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Abstract

Wary agents tend to neglect gains at distant dates but not the losses that occur

at those far away dates. For these agents, Ponzi schemes are not the only improving

schemes compatible with non-arbitrage pricing. However, efficient allocations can be

sequentially implemented by allocating money and then, at subsequent dates, taxing

savings plans whose open end benefits to wary agents outweigh the cost of carrying on

cash. The allocative role of money does not disappear over time and the transversality

condition allows for consumers to have limiting long positions. Money supply does not

have to go to zero and, actually, there are equilibria where it does not. We address also

why fiat money does not lose its value when Lucas trees are available.
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1 Introduction

This paper reexamines some core questions in monetary economics in the light of a

reformulation of the way infinite lived agents discount the future. We depart from the

classical impatience assumption and allow for wary consumers, who are willing to ignore

distant gains but not distant losses. Our examples focus on two interesting classes of

preferences. First, precautionary preferences, paying a particular attention to the worst

lifetime outcome (Example 1). Second, habit persistence, in the form of a deslike of

descending (on average, over time) standards of living (Example 2).

In general, wariness can be defined in terms of consumers being upper but not lower

semi-impatient1. Mathematically, preferences are upper but not lower semi-continuous

for the Mackey topology on the space of bounded sequences. For such preferences,

Bewley [1972] established existence of Arrow-Debreu (AD) equilibrium prices that may

fail to be a summable sequence. That is, the price functional may belong to the dual

space, rather than to the pre-dual. In other words, the price may have a pure charge

component, which is a linear functional that, apart from a positive scalar multiple, is a

generalized limit. We address the sequential implementation of such AD allocations.

Wariness poses new problems for the implementation of efficient allocations by trad-

ing assets sequentially. Ponzi schemes are not anymore the only improvement strategies

compatible with one-period non-arbitrage pricing. Even for portfolio plans with a non-

negative limiting deflated cost, there could be a positive limiting benefit of reducing

distant losses. When the latter exceeds the former there is an improvement opportunity

that precludes existence of equilibrium with sequential budget constraints.

We chose to look at what might be done when the implementing asset is fiat money,

since this is the asset for which, in a context of impatience, the sequential implemen-

tation was quite straightforward. It is well known that in economies with impatient

agents, fiat money, being traded always in non-negative amounts, avoids Ponzi schemes

1These impatience (or myopia) notions were developed by Brown and Lewis [1981], Araujo [1985],

Raut [1986] and Sawyer (1987). See also Mas-Colell and Zame [1991].
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and, therefore, dispenses with the enforceability and frictions associated with borrowing

constraints. Moreover, if initial money holdings are large enough, the usual no-short-

sales constraint does not introduce frictions and efficiency holds. Differently from what

happens with assets paying dividends, the same optimal consumption plan can be ac-

commodated when the plan of money balances together with the initial holdings are

being shifted by some positive amount. There is a catch however. Money only has a

positive price, in an efficient outcome under impatience, if the money supply is retrieved

over time. This prescription is usually known as Friedman’s (strong) rule. Can fiat

money also serve as an implementing devise when agents are non-impatient? Should the

limiting money supply, after retrieving the efficient taxes, be always zero?

When agents were impatient, efficient taxes could be lump sum, as what mattered was

to remove all the money without perturbing the equality of consumers’ marginal rates

of substitution. However, when agents are wary, the non-negativity of money balances

is not enough to rule out all the long-term improvement strategies. We look at taxes

that are harsher on money balances plans for which the benefits from the asymptotic

dishoarding exceed the cost of carrying on cash. This raises the effective opportunity

cost of holding cash and allows non-impatient consumers to find a finite optimum. By

correcting a mismatch of savings benefits and costs at the individual level, taxes end up

implementing efficient savings. While being non-lump-sum, taxes are impersonal and

can be chosen to be recursive, levied upon the disposal of the balances (say upon the

current dishoarding benefit net of the carry on cost up to now), being in a deflationary

context the equivalent for money to what capital gains taxes are for all other assets2.

Our first implementation result establishes that efficient allocations can always be

implemented using fiat money, in non-negative balances, by introducing non-lump-sum

taxes that correct for the long-term gap in the benefits and costs of saving plans. The

tax schedule can be chosen so that if it were applied in a context of impatience money

2Actually, foreign currency balances tend to be subject to such taxes, like any other non-monetary

asset. We are taking a step forward, suggesting that all money balances should be, in order for efficiency

to be attained in a deflationary context where agents are wary and prone to dishoard in the long run.



1 INTRODUCTION 3

supply would go to zero, or equivalently, to be non-distortionary in the sense that the

Euler and transversality conditions are just as they were in an economy without taxes.

When some of the agents are non-impatient, a multiplicity of equilibrium money

balances plans occurs, with different limiting supplies of money. Our second imple-

mentation result says that if for some non-impatient agent the loss from reverting the

optimal savings plan is higher than the AD price of that plan, then there is a monetary

implementation with non-vanishing money supply. Such dual appraisal is a consequence

of the non-differentiability that is intrinsic to wary preferences (due to the freedom in

the choice of the generalized limit for the pure charge of the supergradient). The non-

differentiability implies that, for a wary consumer, the marginal loss from reverting a

savings plan is greater than the marginal gain from intensifying that savings strategy.

Such asymmetry is reminiscent of the asymmetrical attitude towards losses and gains

proposed in prospect theory. For our second implementation result to hold, there should

be at least one consumer whose left-hand-side derivative, in the direction of the equilib-

rium savings plan, exceeds the AD price of that plan. Next, we look for preferences and

AD allocations for which this is the case.

An interesting case, illustrating the second implementation result, occurs when the

endowments of non-impatient agents are subject to persistent shocks. We give examples

both for the precautionary and the habit persistent preferences. For the former, we

consider utility functions that depart from the usual series of discounted utilities since

we add a term dealing explicitly with the lifetime infimum of utilities. These preferences

are related to the Rawlsian utility (which would be just that infimum), mentioned in

Araujo [1985], but now the presence of the series of discounted utility makes preferences

monotonic. For the latter, there is instead a specific term dealing with the infimum of

the utility averages up to each point in time. When the relevant infimum is not attained

in finite time, there is at least one consumer for whom the marginal loss at infinity (from

reverting the savings strategy) is higher than the AD price of the savings plan.

Both examples have a nice reinterpretation in terms of endogenous discounting. Not

being sure how to discount the future, the consumer’s objective function is the minimal



1 INTRODUCTION 4

series of discounted utilities, over some set of discount factors. For each consumption

plan, it is the most penalizing discount factor that is being picked that set. In the

precautionary example that set is generated by the ε-contamination capacity, as in Gilboa

and Schmeidler [1989] and Dow and Werlang [1992]. However, we can allow for other

sets of discount factors, as the habit persistence example illustrates.

In a broad context of endogenous discounting it is easy to see why wariness may

prevail: the lower envelope of a family of continuous functions is known to be upper

semi-continuous but may fail to be lower semi-continuous. That is, even if for a given

discount factor we have a payoff that is Mackey continuous, once we take the infimum

over discount factors, we may end up with a utility function that is just Mackey upper

semi-continuous. Actually, we can say more. We establish (theorem 1) that pure charges

in the supporting prices of efficient allocations can only occur when the standard series

of discounted marginal utilities do not converge uniformly, across discount factors in

the allowed set. The macroeconomics literature on misspecification of preferences and

robust control has paid a significant attention to endogenous discounting. Examples can

be found in Hansen and Sargent [2001] and Hansen and Sargent [2008].

Our two main examples are complemented by an example (Example 3) of an economy

where an inefficient sequential equilibrium occurs when the taxes that we propose are

absent. In the AD equilibrium, the infimum of the consumption plans is not attained

in finite time, but in the inefficient sequential equilibrium that infimum is attained at

infinitely many dates, different for the two consumers. The inefficient consumption

plans have some supergradients without pure charges and this allows for the consumers’

problems to have finite optima under the plain no-short-sales constraint on money. In

other words, there are no asymptotic gains from dishoarding under such supergradients

and, therefore, sequential equilibria exist in the absence of our proposed taxes. However,

for such supergradients, at dates where the infimum is attained, the left and the right

marginal utilities do not coincide and no-short-sales constraints have shadow values.

