrifices long run e�ciency for short run gains. In

the initial periods, welfare losses from the optimal policy are clearly smaller than

the PLT rule. However, optimal policy’s losses are larger than those generated by
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a PLT rule in the long run, as the optimal policy tends asymptotically to the IT

policy. The intuition is straightforward: in the short run, the optimal policy can

respond quickly to a shock due also to almost constant expectations, while PLT

policy response need to anchor future inflation expectations by committing to a

long sequence of future output contractions. Hence, in the short run the optimal

policy has an advantage in terms of welfare: it can close the wedge created by

the shock in a very short time without large impact on inflation expectations.

However, in the long run, as the optimal policy drives agents’ beliefs away from

PLT, the policymaker looses its ability to anchor agents’ inflation expectations.

Its policy therefore resembles more the IT policies, which are welfare inferior to

PLT.

3.3 Short run policy incentives

The short run gains come from the well known time inconsistency problem of price

level targeting and the sluggishness of agents’ beliefs. The time inconsistency is

standard: if given the chance, the central bank has an incentive to renege its

commitments and choose a di↵erent policy which is optimal at the time the decision

is taken. Under rational expectations, any deviation from a commitment will be

immediately spotted by agents, making any future commitment of the central

bank not credible anymore. However, under learning things are di↵erent: small

deviations from PLT, for example, can be “interpreted” by agents as a mistake in

their estimated model of the economy.

This can be easily illustrated by looking at the first order conditions of the

central bank. Let us first assume that agents do not update their beliefs, so �
t

= 0

and learning coe�cients are not updated. Let us also assume that by some period k

agents believe that the central bank is implementing the PLT policy, hence bx
k

= bx

and b⇡
k

= b⇡. Agents’ expectations are then equal to the RE equilibrium under

PLT: E⇤
t

⇡
t+1 = b⇡x

t

, E⇤
t

x
t+1 = bxx

t

, 8t � k. However, given these assumptions,

the optimal policy is strikingly di↵erent from PLT. By combining the FOCs (41)-
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(42) and the PC (2) we get

x
t

= � �b⇡ + 

↵ + (�b⇡ + )2
u
t

⇡
t

=
↵

↵ + (�b⇡ + )2
u
t

.
(51)

When the learning is shut down, the central bank optimal policy does not depend

on x
t�1, as in the PLT equilibrium (7-8). Instead, its policy is qualitatively similar

to the “leaning against the wind” strategy of IT: after a positive shock, the CB

decreases current output gap in order to avoid a huge increase in current inflation.

This reaction is stronger the larger is b⇡, i.e. the further away expectations are

from the IT policy: intuitively, the higher b⇡, the stronger is the trade-o↵ between

inflation and output (from the Phillips curve (2)), and therefore the stronger is

the incentive of the central bank to “fool” agents.

Things are slightly di↵erent if we allow for learning, i.e. if �
t

> 0. This im-

plies that agents are learning from the realized allocations and they eventually

understand when the central bank deviates from the PLT. Agents endowed with

rational expectations would immediately loose any faith in the central bank cred-

ibility after a deviation, and they would assume that the prevailing equilibrium in

the future will be IT. On the other hand, learning agents revise their beliefs in a

more sluggish fashion. Because of this sluggishness, and similarly to the case in

which there is no learning at all, the policymaker has still an incentive to “sur-

prise” the households repeatedly, by choosing allocations di↵erent from expected

ones. The central bank implements these surprises by aggressively contracting

output to disinflate. Figures 3a and 3b show the impulse response functions for

inflation and output, starting from PLT beliefs. Compared to PLT, after a posi-

tive cost-push shock the OP engineers a much bigger output contraction in order

to keep inflationary pressures at bay. With respect to PLT, the welfare gain of

lower inflation outweighs the welfare loss of a larger output gap, since in the New

Keynesian model price rigidity is the most important friction. When inflation is

lower, firms that cannot adjust their prices have a less distorted price, and their

output is closer to the (flexible prices) e�cient output. However, this policy is not

consistent with agents’ beliefs, since they were expecting a PLT policy, and hence
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they will make forecasting mistakes. Households will learn from these mistakes by

updating their beliefs as shown in figure 1. In the limit households learn that the

central bank is not implementing a PLT policy, and their beliefs slowly converge

to the IT equilibrium.

Figure 3: Impulse responses after a one standard deviation cost-push shock, under
optimal policy under learning (OP ) and price-level targeting policy (PLT ) , start-
ing with initial beliefs corresponding to the rational expectations PLT equilibrium,
with � = 0.05.
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The impulse response of the price level shows even more strikingly how our

optimal policy di↵ers from PLT. Figure 3c shows that the optimal response after a

positive cost-push shock is to allow the price level to raise permanently (similarly

to what would happen under an IT rule), while under PLT the central bank would

bring the price level back to the target. In other words, price level stabilization

is not optimal when agents are learning, and the central bank should let prices

absorb shocks in a permanent way.
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3.4 Non-linearity of the optimal policy

The optimal policy is a non-linear function of household expectations, therefore it

cannot be expressed as a Taylor type rule. To illustrate this, Figure 4 (panel a)

shows the first period output contraction x1 that the central bank engineers after

a positive cost-push shock, for di↵erent inflation beliefs b⇡0 .

Figure 4: Impulse responses of inflation and output gap after a one standard
deviation cost-push shock, under optimal policy under learning (OP ) and price-
level targeting policy (PLT ) , starting with initial beliefs corresponding to the
rational expectations PLT equilibrium, with � = 0.05.

0 0.05 0.1 0.15 0.2−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

b0
π

x 1

 

 

OP
PLT

(a) Impulse e↵ect on output gap as
a function of beliefs, for OP and
PLT policies

0 0.05 0.1 0.15 0.2−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

b0
π

x 1

 

 

γ = 0.01
γ = 0.02
γ = 0.05
γ = 0.1
γ = 0.2

(b) Impulse e↵ect on output gap as
a function of beliefs, for di↵erent �

The PLT impact is a linear, slightly increasing function of the beliefs by con-

struction, since this is a linear expectations-based interest rate rule derived in

Evans and Honkapohja (2006). The further away beliefs are from the PLT equi-

librium, the larger the output contraction that PLT policy engineers, in order to

drive household beliefs back to the PLT equilibrium. Optimal policy, on the other

hand, is non-linear in inflation beliefs and, in contrast to PLT, it is decreasing in

b⇡0 . In other words, the closer household beliefs are to the PLT equilibrium, the

larger is the output contraction engineered, and the larger is the di↵erence with

PLT. The reason for this is that the closer beliefs are to PLT, the more the cen-

tral bank can decrease next periods’ inflation expectations by contracting output

without substantially a↵ecting agents’ beliefs, therefore the incentives to exploit

the inflation-output tradeo↵ are bigger.
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Those same incentives also depend on the gain parameter. The smaller is

the gain parameter, the more hawkish the central bank is: it engineers a bigger

output contraction (Figure 4, panel b). With a small gain parameter agents learn

slowly and optimal policy can exploit the Phillips curve and aggressively disinflate

without loosing its ability to a↵ect private sectors’ expectations.

4 Discussion

The results we derived show that optimality of price level targeting is not robust to

relaxing rationality bounds of private agents. When private agents use past data

to form beliefs about the future instead of being fully rational, price level target-

ing is still beneficial in e↵ectively anchoring inflation expectations, but monetary

policy has strong short run incentives to deviate from it. These incentives arise

because learning agents need time to uncover that the central bank has deviated

from PT, and in the meantime the policymaker can exploit the inflation-output

tradeo↵ and disinflate by aggressively contracting output. This policy comes at a

cost, private agents eventually gather enough data and understand that the central

bank is deviating from PT. The economy converges to IT and the central bank

looses its ability to anchor private expectations. We show that the short run gains

of this policy outweigh long run losses, therefore it is optimal for the central bank

to succumb to the temptation and deviate from price level targeting.

The central bank incentives that arise in our framework have been previously

ignored by proponents of price level targeting under learning (see Evans and

Honkapohja (2006), Aoki and Nikolov (2006), Gaspar, Smets, and Vestin (2007)).