The paper is related to the work in Araujo, Novinski and Pascoa [2011] on sequential

implementation of AD allocations using long-lived assets paying dividends, but differs
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from it in three crucial aspects. First, in what causes a bubble in the price of the imple-

menting asset. Before, the bubble was just the value that the AD price pure charge takes

at the dividends sequence, but in the case of money such value would be zero. Now, the

initial holdings scaled up by the bubble can be taken to be the difference between the

value that the pure charge of a supergradient can take at the net trade and the corre-

sponding value for the AD price pure charge - the non-differentiability of preferences,

inherent to wariness, plays now a crucial role3 . Second, finite optima for consumers’

sequential problems is now ensured by introducing taxes that discourage inefficient sav-

ings, rather than by imposing portfolio constraints4. We believe this approach is quite

novel and illustrates well what can be done differently when the implementing asset is

money. Third, we have now general results for wary preferences and, even when we study

in detail the endogenous discounting context, we are no longer focused on the specific

form driven by the ε-contamination capacity.

The comparison of our monetary implementation with the implementation with other

assets leads us to other important issues. We are not claiming that money plays an

irreplaceable allocative role5. A Lucas tree could also play a hedging role at infinity

but the sequential market completeness might not be attained so easily. In fact, short

positions in money can be easily avoided by raising the initial holdings high enough,

whereas in the case of a Lucas tree such increase in initial holdings would be incompatible

with the given AD endowments (which must be equal to the sequential endowments plus

the returns from the initial holdings of the tree). To implement using Lucas trees, in

non-negative positions, we would need the help of zero-net-supply promises that should

not be secured by the trees (otherwise the markets might become incomplete due to the

friction created by the collateral constraint6). The drawback of relying on unsecured

3see Lemma 4 in the Appendix
4Actually an implementation with persistently positive money supply could not be done as before

with constraints using the AD price pure charge evaluation of the net trade. The constraints would have

to use instead the limsup of the net trade.
5We were asked this question by Nancy Stokey at a presentation at the University of Chicago in 2012.
6See, for example, Gottardi and Kubler [2015] on this issue and on weaker notions of efficiency, that

depart from the full efficiency we are interested in.



1 INTRODUCTION 6

credit is that full commitment of debtors would have to be assumed, which might clash

with incentive compatibility.

We address also a related, less demanding, classical monetary theme. We show that,

in a stochastic environment, coexistence of money and other long-lived assets, paying

dividends, does not make money lose its positive price or its efficient role. Money widens

the hedging that the other long-lived assets can do. In fact, non-negative positions of

positive-net-supply long-lived assets is ensured at no cost since the initial holdings of

money can be increased so that all long-lived assets complete the markets without any

short sales. Our results illustrate how a new approach to the preferences of infinite-lived

consumers yields quite different answers to long-standing monetary themes.

The idea that money plays a crucial reserve role has captured a lot of attention in the

literature. Friedman [1953, 1969] put forward the idea that consumers should not econ-

omize unnecessarily on money balances as these holdings are “a reserve against future

emergencies”. The wasteful economizing of cash should be avoided by deflation or by

providing money with a real rate of interest. This proposition has been often associated

with the stronger recommendation of a steady contraction of the money supply. Our

reappraisal of the hedging role of money resumes Bewley’s (1980) approach centered on

the idea that the “devise to give money a value is infinite horizon (together with the need

for insurance)”, but we take a step forward and take into account the limiting hedging

role of money for non-impatient agents. Our results are reminiscent of the persistent role

of money found by Samuelson [1958] in the overlapping generations model, which seemed

until now incompatible with immortal agents. For impatient agents, Bewley [1980, 1983]

showed that a non-vanishing money supply, together with interior consumption, had to

be inefficient. Levine [1986, 1988, 1989] confirmed this under Inada’s condition but

observed that efficiency might prevail under non-interior consumption7.

Finally, it should be pointed out that time consistency is compatible with wariness.

As an example, when the series of discounted utilities describes a time-consistent behav-

7see also Woodford [1990], Kehoe, Levine and Woodford [1992] and Pascoa, Petrassi and Torres-

Martinez [2010].
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ior (say, under exponential discounting), then adding a term dealing with the infimum

of the utilities makes the consumer wary and could introduce an inconsistency but it

does not in equilibrium as long as the infimum is not attained in finite time, which is

precisely a case we are interested in.

The rest of the paper is organized as follows. Section 2 characterizes wariness and

AD prices. Section 3 relates endogenous discounting and wariness, illustrating with the

precautionary and the habit persistence examples. Section 4 describes the deterministic

sequential monetary model and Section 5 presents the results on efficient monetary

equilibrium, illustrating the implementation for the above examples. Section 6 addresses

implementation when Lucas trees are also available for the deterministic economy and

extends the results to stochastic economies. The proofs of the results of Section 5 are in

the Appendix. All the other proofs can be found in the supplementary material.

2 Wariness

2.1 Wariness and Arrow Debreu Prices

There are I infinite lived consumers, who are endowed with quantities ωit ≥ 0 of a single

commodity at the countably many dates. We allow for consumers that neglect distant

gains but not the losses at far away dates. Such attitude, which we refer to as wariness,

consists in being upper but not lower semi-impatient. Let us formalize these concepts,

presuming monotonicity of preferences �i over sequences of consumption of the single

good. For any sequence v ∈ `∞ we denote by v(n) the sequence such that v(n)t = vt for

t ≥ n and v(n)t = 0 otherwise.

Consumer i is said to be upper semi-impatient at a bundle x if x �i y implies, for

any z ∈ `∞+ , that x �i y + z(n) for n large enough. Consumer i fails to be lower semi-

impatient at a bundle x if there exists y for which y �i x but x �i y− y(n), ∀ n. Losses

beyond date n reverse the preference ordering, no matter how large n is.

These concepts can be formulated in terms of the Mackey topology on `∞, the finest

topology on `∞ for which the dual is `1. For norm-continuous preferences �i, upper



2 WARINESS 8

(lower) semi-impatience at x consists in the Mackey upper (lower) semi-continuity of

�i at x. A consumer whose preferences are norm continuous and Mackey upper semi-

continuous, is wary at x ∈ `∞+ if the preferences are not Mackey lower semi-continuous

at x. If this condition holds on the norm interior of `∞+ , the consumer is said to be wary.

Assumption A1: for each agent, preferences are representable by a utility function U i

that is concave, norm continuous, Mackey upper semi-continuous and such that U i(x) >

U i(x′) whenever x > x′.

Wariness impacts on the nature of the supporting prices of efficient allocations. An

Arrow-Debreu equilibrium (AD) is defined as a pair (x, π) such that x = (x1, ..., xI) is a

feasible allocation, π a linear functional on `∞ and, for each i, xi maximizes U i in the

budget set {a ∈ `∞+ : π(a− ωi) ≤ 0}. The natural environment where to look for prices

is the norm dual of `∞. This is the space ba, of bounded finitely additive set functions,

also called charges, on N, equipped with the total variation norm (given b ∈ ba, its norm

is ‖b‖ = |b|(N)). Let us rephrase a well-known result by Bewley [1972].

Proposition 1. If A1 holds and
∑

i ω
i ≫ 0, there exists an AD equilibrium (x, π),

with the price π in ba. Some consumer being wary at xi is a necessary condition for AD

equilibrium prices to be outside of `1.

Notice that ba contains strictly `1, the space of absolutely summable sequences, since

each y ∈ `1 induces an element µ in the space ca of countably additive set functions on

N (by setting µ({t}) = yt). We start by examining how do supporting prices look like

when they are charges that are outside of `1.

2.2 On Charges as Supporting Prices

By the Yosida-Hewitt Theorem, any π ∈ ba can be decomposed uniquely in the form

π = µ+ ν where µ ∈ ca whereas ν is a pure charge. For any finite subset B of N, if ν is

a positive pure charge, then ν(B) = 0. Denote by pch the set of pure charges on (N, 2N).

Let us see characterize the pure charge components of a supporting price.
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Recall that T ∈ ba is a supporting price for an allocation (xi)i if U i(z) ≥ U i(xi)

implies that T (z − xi) ≥ 0 for any i. A supporting price is, up to a positive scalar

multiple, a supergradient8 of U i at xi. Denote by ∂U i(x) the set of supergradients of

U i at x. For any v ∈ `∞ we denote by δ+U i(x; v) and δ−U i(x; v) the right and left

derivatives of U i at x along the v-direction9.