These authors showed that price level targeting is a learnable equilibrium: if ex-

pectations are perturbed out of the price level targeting equilibrium, the central

bank can implement a policy that makes agents learn the price level targeting

equilibrium again. However, once central bank incentives are taken into account,

PLT is no longer optimal if agents are learning.

A general message from our results is that in a heterogenous agents setup, it is

not enough to examine learnability of an equilibria, as it is traditionally done in the
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literature (see Evans and Honkapohja (2001)). Even a learnable equilibria might

not arise when interactions between agents are taken into account. The incentives

of a rational player (in our model the central bank) depend on what type of other

player she interacts with. Adaptive players are di↵erent from rational players even

after they learned a rational expectations equilibria, and their forecast could not

be distinguished from that of a rational agent. One di↵erence is the speed of re-

vising beliefs. A rational agent would immediately understand if the central bank

has deviated from PT and would immediately switch to the IT equilibrium. A

learning agent on the other hand needs time to gather su�cient amount of data to

understand that the central bank deviated from PT. A second, more subtle di↵er-

ence is that rational agents can choose a strategy that prescribes totally di↵erent

behavior on and o↵-equilibrium, and the o↵-equilibrium threat of rational private

agents can keep a rational bank from deviating from PT (see Kurozumi (2008)).

For learning agents, on the other hand, o↵-equilibrium threats are not possible,

since they simply form beliefs based on realized outcomes. A rational opponent to

learning agents takes this into account and chooses her strategy accordingly.

In our setup, the central bank incentives to deviate from PT cannot be turned

around by appointing a conservative central banker, in a way analogous to what

suggested in Rogo↵ (1985). Even if the central banker cares strongly about damp-

ening inflation fluctuations, these incentives remain.

To be clear, we are not claiming that price level targeting should never be

used by central banks. Our claim is that central banks have incentives to deviate

from this policy when agents are learning. As learning is found to be empirically

relevant,27 we think these central bank incentives should not be neglected. One

caveat of our findings is that many empirical and policy-oriented models are a more

complex representation of the economy than our setup (see Smets and Wouters

(2007)). For example, many researchers add various exogenous sources of persis-

tence. We cannot exclude that other sources of persistence might interact with

learning and provide di↵erent policy incentives than in our paper. Unfortunately,

introducing these features in our model would make it analytically and numerically

intractable.
27See for example Del Negro and Eusepi (2011), Slobodyan and Wouters (2012), Molnar and

Ormeno (2014).
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A few of our assumptions play an important role in our findings, and therefore

we would like to discuss their limitations. Firstly, we conduct our analysis by

assuming a specific learning algorithm. Even if this learning algorithm is widely

used in the literature, and it is consistent with the rational expectation equilibrium,

it might seem arbitrary. Yet it is equally arbitrary to assume that there is no

learning component to private expectations, especially since this is at odds with

recent empirical findings. Ultimately, how people form expectations is an empirical

issue, which is yet unsettled. We agree with Marcet and Nicolini (2003) that

rationality bounds should be placed on learning, and we think it would be beneficial

to expand both empirical and theoretical research in this direction. As this is

beyond the scope of this paper, for the time being, we would like to emphasize

that it should not be ignored that central bank incentives change when there is a

learning component to agents’ beliefs.

Secondly, we assume the central bank knows the exact learning algorithm

agents use. This is undoubtedly a strong assumption, nevertheless an analo-

gously strong assumption is regularly made in optimal policy research with ra-

tional agents, where the policymaker knows that agents are rational. We do think

it is worth making our extreme assumption in order to understand optimal policy

under the polar case of adaptive learning. Assessing the consequences of interme-

diate forms of rationality would require their explicit modelling, and we do not

rule out the possibility that di↵erent policy incentives would arise in an alternative

setting.

5 Conclusions

This paper has shown that stabilizing prices is a bad strategy if agents do not

have perfectly rational expectations. We have examined an optimal monetary

policy problem in a setup where agents are adaptive learners, and our main result

shows that a benevolent central bank should not counteract the e↵ects of economic

fluctuations on the price level. The optimal policy instead let prices absorb the

e↵ects of shocks in a permanent way. Qualitatively, the optimal policy resembles

a “leaning against the wind” policy.
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There is a large literature that examines the policy implications of standard

monetary policy prescriptions in economies where agents are adaptive learners.

Contrary to the approach in the previous literature, our optimal policy design

takes into account the incentives of the policymaker. In this setup, a good policy-

maker sacrifices the long run benefits of stabilizing prices for the short run gains

coming from exploiting the inflation-output trade-o↵, by taking into account the

expectations formation mechanism of the private sector. This result is in line with

some observed features of the practice of monetary policy. Central banks rou-

tinely monitor private sector’s expectations, and are reluctant to introduce price

level stabilization as their o�cial policy objective.

We do not mean to give precise policy prescriptions to central banks. We are

aware that policymaking in reality is more complex and challenging than in our

simple framework. Our results however should highlight that the incentives of

the central bank change with the expectation formation mechanism of the private

sector, and policy prescriptions derived without acknowledging this fact can be

misleading.

An important question is how general our result is. We conjecture that it

is common to a large class of Stackelberg games, where a leader makes optimal

decisions by explicitly taking into account the expectations formation mechanism

of the follower. We leave this extension to future research.
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Appendix

In this Appendix we prove proposition 3. To do so, we first show a series of

intermediate results.

First of all, we state and prove the following technical Lemma.

Lemma 3. Let �1,t be a stationary solution of (42), and suppose that ✓
t

is fixed

at some ✓; then, for any compact Q ⇢ R2, there exists a positive constant C
�

such

that:

|�1,t|  C
�

�
1 + |u

t

|2� (A.1)

for any ✓ 2 Q.

Proof. Solving forward equation (42), we get that any stationary solution must

satisfy:

�1,t = �2E
t

1X

i=1

�
�i [((�b⇡ + )x

t+1+i
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t+1+i

) x
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j=0#t+j

 
+

+�2E
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where #
t+j

is defined as follows:

#
t

= 1, #
t+j

= 1� �
t+j

x
t+j�1 (xt+j�1 � �x

t+j

) for j > 0

Let x (u
t

) be defined as in the statement of Proposition 2, let:

⇡ (u
t

) ⌘ M
Q

x (u
t

) + u
t

where M
Q

⌘ max
✓2Q(�b⇡ + ).28 Moreover, note that for any j > 0:

|#
t+j

| = |1� �
t+j

x
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where we used the triangle inequality, the fact that the sequence of gains is decreas-

ing, and the result of Proposition 2 that at an optimum we must have |x
t

| < x (u
t

).

28This maximum exists, since the function is continuous and Q is compact by assumption.
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Because the stochastic process of u is assumed to be iid, it follows that #
t+j

is in-

dependent of x (u
t+1+i

) and ⇡ (u
t+1+i

), for any j  i. Using this observation, the

bounds derived on x, ((�b⇡ + )x+ u) and #, the triangle inequality, the Schwartz

inequality, the monotonicity of the expectation operator, we can write:

|�1,t|  �2M
x,⇡

E
t

1X

i=1

�
�i⇧i

j=0#t+j

 
+ �2M

x,⇡

where M
x,⇡

⌘ E
t

x (u
t+1+i

) ⇡ (u
t+1+i

) which is constant for any t and any i because

of the iid assumption. Note that the series in the RHS of the above inequality

converges, since � < 1 and lim
j!1 E

t

#
t+j

= 1. Finally, note that the only #
t+j

that depends on u
t

is #
t+1; hence, we can write the above inequality as follows:

|�1,t|  �2M
x,⇡

E
t

1X

i=2

�
�i

⇥
⇧i

j=2#t+j

⇤ ⇥
1 + �2 |x (ut

)|2 + ��2 |x (ut

) x (u
t+1)|

⇤ 
+

�3M
x,⇡

E
t

⇥
1 + �2 |x (ut

)|2 + ��2 |x (ut

) x (u
t+1)|

⇤
+ �2M

x,⇡

= �2M
x,⇡

⇥
1 + �2 |x (ut

)|2⇤E
t

1X

i=2

�i

⇥
⇧i

j=2#t+j

⇤
+

�3M
x,⇡

�2x (ut

)E
t

1X

i=2

�i

�⇥
⇧i

j=2#t+j

⇤
x (u

t+1)
 