Lemma 1. If ν ∈ pch+, then ν(x)/ ‖ν‖ba ∈ [lim inf x, lim sup x], ∀x ∈ `∞. If for some

µ ∈ ca, µ+ ν ∈ ∂U i(x), then ‖ν‖ba ∈ [limn δ
+U i(x; ll(n)), limn δ

−U i(x; ll(n))]

We use the notation LIM to represent a linear functional taking on each x ∈ `∞ a

value in [lim inf x, lim sup x]. Notice the real indeterminacy in AD equilibrium resulting

from the choice of LIM for the pure charge ν in the support price (if we pick another

LIM , the AD budget equation will not hold for the same bundle xi, except when the

supergradients at xi have also multiple ca components). Wariness is necessary for the

occurrence of pure charges supporting interior bundles:

Lemma 2. Under A1, if U i is Mackey continuous, then ∂U i(x) ⊂ `1 for x≫ 0.

3 Endogenous discounting

We focus on preferences for which wariness is induced by an aversion to the ambiguity in

the discount factor. That is, consumers have a collection of possible discount factors and,

not being sure which one to pick, end up choosing for each consumption plan the discount

factor that gives the lowest sum for the series of discounted utilities. Such attitude

implies endogenous discounting, a feature that has received significant attention in the

recent literature on the (mis)specification of macro models (see Hansen and Sargent

[2001, 2008]). To be quite general, preferences are described by

U(x) = inf
δ∈C

∞∑
t=1

δtu(xt), (1)

8T ∈ ba is a supergradient of U i at x if U i(x+ h)− U i(x) ≤ Th for any h ∈ `∞.
9δ+U(x; v) = limh↓0

U(x+hv)−U(x)
h

and δ−U(x; v)) is defined with h ↑ 0 instead.
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where C is a subset of `1+ ∩B1(0) and B1(0) is the unit ball of `1. Such preferences have

an analogy with the ambiguity aversion attitude in a context of uncertainty, modeled, as

in Gilboa and Schmeidler [1989], by considering a functional which is the minimum of the

expected utilities over a collection of beliefs described by finitely additive set functions.

More precisely and for a general set X of objects (in our context X = N),

U(x) = min
η∈C̃

∫
X
u ◦ x dη, (2)

where C̃ is a convex and weak∗ closed subset of ba (the referred papers discussed axiomat-

ically this representation)10. The minimal integral over beliefs represents a precautionary

or pessimistic behavior. The minimization solution η∗ puts more weight on sets where

u attains its lowest values. To see that (1) can be reformulated in terms of (2), take the

closure in the weak∗ topology of the convex hull of C.

3.1 Endogenous discounting and wariness

The following result tells us the most that one can say without imposing more structure

on the set C of possible discount factors.

Lemma 3 (Aversion to ambiguity and wariness). Under aversion to ambiguity in dis-

counting, that is, when preferences are given by (1), preferences are Mackey upper semi-

continuous but may fail to be Mackey lower semi-continuous.

This is a consequence of the fact that the lower envelope of a family of upper semi-

continuous functions (on any topological space) is still upper semi-continuous. Other

results can be obtained by specifying the set C. We start by examining the case of

a set C generated by a capacity, that is, a function ν : 2N → IR such that ν(∅) = 0

and ν(A) ≤ ν(B) whenever A ⊆ B. A capacity ν is convex when ν(A ∪ B) + ν(A ∩

B) ≥ ν(A) + ν(B) ∀A,B ⊂ N. We normalize ν(N) = 1. The set core(ν) is defined as

{η ∈ ba : η ≥ ν, η(N) = 1}. When C = core(ν) for a convex capacity ν 11, more can be

said about the absence of Mackey lsc. A capacity ν is said to be continuous at certainty

10See Dunford and Schwartz [1958], ch. III.2, for the definition of integral with respect to a charge η.
11In this case, the utility function is a Choquet integral (see Schmeidler [1989]).



3 ENDOGENOUS DISCOUNTING 11

if, for any sequence (An) ⊂ 2N such that each An ⊂ An+1 ⊂ N and ∪nAn = N, we

have lim ν(An) = ν(N). Now, U is Mackey lsc if and only if the capacity is continuous

at certainty (by Theorem 2.1 in Araujo [1985]). The discontinuity at certainty can be

interpreted as if there were a missing state. In Araujo, Novinski and Pascoa [2011], the

focus was on a well-known example of a convex capacity, which we recall next.

Example 1

Given a probability measure µ, let νε be the convex capacity obtained by a linear

distortion of µ with coefficient (1 − ε) ∈ (0, 1], i.e., taking νε(A) = (1 − ε)µ(A) for

A $ N and νε(N) = 1. This is called the ε-contamination capacity with respect to µ and

allows us to rewrite (2) as 12

U(x) = (1− ε)
∫
N

u ◦ x dµ+ ε inf u ◦ x. (3)

In this case, the minimum over normalized dominating charges coincides with the in-

fimum over dominating probability measures. That is, U(x) = inf{
∫
N
u ◦ x dη : η ∈

ca ∩ core(νε)}. Clearly, νε is discontinuous at certainty and, therefore, this utility rep-

resents wary preferences at some point 13 . Actually, for some (ζ, β) proportional to

((1− ε)µ, ε), the utility can be rewritten (up to a scalar multiple) as

U(x) =

∞∑
t=1

ζtu (xt) + β inf
t≥1

u(xt) (4)

Under (4) time-consistency may not hold, but it does if the infimum of consumption is

not attained. This will be the case when we resume Example 1.

Let us denote the infimum of a bundle x by x. Any supergradient T of U i at x must

be of the form14 T (a) =
∑∞

t+1 u
′(xt)(ζ

i
t + γtβ

i)at + σβiu′(x)LIMT (a), for any a ∈ `∞,

where (i) γt ≥ 0, (ii) γt = 0, if xt > x, (iii) σ ≥ 0 is zero when x is not a cluster point of

x and (iv)
∑∞

t=1 γt+σ = 1. That is, there is a supergradient with a pure charge only if x

is a cluster point of x and all supergradients will have pure charges if x is not attained.

Araujo [1985] showed that the Mackey topology is the finest topology of continuity

in order for AD equilibrium to exist (with prices in ba), if no further assumptions are

12As was shown already by Dow and Werlang [1992].
13Actually, wariness holds at every x≫ 0 as the lower contour set of x is not Mackey closed.
14For a proof see Araujo, Novinski and Pascoa [2011].
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imposed, except for the convexity of preferences. In the same article, it was also claimed

that for U(x) = inft u(xt) equilibrium does not exist. However, when monotonicity

with respect to increments at finitely many dates is added (which is satisfied by (4))

AD equilibrium (with prices in ba) exist, in spite of the failure of Mackey lower semi-

continuity, as Bewley [1972] established. The other case of pessimistic preferences, with

U(x) = lim inft u(xt), mentioned in Araujo [1985] has the drawback that the upper

Mackey semi-continuity does not hold and, even if a series of discounted utilities would

be added, AD equilibrium might not exist.

To go beyond the epsilon-contamination case but still have wariness we need to gain

some intuition on when do preferences of the form (1) exhibit wariness and actually

have supporting prices outside of `1. Let us examine what happens with the family

{
∑

t δtu
′(xt)}δ∈C of marginal utilities, for deflators δ in C.

Theorem 1. (Pure charges and the non-uniform convergence of marginal

utilities) Let C ⊆ `1++ and (xt)t∈N ≫ 0. If the series of marginal utilities at (xt)t∈N

converges uniformly on the set C, in the sense that limt supδ∈C

{∑
s≥t δsu

′(xs)
}

= 0,

then there is no pure charge in any supergradient of U at x.

We introduce another example of wary preferences in which the concern about the

infimum is weaker than in Example 1. The non-additively separable part of the utility

function will be related to the Polya index introduced by Marinacci [1998] to described

patience. To do so, we define a countable set of priors in `1+ which induces a smaller set

of priors in ba than the one obtained from the ε-contamination capacity.

Example 2

The agent set of beliefs Ci is defined by Ci := core(νε) ∩ Ĉi where Ĉi is the closed

convex hull of {(δm)m∈N : δm(t) = ζit + βi/m for 1 ≤ t ≤ m, δm(t) = ζit elsewhere} in

the weak∗ topology of ba. With this set of priors, the utility function in (1) becomes, by

multiplying by a suitable scalar,

U i(x) =
∑
t

ζitu
i(xt) + βi inf

t

(
1

t

t∑
k=1

ui(xk)

)
. (5)
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Marinacci [1998] proposed a notion of complete patience using the Polya index

limt

(
1
t

∑t
k=1 u

i(xk)
)
, which has a similarity with the last term in Equation (5), although

the replacement of limit by the infimum implies that the agent now cares about small

consumption in the first dates and, therefore, the agent has some degree of impatience.

The time separable component of U i also enhances the level of impatience, but some

patience prevails, as the agent is worried about mean losses, for means computed up to

any distant date. This is a form of habit persistence.

For any (xt)t such that the infimum of
(
1
t

∑t
k=1 u

i(xk)
)
t

is not attained, the sup-

porting prices have the following form π(c) =
∑∞

t=0 ζ
i
t(u

i)′(xt)ct + βiLIM (φ(c)) where

φ : `∞+ → `∞+ such that φ(c)t = 1
t

∑t
k=1 ck. The presence of a pure charge is related to

the non–uniform (on m) convergence of the series of marginal utilities.

Another example, presented in the supplementary material, illustrates a consumer

that cares about worst cycles (say one year) of consumption.

4 A Sequential Economy with Fiat Money

4.1 Money and Taxes

The set of trading dates is N ≡ {1, 2, ...}. Before the initial date, the government

allocates non-negative initial holdings yi0 ≥ 0 of money to each consumer and then, at

each trading date t, money holdings yit may be taxed. The taxes levied at each date,

denoted by τt(y
i), may depend on the whole individual plan yi of money holdings, but

through an impersonal tax schedule τt(.).

The consumption good is the numeraire and we denote by q = (qt)t∈N the sequence

of prices of money. Every consumer i faces at eacc date t ∈ N, the following constraints:

yt ≥ 0 (6)

xt − ωit ≤ qt(yt−1 − yt − τt(y)) (7)

Observe that τt(y) just has an impact at date t when qt > 0.
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Let us denote by B(q, yi0, ω
i, τ) the set of couples (x, y) ∈ `∞+ × IR∞+ of consumption

and money holdings plans satisfying constraints (6) and (7). The goal of agent i is to

maximize U i under B(q, yi0, ω
i, τ). We denote the set {1, ..., I} of agents by I.

The initial money supply M0 is given, equal to
∑I

i=1 y
i
0 and assumed to be positive.

However, at each trading date, the money supply Mt is endogenous, satisfying

Mt(y
1, ..., yI) = Mt−1(y

1, ..., yI)−
I∑
i=1

τt(y
i) =

I∑
i=1

(
yi0 −

t∑
s=1

τs(y
i)

)
,

Definition 1. (q, (xi, yi)i∈I) ∈ IR∞+ × (`∞+ × IR∞+ )I is an equilibrium for the economy

with initial money holdings (y10, ..., y
I
0) and a tax policy τ if (a) (xi, yi) ∈ argmax{U i(x) :

(x, y) ∈ B(q, yi0, ω
i, τ)}; (b)

∑I
i=1(x

i − ωi) = 0; (c) Mt(y
1, ..., yI) =

∑I
i=1 y

i
t ∀ t ∈ N.

Definition 2. An equilibrium (q, (xi, yi)i∈I) is a monetary equilibrium if q 6= 0.

If qt0 > 0 for some date t0, it will be true by non-arbitrage that qt > 0 ∀ t. Note

that, under A1, (7) holds as equality, which summed over i, make (b) imply (c).

4.2 Sequential equilibrium and improvement opportunities

Observe first that in the absence of any taxes, sequential budget constraints are as follows

xt − ωit ≤ qt(zt−1 − zt) ∀ t ∈ N, (8)

A very useful sufficient condition for individual optimality is given as follows. Let x(z)

be defined by xt(z) = qt(zt−1 − zt).

Proposition 2. Let z∗ be portfolio satisfying (6) and (8) and let x∗ = x(z∗). (i) Suppose

there exists T ∈ ∂U(x∗) with T = µ+ ν, µ ∈ `1+ and ν ∈ pch+ such that, for every t,

µtqt ≥ µt+1qt+1 (µtqt − µt+1qt+1)z
∗
t = 0 (9)

and
limµtqtz

∗
t = ν(x∗ − ω). (10)

(ii) Suppose also that every feasible portfolio z satisfies the condition

lim
t
µtqtzt ≥ ν(x(z)− ω), (11)

Then z∗ is an optimal solution for the problem with constraints (6) and (8).
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Proof. Given a feasible portfolio z, U(x(z)) − U(x∗) ≤ T (x(z) − x∗) = T (x(z) − ω) +

T (ω−x∗). Moreover, µ(x(z)−ω) =
∑∞

t=1 µtqt(zt−1−zt). By (9) and z ≥ 0, µ(x(z)−ω) ≤

µ1q1z0 − limt µtqtzt. Also, µ(x∗ − ω) = µ1q1z0 − limt µtqtz
∗
t . Now by (10), U(x(z)) −

U(x∗) ≤ ν(x(z)− ω)− limt µtqtzt. Now, by (11), U(x(z))− U(x∗) ≤ 0.

Remark 1:

Notice that (9) is necessary for individual optimality. For (xi)i � 0 efficient, the in-

equalities in (9) hold as equalities for every i and t (otherwise agents holding money

would have marginal rates of substitution different from those of other agents), so µitqt

is constant and, for the ca component p of the AD price, ptqt is also constant. Hence,

an efficient monetary equilibrium with (xi)i � 0 is deflationary at infinitely many dates

and Friedman’s weak rule, prescribing a zero nominal interest rate, holds15.

Remark 2:

When agents are not impatient, long-run improvement opportunities are not ruled out

by no-short-sales constraints. Suppose ((xi)i, π) is an AD equilibrium for (ωi)i, where

π = p+ aLIMAD, a > 0 and LIMAD is a generalized limit. Proposition 2 is the route for

its sequential implementation. To get some intuition on the role of condition (11), let

(zi)i ≥ 0 be money balances which accommodate (xi)i in (8), given some initial holdings

(yi0)i and money prices q. Let us use the normalization ptqt = 1 and rescale the utilities

so that π ∈ ∂U i(xi) for all i.

Take any non-negative real sequence z. If consumer i replaces zit by zit + hzt, with

h > 0, from some date n onward, there will be no utility gain along this direction if (i)

LIMAD(qt(zt−1−zt)) ≤ lim zt, which clearly holds when (ii) lim sup(qt(zt−1−zt)) ≤ lim zt.

The resulting change in consumption is c(z(n))t = 0 if t < n, c(z(n))n = −qnzn and

c(z(n))t = qt(zt−1 − zt) = xt − ωit if t > n. Moving on the right along this direction, we

hoard more at date n and at subsequent dates for which ωit > xt, in order to consumer

more at subsequent dates where ωit < xt.

Conditions (i) or (ii) say that the asymptotic dishoarding (evaluated using the AD

15There is no room in the Euler equations to replace qt+1 by qt+1(1 + i) with a positive interest rate

i. That is, the deflation rate should be equal to the consumers’ optimal rate of time preference.



4 A SEQUENTIAL ECONOMY WITH FIAT MONEY 16

generalized limit or the limsup) should not exceed the cost of carrying on cash. This

cost is the absolute value of −pnqnzn +
∑

t>n ptqt(zt−1 − zt), which by (9) reduces to

− lim ptqtzt where ptqt is constant and can be set equal to 1.

Remark 3:

Moreover, (10) is a particular form of another necessary condition, the transversality

condition. When marginal utilities µit, at each t, are well defined16, if we move in the

zi(n) direction (that is, in the direction of zi from date n onwards) either along the right

(multiplying zit by 1 +h > 1, for t ≥ n) or along the left (multiplying zit by 1 +h ∈ (0, 1)

for t ≥ n), we have the following (irrespective of the presence of constraints of the form

(11))17: there is no utility gain

- by moving on the right along zi(n) only if limµitqtz
i
t ≥ νi1(xi − ωi)

- by moving on the left along zi(n) only if limµitqtz
i
t ≤ νi2(xi − ωi)

for some µi + νi1, µi + νi2 ∈ ∂U i(xi).

These transversality conditions do not imply that efficient individual money balances

must go to zero. The latter would hold if
∑

i ν
i2(xi − ωi) = 0, which is the case when

all net trades converge (as νi2(xi − ωi) = νAD(xi − ωi)).