+

�3M
x,⇡

⇥
1 + �2 |x (ut

)|2 + ��2x (ut

)E
t

x (u
t+1)

⇤
+ �2M

x,⇡

 bC
�

�
1 + |u

t

|+ |u
t

|2� (A.3)

where we used the fact that, due to the iid assumption on u, the conditional

expectations of the random variables considered in (A.3) are independent of t, and

the definition of x (u
t

) to get:

x (s) = ✏

s
(1� �) u2 + ��2

u

↵ (1� �)
 ✏

s
[(1� �) |u|+ ��

u

]2

↵ (1� �)
= ✏

(1� �) |u|p
↵ (1� �)

+✏
��

up
↵ (1� �)

Finally, note that inequality (A.3) implies that there exists a C
�

such that (A.1)

holds.29 This completes the proof.

29For example, C� = 3 bC� would work.
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We can now state and prove the following Proposition.

Proposition 4. Let ✓
t

evolve according to (48), and fix an open set D ⇢ R2

around the point ✓ = 0. Then, for any compact Q ⇢ D, there exist C and q such

that for any ✓ 2 Q:

|⇢ (✓, Y )|  C (1 + |Y |q) (A.4)

Proof. In what follows, we show that a bound of the form reported in the above

inequality holds for the absolute value of any of the two components of the function

⇢(·), which clearly implies (A.4).

Let’s start from ⇢
⇡

(·); plugging equation (45) into the definition of this function

we get:

��⇢
⇡

�
b⇡
t�1, b

x

t�1, Y
2
t

, Y 3
t

, Y 4
t

��� =

������x
t�1

(�b⇡
t�1 + )

↵ +
�
�b⇡

t�1 + 
�2
�
�1,txt�1(�b

⇡

t�1 + )

+�
�
t+1

�
t

E
t

[�1,t+1((�b
⇡

t

+ )x
t+1 + u

t+1 � b⇡
t

2x
t

)]

�����
 �M2 |Et

[�1,t+1((�b
⇡

t

+ )x
t+1 + u

t+1 � b⇡
t

2x
t

)]|
+M1 |xt�1|2 |�1,t| (A.5)

where we used the triangle inequality and the fact that �

t+1

�

t

< 1, and where:

M1 ⌘ max
✓2Q

(�b⇡
t�1 + )2

↵ +
�
�b⇡

t�1 + 
�2 , M2 ⌘ max

✓2Q

(�b⇡
t�1 + )

↵ +
�
�b⇡

t�1 + 
�2

Using Lemma 3, we can write:

M1 |xt�1|2 |�1,t|  M1 |xt�1|2 C�

�
1 + |u

t

|2�  M1C�

|x
t�1|2+2M1C�

max
�|x

t�1|2 , |ut

|2 

Remember that the max between two real numbers define a norm on R2; by

the well-known result that in a finite-dimensional normed linear space any two

norms are equivalent, there exists a positive constant bC such that max {z1, z2} 
bC (|z1|+ |z2|) for any (z1, z2) 2 R2, where |z1|+ |z2| is a p-norm with p = 1. Hence,
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we get:

M1C�

|x
t�1|2 + 2M1C�

max
�|x

t�1|2 , |ut

|2  M1C�

|x
t�1|2 + C1

�
1 + |x

t�1|2 + |u
t

|2�

 C
�
1 + |x

t�1|2 + |u
t

|2 + |�
t

|2�

Using similar arguments, we can obtain similar bounds for the term:

�M2 |Et

[�1,t+1((�b
⇡

t

+ )x
t+1 + u

t+1 � b⇡
t

2x
t

)]|

which implies that the condition in the statement of the Proposition holds for ⇢
⇡

(·)
with q = 2. In the case of ⇢

x

(·) the proof is analogous.

The above Proposition implies that the assumptions made in Benveniste, Métivier,

and Priouret (1990) on the SRA are satisfied by our model. In what follows, we

show that the result that E-stability implies learnability holds even if we do not

invoke their assumptions on the state variables’ law of motion.

Following the steps described in Benveniste, Métivier, and Priouret (1990),

Chapter 1 Part II, we rewrite the learning algorithm as follows

✓
t

= ✓
t�1 + �

t

h (✓
t�1) + ✏

t�1 (A.6)

where:

✏
t�1 = �

t

[H (✓
t�1, Yt

)� h (✓
t�1) + �

t

⇢ (✓
t�1, Yt

)] (A.7)

Heuristically, what we want to obtain are bounds on the fluctuations of the

error term ✏
t�1; more generally, we look for upper bounds of the expressions:

✏
t�1 (�) = � (✓

t

)� � (✓
t�1)� �

t

�0 (✓
t�1)h (✓t�1) (A.8)

where � is an arbitrary twice continuously di↵erentiable function from R2 to R
with bounded second derivatives, and �0 is its gradient. In what follows we show

that, fixing a compact set Q ⇢ R2, for any integer m there is a mean squares upper

bound for the fluctuation:

sup
n m^⌧

�����

n�1X

k=0

✏
k

(�)

����� (A.9)
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where ⌧ is the stopping time at which the process ✓ leaves for the first time the

compact set Q:

⌧ (Q) = inf {t : ✓
t

62 Q} (A.10)

Note that the assumptions on the function � imply that:

� (✓
k+1)� � (✓

k

)� (✓
k+1 � ✓

k

)�0 (✓
k

) = R (�, ✓
k

, ✓
k+1) (A.11)

where the function R, for all ✓
k

and ✓
k+1 has the upper bound30

|R (�, ✓
k

, ✓
k+1)|  |✓

k

� ✓
k+1|2 (A.12)

In order to find bounds on the error term ✏
k

(�), we can use equation (A.11) to

decompose it as follows:

✏
k

(�) = � (✓
k+1)� � (✓

k

)� �
k+1�

0 (✓
k

)h (✓
k

)

= �
k+1�

0 (✓
k

) (H (✓
k

, Y
k+1)� h (✓

k

)) + �2
k+1⇢ (✓k, Yk+1) +R (�, ✓

k

, ✓
k+1)

= �
k+1�

0 (✓
k

)
�H (✓

k

, Y
k+1) + x2

k+1✓k
�
+ �

k+1�
0 (✓

k

)
��h (✓

k

)� x2
k+1✓k

�
+

�2
k+1⇢ (✓k, Yk+1) +R (�, ✓

k

, ✓
k+1) (A.13)

Then, the running sum from r < n to n of ✏
k

(�) on {n  ⌧} can be written as:

n�1X

k=r

✏
k

(�) =
n�1X

k=r

✏1
k

(�)+
n�1X

k=r+1

✏2
k

(�)+
n�1X

k=r+1

✏3
k

(�)+
n�1X

k=r

✏4
k

(�)+
n�1X

k=r

✏5
k

(�)+
n�1X

k=r

✏6
k

(�)+⌘
n,r

(�)

(A.14)

30For all the details, see Benveniste, Métivier, and Priouret (1990) page 221.
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where:

✏
(1)
k

(�) ⌘ �
k+1�

0 (✓
k

) x
k

[(�b⇡
k

+ )�1 (b
⇡

k

) u
k+1 + u

k+1,�1 (b
⇡

k

) u
k+1]

0(A.15)

✏
(2)
k

(�) ⌘ �
k+1�

0 (✓
k

) x2
k

(✓
k

� ✓
k�1) (A.16)

✏
(3)
k

(�) ⌘ (�
k

� �
k+1)�

0 (✓
k�1) x

2
k

✓
k�1 (A.17)

✏
(4)
k

(�) ⌘ �
k+1�

0 (✓
k

) ✓
k

�2
1 (b

⇡

k

)
�
�2
u

� u2
k+1

�
(A.18)