We would like to design a fiscal policy that guarantees conditions (i) or (ii) in Remark

2 and, therefore (by making (11) hold), eliminates long-run improvement opportunities.

4.3 Taxes that eliminate the marginal benefit - marginal cost gap

The tax τt(y) levied at date t upon a plan y of money holdings consists of a fixed

summable component θt and another component that eliminates the above long-run im-

provement opportunities. Funds that are put aside at each date are zt = yt+
∑

s≤t τs(y).

The gap between the asymptotic dishoarding and the cost of carrying on cash is now

bounded by LIMADqt(yt−1−yt)− lim yt−
∑∞

t=1 τs(y), which we want to be non-positive.

This is achieved if we require the following

16This is not a technical assumption, it is instead a property that depends on the asymptotic behavior

of the consumption sequence, as was illustrated is Example 1.
17This follows from Proposition 4 in Araujo, Novinski and Pascoa [2011], as zi(n) is both left and

right admissible for no-short-sales constraints and also under (11).
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(i’)
∑∞

t=1 τs(y) ≥ LIMADqt(yt−1 − yt)− lim yt

or the stronger requirement that

(ii’)
∑∞

t=1 τs(y) ≥ lim sup qt(yt−1 − yt)− lim yt.

An example are the following taxes that spread the fiscal burden over all dates

τt(y) = θt + p̃t[lim sup qt(yt−1 − yt)− lim yt]
+. (12)

We assume that p̃ and the lump-sum component θ are such that
∑∞

t=1 θt < ∞,

p̃ ∈ `1++, ||p̃||1 = 1. Moreover, we require lim qtτt(y) = 0. This is achieved if lim p̃tqt = 0

(p̃t tends to zero faster than pt) and lim qtθt = 0. The presence of the lump-sum tax θ

may be useful to withdraw additional initial holdings that allow for an implememtation

with non-negative money balances.

Observe that both lim yt < ∞ and [lim sup qt(yt−1 − yt) − lim yt]
+ < ∞ for a plan

y that was already accommodating a bounded consumption plan x(y) in the sequential

budget set when taxes were not levied (as yi0− lim yt = p(x(y)−ωi) <∞, since ptqt = 1).

These non-lump-sum taxes are invariant to changes in y at a finite set of dates and,

therefore, Euler conditions (9) hold. However, it may be hard to accept that the tax

authorities would have such a perfect foresight and we can suppose instead that the

accumulated taxes up to each date,
∑

s≤t τs(y) to depend just on (y1, ..., yt).

Recursive tax schedules are of the form τt(y) = θt + τ̃(y) where θ is lump-sum

(satisfying again lim qtθt = 0) and the non-lump-sum component is (again for p̃ such

that lim p̃tqt = 0) given by

∑
s≤t

τ̃s(y) ≡ [Φt − yt − at]+
∑
s≤t

p̃s (13)

where

(a) Φt = sups≤t qs(ys−1 − ys) or

(b) Φt = [qt(yt−1 − yt)]+ or

(c) Φt = 1
t

∑
s≤t qs(ys−1 − ys).
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The sequence a is chosen so that τ̃(yi) = 0 for some reference allocation (yi)i. Let

at ≡ maxi[Φt − yit]+ + 1/t. Notice that the function τ̃t depends only on money balances

at finitely many dates but at yi, it has null derivative with respect to these positions.

A monetary equilibrium (q, (xi, yi)i) should fulfill the additional requirement that the

equilibrium money balances allocation is the reference allocation. Then, Euler conditions

(9) hold. Cases (a), (b) or (c) allow for tax rebates: τ̃t(y) can be negative if |τ̃t(y)| ≤∑
s≤t−1 τ̃s(y), where the latter is always non-negative18.

Schedule (b) tends to tax, at a non-early date t, an agent that dishoards at that

date more than the whole cost of carrying on cash up to that date (which is the cost

of carrying on cash on top of the initial holdings (−
∑

s≤t psqs(ys−1 − ys)) plus the cost

of the initial holdings (p1q1y
i
0), so the sum is ptqtyt = yt). Recursive taxes are in fact

taxes on the use of savings rather than on savings per se and, therefore, have a flavor

of a capital gains tax : the benefit from disposing of money balances is being taxed if it

exceeds the cost of carrying on cash up to then.

Plans that end up being taxed are those for which the asymptotic dishoarding is too

appealing, relative to the accumulated sacrifice made so far. Sequential budgets fail to

price such mismatch, but the AD budget does since the asymptotic dishoarding benefit is

captured by the price pure charge. It was well known that sequential budget constraints

may fail to constraint properly the open end optimization problem and Ponzi schemes

may occur. What is new, for an asset that cannot be shorted, is the open end utility

gain that wary agents have by reducing distant losses.

Once recursive taxes have been imposed, we see that the plans y accommodating

budget feasible bounded x(y) are: in case (a) (as for (12)) those for which lim yt exists,

in case (b) those for which lim yt and lim[xt(y) − ωit]+ exist and in case (c) those for

which lim yt and lim 1
t

∑
s≤t(xs(y)− ωis) exist.

If we add lump-sum taxes θt ≥ p̃t limt at (and give each consumer an additional

18The non-convexities in (a), (b) or (c) do not constitute a difficulty since the budget set is mapped

(non-linearly) into the convex set of an auxiliary economy without taxes and constraints (i) or (ii) (see

the Appendix).
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money holding equal to
∑∞

t=1 θt), we see that a plan y inducing bounded x(y) has a

finite
∑∞

t=1 τt(y) which is greater or equal to, in case (a) [supt qt(yt−1− yt)− lim yt]
+, in

case (b) [lim[qt(yt−1−yt)]+− lim yt]
+ and in case (c) [lim 1

t

∑
s≤t qs(ys−1−ys)− lim yt]

+.

Cases (a) and (b) satisfy condition (ii’) and case (c) satisfies condition (i’) when

LIMAD is the Banach limit19. Taxes defined by (a) or (b) manage to implement any AD

equilibrium allocation, whereas taxes defined by (c) introduce an equilibrium selection:

out of the multiple AD allocations (associated with different generalized limits in the

AD price), (c) picks the one supported by the Banach limit.

Our general assumption on taxes is formalized as follows:

We say that taxes τ(.) satisfy Assumption A2(i) or A2(ii) if (A) conditions (i’) or

(ii’) hold, respectively, (B) limt qtτt(y) = 0 for any plan y inducing bounded x(y) and (C)

at any monetary equilibrium allocation (yi)i the derivative of τt is null for any direction

involving just changes in money balances at finitely many dates.

We may want to strengthen our assumptions on the tax schedule.

Assumption A3: taxes are such that if all agents are impatient, an efficient monetary

equilibrium must have money supply going to zero.

This assumption holds for taxes given by (12) or the recursive taxes (a), (b) or (c),

but would not hold if A > 0 were added to the expressions inside square brackets in (12)

or (13) (although assumption A2 would still hold). Under A3, any additional money

holdings that might be needed to avoid short sales should be retrieved through appro-

priate lump-sum taxes20. We already knew that under A2 taxes are non-distortionary in

terms of short-run actions, in the sense that the Euler conditions that would hold with-

out taxes (given by (9)) are still necessary for optimality when taxes are introduced.

When A3 holds, on top of A2, taxes are non-distortionary in terms of long-run actions,

in the sense that the transversality conditions that would hold without taxes (given in

19A generalized limit B is a Banach limit if B(c) = limn
1
n

∑n
t=1 ct whenever this limit exists.

20Whereas by adding A > 0 we could dispense with the lump sump taxes but would introduce a floor

on money holdings.
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Remark 3, for efficient allocations), together with its implications for the asymptotics of

money supply (idem), must still hold when taxes are introduced.

Proposition 3. (Non-distortionary taxes) Let ((xi, yi)i, q) be a monetary equilib-

rium, for given initial holdings (yi0)i and taxes τ(.) satisfying A2. The transversality

conditions, δ−U i(xi, c(yi(n)) ≥ 0 and δ+U i(xi, c(yi(n)) ≤ 0, are the same that would

hold in the absence of taxes (and in the presence or not of constraints (i) or (ii)) if and

only if taxes satisfy assumption A3.

Example 3 will show that in the absence of taxes satisfying A2 inefficient equilibria

exist, where consumers’ sequential problems have finite optimum since the allocations are

implemented (using Proposition 2) with supergradients for which there are no asymptotic

gains from dishoarding. The taxes proposed in A2 should not be seen as being required

for the existence of any sequential equilibria. They are instead the efficient taxes on

savings, in the sense that they implement efficient allocations.

5 Monetary Implementation of Efficient Allocation

5.1 Main Results

Theorem 2. (Efficient monetary equilibrium)

Suppose preferences satisfy A1 and taxes satisfy A2(ii). Let (x, π) be an AD equilibrium

for (ωi)i. If x� 0, there exist initial money holdings (yi0)i so that x can be implemented

as the consumption allocation of a monetary equilibrium with taxes.

For taxes satisfying A2(i), implementation holds for the AD equilibrium selector implied

by the tax formula.

The same results hold when taxes satisfy also A3. When agents are wary there may

be multiple monetary implementations. Let us denote by µi+νiL the pure charge of the

supergradient of U i at xi which takes the highest value on the net trade of agent i. It is

shown in the proof of Theorem 2 that, if µi is collinear with the countably additive com-
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ponent p of the AD price π and A3 holds, but (after rescaling utility so that ||µi|| = ||p||)

we have νAD(xi−ωi) < νiL(xi−ωi), then there is a monetary equilibrium with a positive

limiting money supply. Let us explore this. To simplify, let us assume that preferences

are differentiable along the canonical directions (and let us rescale the utility functions

so that these canonical marginal derivatives µit are such that ||µi|| = ||p||).

Definition 3. We say that agent i is particularly wary at the AD allocation (xi)i if

agent’s i marginal loss from reverting the savings policy (the left derivative of U i at xi

along the direction xi − ωi) is greater than the value that the AD support price assigns

to this savings policy (π(xi − ωi)).

This non-differentiability is intrinsic to wary preferences, due to the diversity of

generalized limits that can be taken for the pure charges of the supergradients. When

δ−U i(xi, xi − ωi) > π(xi − ωi), the consumer values the impact of the reversal of the

savings policy differently from the way the AD supporting price does. Figure 1 illustrates

what that gap would look like in a 2-date economy, although the non-differentiability

is somehow ad-hoc in finite horizon but has a sound reason to occur for wary infinite

lived agents. AD equilibria requires the support prices to be in the intersection of the

superdifferentials of all agents. The sequential monetary implementation can be achieved

by having each agent checking first order effects according to some supergradient, and

there is no reason why agents should be coordinating to have collinear supergradients.

Theorem 3. (Equilibrium with non-vanishing money supply) Under the assump-

tions of Theorem 2, suppose that marginal utilities are well defined at each date and that

some consumer i is particularly wary at xi, then, even for taxes satisfying also assump-

tion A3, there is a monetary implementation of the AD equilibrium for which the money

supply does not go to zero.

Under impatience and strictly positive consumption, what has been known as the

strong version of Friedman’s rule still holds for taxes satisfying A2 and A3 (just like it
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Figure 1: The marginal loss from undoing the savings (b.(xi−ωi)) exceeds the AD price

of the savings (π.(xi − ωi) = 0)

did for lump-sum taxes21). On the other hand, Theorem 3 says that when agents are

wary the money supply does not have to go to zero at an efficient monetary equilibrium,

which contradicts Friedman’s strong rule. Theorem 3 does not imply, however, that

any monetary implementation, under its assumptions, must have non-vanishing money

supply: given an equilibrium (x, y, q), there is r ∈ `1+, with ||r|| = 1 and lim rtqt = 0,

such that if ỹit = yit − (
∑

s≤t rs) lim yi, then (x, ỹ, q) is also an equilibrium, due to the

automatic adjustment in the non-lump-sum taxes. The same consumption bundles are

attained without carrying on cash to infinity but by putting aside from consumption the

same amount, now in the form of taxes.

An interesting case where the assumptions of Theorem 3 holds is described next. The

pure charges of all supergradients of U i at xi have the same norm if limn δ
−U i(xi, 1n) =

limn δ
+U i(xi, 1n), where 1nt = 0 for t < n and 1nt = 1 otherwise. In such case, the pure

charge of the left derivative along the direction (xi−ωi) has the largest generalized limit

of (xi − ωi), which is lim sup(xi − ωi). This will be illustrated as we resume Examples

1 and 2. Then, some consumer will be particularly wary at the AD allocation (and the

assumptions of Theorem 3 hold) if lim sup(xi − ωi) 6= LIMAD(xi − ωi) for some agent,

21In fact, lump-sum taxes do not affect the necessary conditions for individual optimality and the

result follows as in Proposition 5 in Pascoa, Petrassi and Torres-Martinez [2010].
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which is the case when not all net trades are converging.

Corollary 1. Under the assumptions of Theorem 2, if for all agents i, the marginal

derivatives at infinity limn δU
i(xi, 1n) and at each date δU i(xi, et) exist, then there is a

monetary implementation of the AD equilibrium for which the money supply does not

tend to zero if and only if agents’ net trades are not all converging.

This corollary is also proven in the Appendix. The necessity is actually quite general

and was known from Remark 3; sufficiency depends on the assumptions that were made.

Let us compare our results with what had been established in the literature. What

is designated as Friedman’s strong rule is a variation upon a claim made by Friedman

(1969), although his claim actually just required a zero nominal interest rate and that,

for that purpose, money supply should contract at a rate equal to the equilibrium real

interest rate. Bewley’s work (1980,1983) on impatient preferences not satisfying Inada

had already shown that when consumption is always positive, a constant money supply

is inefficient, whereas a money supply decreasing to zero at a constant rate can be made

efficient when combined with lump-sum taxes. Levine (1986) gave interesting examples

of efficient non-vanishing money supply for impatient agents with linear utilities, where

corner solutions were crucial for building up large money balances22. Wary agents have

an incentive to keep large money balances for a long-run hedging effect, and, in this case,

Inada’s conditions will not prevent the implementation of efficient monetary equilibrium

with constant money supply, as our theorems assert and the examples will illustrate.

5.2 Monetary equilibrium for endogenous discounting

Resuming Example 1

We consider two-agent economies where preferences are as in Example 1 and endow-

ments suffer shocks that alternate in sign along time but are not of the same magnitude.

When one consumer gets a positive shock, the other suffers the symmetric negative

shock. Money can be used to hedge against these shocks. Consumers would like to hold

22See also Levine’s (1989) later results under differentiable preferences not satisfying Inada.
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money forever (or at least, along some subsequence) in order to find a consumption path

in between the upper and the lower endowment subsequences.

The utility function is as in (4) with ui(.) =
√
. and β = 6. Take, for both agents,

ζt = (1/2)t−1
√

1 + 1/t. Endowments are ωit = 16 t+1
t +Git, where G1

t is given by G1
t = 13

if t is even and G1
t = −11 if t is odd, and G2

t = −G1
t . Recall that the indeterminacy

in the generalized limit considered in the AD price leads to a real indeterminacy in

AD equilibrium allocations. Take the equilibrium allocation that results from using a

Banach limit B. Consider the allocation xit = 16 t+1
t and supergradients of the form

πic =
∑∞

t=1(
1
2)t+2ct + 3

4B(c). We normalize prices so that the coefficient of the Banach

limit is one: π = 4
3π

i (AD Lagrange multipliers are 3/4). Denote by p the summable

component of π, the deflator pt = 4
32−t−2. The pair ((xi)i, π) is an AD equilibrium, as

AD budget equations hold since π(G1) = 0 follows from B(G1) = 1 and p(G1) = −1.

For yi0 = 9, make qt = 3
42t+2, the inverse of the deflator pt. Let zt be the funds put

aside by a consumer at date t, which will be decomposed as a sum of his money balances

and the cumulated taxes on his money balances: zt = yt +
∑

s≤t τ
i
s(y).

As the infimum xi of consumption is never attained, the marginal utility at infinity

limn δU
i(xi, 1n) exists (see part C of the Supplementary Material) and, therefore, the

assumptions of Corollary 1 are satisfied. The implementation is achieved (as explained

in detail in Appendix A) with (zi)i if we (I) make limt z
i
t = lim sup(xi−ωi), that is, the

limiting cost of carrying on cash equals the marginal gain of hedging at infinity, given

by the highest possible value that any pure charge of a supporting price can take on the

net trade and (II) require all other plans ẑ to satisfy limt ẑ
i
t ≥ lim sup(x(ẑi) − ωi) (a

limiting cost of funds not below the marginal gain at infinity).