✏
(5)
k

(�) ⌘ ��
k+1�

0 (✓
k

) ✓
k

�
�2

2 (sk+1) + 2�2 (sk+1)�1 (b
⇡

k

) u
k+1

�
(A.19)

✏
(6)
k

(�) ⌘ �2
k+1⇢ (✓k, Yk+1) +R (�, ✓

k

, ✓
k+1) (A.20)

⌘
n,r

(�) ⌘ ��
r+1�

0 (✓
r

) x2
r

✓
r

+ �
n

�0 (✓
n�1) x

2
n

✓
n�1 (A.21)

In the above decomposition we used the definition of H and the fact that in

the optimum the square of the output gap is given by:

x2
k

= �2
1

�
b⇡
k�1

�
u2
k

+ �2
2 (sk) + 2�1

�
b⇡
k�1

�
u
k

�2 (sk)

The terms ✏(2)
k

(�), ✏(3)
k

(�), ✏(6)
k

(�) and ⌘
n,r

(�) are particular cases of expressions

studied in Benveniste, Métivier, and Priouret (1990).31 Hence, we concentrate on

✏
(1)
k

(�), ✏(4)
k

(�) and ✏
(5)
k

(�). We start with ✏
(1)
k

(�).

Lemma 4. There exist constants A1 and q1 such that:

E
y,a

(
sup
nm

I (n  ⌧)

�����

n�1X

k=0

✏1
k

(�)

�����

)2

 A1 (1 + |y|q1)
m�1X

k=0

�2
k+1 (A.22)

where E
y,a

denotes expectations taken with respect to the distribution of histories

induced by the transition probability of the Markov chain (Y
k

, ✓
k

) with initial con-

ditions Y0 = y and ✓0 = a. Moreover, on {⌧  1}, Pn�1
k=0 ✏

1
k

converges a.s. and in

L2.

Proof. Let’s define:

 
(�b⇡

k

+ )�1 (b⇡
k

) u
k+1 + u

k+1

�1 (b⇡
k

) u
k+1

!
I (k + 1  ⌧) ⌘ Z

k

(A.23)

31See Lemmas 3-6, pages 225-228.
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and:

Z
n

⌘
n�1X

k=0

�
k+1�

0 (✓
k

) x
k

Z
k

(A.24)

Equipped with these definitions, we can make four crucial observations: (i) Z
n

is a

martingale with respect to the �-algebra F
n

generated by ✓0, Y0, Y1, ..., Yn

: u is a

zero mean iid shock, which implies that Z
k

is a martingale di↵erence with respect

to F
k

; (ii) the following inequality holds:

I (n  ⌧)

�����

n�1X

k=0

✏1
k

(�)

�����  |Z
n

| (A.25)

and (iii) the fact that Z
k

is a martingale di↵erence with respect to F
k

implies

that32:

E |Z
n

|2 =
n�1X

k=0

�2
k+1E�0 (✓

k

)2 x2
k

Z
2
k

(A.26)

Finally, (iv) we note that:

Ex2
k

Z
2
k

 Ex (u
k

)2 Z
2
k

 eA1 (1 + |y|q1) (A.27)

where we used the upper bound on the absolute value of the output gap in an

optimum derived in the construction of the recursive representation of the CB

problem, the assumption that u is an iid with finite moments and the fact that we

are considering ✓’s inside a compact set.

We can combine these four observations with the Doob’s martingale inequality

as in Benveniste, Métivier, and Priouret (1990), Lemma 2 page 224, to conclude

that:

E

(
sup
nm

I (n  ⌧)

�����

n�1X

k=0

✏1
k

(�)

�����

)2

 E

⇢
sup
nm

|Z
n

|2
�

 4 sup
nm

E |Z
n

|2 (A.28)

 A1 (1 + |y|q1)
m�1X

k=0

�2
k+1 (A.29)

32See Evans and Honkapohja (1998), page 81 for the details.

46



hence proving the first part of the Lemma; note that we again used the fact that

�0 (✓) is a continuous function defined on a compact set, and hence has a maximum.