Taxes are designed so that Condition (II) holds. A money holdings plan y pays

accumulated taxes
∑∞

t=1 τ
i
t (y) = lim sup(x(ŷ − ωi)− limt yy, which ensures (II).

The AD budget equation holds if zi0 = limt z
i
t − B(xi − ωi). Then, (I) implies that

zi0 = lim sup(xi−ωi)−B(xi−ωi), that is, lim sup(−G1)−B(−G1) = z10 and lim sup(G1)−

B(G1) = z20 , where B(G1) = 1. Since lim sup(−G1) = 11 and lim sup(G1) = 13 we

must have z10 = z20 = 12. So zit = 12 +
∑t

s=1 psG
i
s and short-sales are never done in
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equilibrium23. Then, lim z1t = 11 whereas lim z2t = 13.

Now, take θ = 0 and yi = zi so that equilibrium cash balances are not taxed and

money supply remains constant, which illustrates Theorem 1.

Actually, as lim z1t is different from lim z2t we could not make
∑∞

t=1 θt = lim zit for all

i, so that money supply would tend to zero. Impersonal taxes are incompatible with a

limiting zero money supply, except in the symmetric case where lim sup(xi − ωi) is the

same for all agents, as implied by Theorem 2.

This example can be modified so that aggregate resources are not decreasing but, for

any t, there exists some subsequent date where the aggregate endowment is lower than

in t. Suppose that at even dates endowments follow increasing sequences and that at

odd dates endowments are oscillating around a decreasing trend.

As a second remark, notice that the discount factors are a product of exponential and

hyperbolic discounting. Preferences fail to be time-consistent, not as a consequence of βi

being positive, but as a result of the somehow hyperbolic discounting that was assumed

for convenience reasons. The example could be redone with longer computations (along

the lines of Example 1 in (Araujo, Novinski and Pascoa [2011])) under exponential

discounting and consumption plans that differ from the trend endowment.

Resuming Example 2

Consider two agents with utility functions of the form in Example 2 with ui(y) =
√
y,

ni = 2, ηit =
(
1
2

)t−1√
1 + 1/t and

βi = 3

(
8
∞∑
k=0

1

24k
− 8

∞∑
k=0

1

24k+2k
− 12

∞∑
k=0

1

44k
+ 12

∞∑
k=0

1

22·4k+2k

)
. (14)

The consumptions are defined as ωi := 161+t
t + Git where G1

t = 6 if 22k+1 ≤

t ≤ 22(k+1) − 1 for k = 0, 1, . . . and G1
t = −4 if 22k ≤ t ≤ 22k+1 − 1 for k =

0, 1, . . . , and G2
t = −G1

t for all t ∈ N. Take the equilibrium allocation xit = 161+t
t

that results from using in the AD price the pure charge, LIM, that in the net trade

23In this example we did not need to increase initial money holdings by some amount A to avoid

short-sales.
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of the agent 1, takes the lowest value, lim inft
(
x1t − ω1

t

)
. The AD price is given by

π(c) =
∑∞

t=0

(
1
2

)t+2
+ β

8LIM (φ(c)) where φ : `∞+ → `∞+ such that φ(c)t = 1
t

∑t
k=1 ck.

Since φ is Frechet, using the result of the chain rule of the Clark subdiferential, we

have that all pure charges in the subdifferential of the agent have the same norm,

and also that the left derivative in the direction of the net trade coincides with the

lim sup of the net trade, since the value of φ in the net trade of the first agent is

φ(4,−6,−6, 4, 4, 4, 4,−6,−6,−6,−6,−6,−6,−6,−6, 4, 4, 4, 4, 4, 4, . . . ) =

(4,−1,−8/3,−1, 0, 2/3, 8/7, 1/4,−4/9,−1,−11/6,−28/13,−17/7,−8/3, . . . ). This im-

plies that we can implement with z1 = 10 and z20 = 0 (by the same argument as in

Example 1) and taxes defined as in Example 1.

5.3 On inefficient equilibria when there are no taxes

Example 3

Consider n economy economy with two agents i = 1, 2 whose preferences are given

by (4), where ui(x) := log(x), δt = 1/2t and β will be specified below.

ωit =

 8 + 2−t if t and i are even or odd simultaneously,

2 if t is even and i is odd, or conversely.

There is an AD equilibrium (π, x) where xit = 5 + 2−t−1 for each i, and π(c) :=∑∞
t=1

1
2t

ct
5+2−t−1 + ν(c), for a pure charge ν defined by ν(·) = β

5LIM(·) where LIM is a

generalized limit such that LIM
(
x1 − ω1

)
= lim sup

(
x1 − ω1

)
, provided that β is given

as follows

β :=
5

3

∑
k≥1

2

4k

(
5 + 4−k

)−1 (
3 + 4−k

)
−
∑
k≥1

1

4k

(
5 +

4−k

2

)−1(
3 +

4−k

2

) > 0

Now, let us construct an inefficient equilibrium ((x̃i, x̃i)i, q without deflation, q1 =

· · · = qt = q, where agent 1 holds no money in all even dates (z̃12k = 0 for k ∈ N) and

agent 2 holds no money in all odd dates (z̃12k−1 = 0 for k ∈ N), z̃10 = 0 and z̃20 = 6β.
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Let
(
µit
)
∈ ∂U i(x̃i) and satisfying the FOC of each agent at x̃i. That is, for each t and

i even or odd simultaneously,

δtu
i′ (x̃it) = µit = µit+1 = δt+1u

′ (x̃it+1

)
+ γt+1βui

′ (x̃i) = (δt+1 + γt+1β)ui
′ (
x̃i
)

(15)

Therefore,
(
x̃it
)
i,t

,
(
γit
)
i,t

and q are such that satisfy:

•
∑∞

t=1 γ
i
t = 1 where γit ≥ 0 with γit = 0 for t and i both odd or both even;

• inft x̃
1
t ≡ x̃1 = x̃12k for all k ∈ N and for agent 1, and inft x̃

2
t ≡ x̃2 = x̃22k−1 for all

k ∈ N and for agent 2, by choosing q < 1/(2β);

• x̃it = ωit − 6βq and x̃it+1 = ωit+1 + 6βq for each t and i even or odd simultaneously,

then, using Equation (15), we have that δtu
i′ (ωit − 6βq

)
= (δt+1 + γt+1)u

i′ (ωit+1 + 6βq
)

for each t and i even or odd simultaneously.

The plan
(
x̃i, z̃i

)
is optimal for agent i. To see this, notice that this infimum attained

infinitely many times (in all t for which z̃it = 0) and the plan satisfies the sufficient

conditions mentioned in Lemma 2, for a supergradient whose pure charge is zero. In

fact, the transversality condition (10) is satisfied: limt µ
i
tqtz̃

i
t = q limt µ

i
tz̃
i
t = 0, as there

is no deflation and z̃i takes a positive value, 6β, only at dates where the respective

subsequence of µi is falling to zero. On the other hand, the condition (11) becomes

limt µ
i
tqtzt ≥ 0, which is trivially satisfied for any z ≥ 0.

However, it can be noticed that the sequential equilibrium just constructed is ineffi-

cient since the marginal rates of substitution are not equal for the two agents in all pairs

of dates (more precisely, no supergradient of one agent is collinear with a supergradient

of the other agent). If we impose the taxes mentioned in Subsection 4.3, it is possible to

implement the AD equilibrium mentioned above which is clearly Pareto efficient. If such

taxes, of the recursive form (b) defined in subsection 4.3, were levied upon the inefficient

equilibrium plans, agent 1 would pay a tax x1t − ω1
t − yt = 6βq on even dates (dates

when the agent dishoarded more than the cost of carrying on cash up to that date) and

zero taxes on odd dates. These taxes would displace the inefficient plans and guide the
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consumers toward efficient savings plans. However, if we just add lump-sum taxes, the

outcome will not be Pareto efficient.

6 On the Implementation in Other Sequential Economies

6.1 Can Efficient Allocations be Implemented using a Lucas Tree?

Could fiat money be replaced by another long lived asset such as a Lucas tree? We

consider an economy with a single asset that can not be shorted and has non-negative

returns in the consumption good given by (Rt)t∈N ∈ `∞+ \{0}. We call this asset a Lucas

tree. In the absence of money, the government will now tax in the numeraire since is

not plausible to tax directly in a private asset as the Lucas tree. The sequential budget

set is the set B(Q, yi0, ω
i, τ) of plans (x, y) satisfying x ∈ `∞+ and, for each t ∈ N,

xt − ωit ≤ Qt (yt−1 − yt) +Rtyt−1 − τt(y) (16)

where Q = (Qt)t∈N is the sequence of Lucas tree prices and τ is the tax schedule that

depends on the plan y that the agent may choose. Notice that W i = ωi +Ryi0.