The second part of the Lemma is a simple implication of the first one, and of the

results derived to obtain it.33

Lemma 5. There exist constants A4 and q4 such that:

E
y,a

(
sup
nm

I (n  ⌧)

�����

n�1X

k=0

✏4
k

(�)

�����

)2

 A4 (1 + |y|q4)
m�1X

k=0

�2
k+1 (A.30)

Moreover, on {⌧  1}, Pn�1
k=0 ✏

1
k

converges a.s. and in L2.

Proof. The proof is analogous to the one of Lemma 4, once we note that:

I (k + 1  ⌧) ✓
k

�2
1 (b

⇡

k

)
�
�2
u

� u2
k+1

�
(A.31)

is a martingale di↵erence with respect to F
k

.

Lemma 6. There exist constants A5 and q5 such that:

E
y,a

(
sup
nm

I (n  ⌧)

�����

n�1X

k=0

✏5
k

(�)

�����

)2

 A5 (1 + |y|q5)
 

m�1X

k=0

�2
k+1

!2

(A.32)

Proof. First of all, let’s define:

D
n

⌘
n�1X

k=0

I (k + 1  ⌧) ✏5
k

(�) (A.33)

and note that:

sup
nm

I (n  ⌧)

�����

n�1X

k=0

✏5
k

(�)

�����  sup
nm

|D
n

|  sup
nm

n�1X

k=0

I (k + 1  ⌧)
��✏5

k

(�)
��


m�1X

k=0

I (k + 1  ⌧)
��✏5

k

(�)
�� (A.34)

33See Benveniste, Métivier, and Priouret (1990), Lemma 2, page 225.
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Moreover, we can use the same arguments used to derive polynomial bounds

for the function |⇢ (✓, Y )| to get:

��✏5
k

(�)
�� =

���
k+1�

0 (✓
k
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�
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2 (sk+1) + 2�2 (sk+1)�1 (b
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
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) u
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!�����
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������

2
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0 (✓
k
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k
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�2 (sk+1)
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◆2

+ 2
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�1 (b
⇡
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) u
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����2
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0 (✓

k

) ✓
k

eA5

⇣
1 + |Y

k+1|q5
⌘���

Putting these results together, and using the Cauchy-Schwarz inequality, we

get:

E

(
sup
nm

I (n  ⌧)

�����

n�1X

k=0

✏5
k

(�)

�����
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2
�!
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m�1X

k=0

�2
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!2

We can now state and prove our main result.

Proposition 5. There exist constants A and q such that:

E
y,a

(
sup
nm

I (n  ⌧)

�����

n�1X

k=0

✏
k

(�)

�����

)2

 A (1 + |y|q)
 
1 +

m�1X

k=0

�2
k+1

!
m�1X

k=0

�2
k+1

(A.35)

Moreover, on {⌧  1}, Pn�1
k=0 ✏

1
k

converges a.s. and in L2.

Proof. The decomposition of the error term ✏ (�) derived above, together with

Lemmas 4-6 and the arguments in Benveniste, Métivier, and Priouret (1990),

Lemmas 3-6, pages 225-228, imply that the first term in the inequality (A.35) is
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bounded above by expressions of the form:

A
i

(1 + |y|qi)
m�1X

k=0

�2
k+1 or A

i

(1 + |y|qi)
 

m�1X

k=0

�2
k+1

!2

(A.36)

By the Cauchy-Schwarz inequality, we have that:

 
m�1X

k=0

�2
k+1

!2


 

m�1X

k=0

�2
k+1

! 
m�1X

k=0

�2
k+1

!
(A.37)

which implies that the inequality (A.35) holds. The second part of the Proposition

is a trivial consequence of these upper bounds.

Proof of Proposition 3. In the above Proposition we have established upper

bounds on the fluctuations of the error term ✏ (�); in particular, our result is the

exact counterpart of Proposition 7 of Benveniste, Métivier, and Priouret (1990),

pages 228-229. The rest of the arguments leading to their convergence result

(Theorem 13, page 236) go through also in our setup, so that we can conclude

saying that E-stability does imply (local) stability under learning in our model.
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