Definition 4. A vector
(
Q,
(
xi, yi

)
i∈I

)
is an equilibrium for the economy with initial

Lucas tree holdings
(
yi0
)
i∈I and fiscal policy τ if

(
xi, yi

)
∈ argmax{U i(x) : (x, y) ∈

B
(
Q, yi0, ω

i, τ
)
} and, for every date t, we have

∑
i∈I x

i
t =

∑
i∈I ω

i
t + Rt

∑
i∈I y

i
0 and∑

i∈I y
i
t =

∑
i∈I y

i
0.

Note that for non-negative taxes, taxes must be zero in equilibrium due to the market

clearing condition in the numeraire. We assume that preferences are described by (4)

and we add a condition that allows us to implement with no taxes in equilibrium.

Assumption A4: The consumption plan (xi)i of agent i is such that xi ≫ 0, xi

is never attained and there is a subsequence S of dates such that xt − ωit > 0 on S,

limS x = xi and lim supS(xi − ωi) = lim sup(xi − ωi).

This assumption holds in Example 1 of section 5.2. It says that the infimum of

consumption is not attained in finite time and that the dishoarding that occurs as that
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infimum is approached is actually the highest asymptotic dishoarding. Under A4, the

marginal disutility from reverting the savings plan at an arbitrarily far away date is given

by the limsup of the AD net trade (that is, νiL(xi −W i)/||νiL|| = lim sup(xi −W i)).

Assuming that there are no lump-sum taxes we have the following implementation result.

Proposition 4. Let be
(
xi
)
i

be an efficient allocation such that for each i, A4 holds at

xi. (A) If lim inft (Rt) > 0, there exist initial holdings (yi0)i of the Lucas tree and a fiscal

policy τ that would implement
(
xi
)
i

as an equilibrium with taxes if the no-short-sale

constraint on the Lucas tree were ignored. (B) If (Rt) ≥ 0 and for some agent i, xit−W i
t

does not converge, the same result holds.

In the absence of other financial instruments, short sales might not be avoided. If we

tried to create additional Lucas trees (increase yi0) to overcome such negative positions (as

we did in the case of money), the commodity endowment of each agent in the sequential

economy would be reduced (since ωit = W i
t −Rtyi0), implying that the quantity of Lucas

tree required to avoid short sales could make ωit become negative. Short sales could be

avoided by adding one-period promises in zero net supply (an I.O.U. promise) and in

this case taxes would be levied upon the portfolio formed by the Lucas tree and the one-

period promise. To preserve efficiency, we should not allow for the I.O.U. promises to be

secured by the Lucas tree since the collateral constraint could be binding in the presence

of a low amount of Lucas tree (and we already know that it might not be possible to

increase the initial holdings). In the next section we address sequential implementation

using Lucas trees and I.O.U.s.

6.2 Implementation in Stochastic Economies

Can fiat money, when properly coupled with other spanning instruments, still implement

AD allocations in stochastic economies? Or does the coexistence with other assets make

money lose its role? Take an event tree such that at each date t and at each node st

there exist two successors of st denoted by st,1 and st,2, and one predecessor s−t . Let σ

be the root of the event tree and S := {st : t ∈ N}. Denote by Pst the probability of the



6 ON THE IMPLEMENTATION IN OTHER SEQUENTIAL ECONOMIES 30

successors of st. The utility function for each agent i is a generalization of (4),

U i(x) :=
∑
t

ζitEt
[
ui(xt)

]
+ βi inf

t
Et

[
ui(xt)

]
(17)

where xt is random consumption at nodes with date t and Et is the expected value on

St, the set of all possible nodes st with date t, for the probability induced by Pst .

In stochastic economies, wary agents could not be modeled literally as in (4), carrying

about the worst outcome on the whole event tree24. But one extension that makes sense,

which we follow here, is to suppose that agents are worried about the mean losses at

each date, as in (17). This means that there is no aversion to uncertainty among the

states, but there is an aversion to ambiguity on the discount factors, as in equation (4).

Let us start by implementing with Lucas trees and I.O.U.s. Consider two Lucas trees

in positive net supply and with positions given by y(j), j = 1, 2. We allow for trades

a on one-period zero-net-supply promises paying an interest rate ist in the nodes that

immediately follow the node st. At node st+1 such that s−t+1 = st, the budget constraint

and the non-negativity of the Lucas trees constraints are given respectively by:

xst+1−ωst+1 +Qst+1yst+1 + ast+1 + τst+1(y, a)≤
(
Rst+1+Qst+1

)
yst + (1 + ist)ast ,

yst+1 ≥ 0,
(18)

where Q = (Qst)st∈S , (Rst)st∈S and (ist)st∈S are the Lucas trees prices and returns and

the interest rates, whereas τ are the taxes that depends on y and a. We denote by

B
(
Q, yi0, ω

i, τ
)

the set of plans (x, y, a) that satisfy (18).

To define an equilibrium for the economy with Lucas trees and taxes we use a straight-

forward extension of Definition 4, with the interest rates ist and the promise trades ai

as additional variables, under the condition that the promises’ trades clear,
∑

i a
i
st = 0,

at each node st. Let us reformulate assumption (A4) to the stochastic case.

Assumption A5(1): The consumption plan (xi)i of agent i is such that xi ≫ 0,

infs
(
Es[u

i(xis)]
)
< Et[u

i(xit)] ∀t ≥ 0, and there is a subsequence S of dates such that

24In fact, that might imply that agents would be worried about some states with arbitrarily low
probability.
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Et

[
(ui)′(xt)

(
xit−W i

t

)]
> 0 on S and lim supS Et

[
(ui)′(xt)

(
xit−W i

t

)]
= lim supEt

[
(ui)′(xt)

(
xit−

W i
t

)]
.

Assumption A5(2): (xi)i is such that (a) lim inf{t :Et[u′i(xt)(xit−W i
t )]>0} Et[u

i(xit)] =

infs
(
Es[u

i(xis)]
)

and (b) limt Et

[
ui
′ (
xit
)]

exists for each i 25.

The following theorem establishes what can be done with taxes both, when the

trees are traded alone or together with I.O.U.s that are not secured by the trees. The

idea is that equilibrium plans will not be taxed but other plans may be penalized as in

Proposition 4. These taxes will eliminate the usual Ponzi schemes (in the zero-net-supply

promises) and any other long-run improvement opportunities.

Theorem 4. (Implementability in Unsecured Credit Economies without Money)

For preferences given by (17), let (xi)i be an efficient allocation such that (i) for each i,

xi satisfies A5(1) and A5(2) and (ii) for some agent i, Et
[
ui
(
xit
) (
xit −W i

t

)]
does not

converge, then, there exist initial holdings of the Lucas trees zi0 and impersonal taxes that

implement (xi)i as an equilibrium for the sequential economy, but possibly with trades in

the zero-net-supply one-period promises (so that short sales of the trees can be avoided).

The dependence on unsecured credit is a fragility of the implementation, due to the

full commitment assumed on debtors, which might not be incentive compatible.

Finally, we observe that in stochastic economics, efficient allocations can always be

implemented with fiat money. Taxes will be paid in money and markets can be completed

sequentially if other assets are added, say two Lucas trees (for the above economy with

two branches at each node). Money and the Lucas trees have non-negative positions

in equilibrium, thanks to the fact that the initial holdings of money can be adjusted.

There is no need to allow for trades in zero-net supply promises. Denoting by yst ∈ R2
+

the positions in the Lucas trees and by zst the money balances in state st, we write the

25Part (b) of (A5(2)) can be replaced by the following: there exists T > 0 such that for every t1, t2 ≥ T
we have that ζit1/ζ

i
t2 = ζjt1/ζ

j
t2

for each pair of agents i, j.
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consumer budget constraint in this state as follows:

xst−ωst +Qstyst +qstzst≤(Rst +Qst)yst−+qstzst−−qstτst(y, z),

yst , zst ≥ 0,

where Qst , Rst ∈ R2
+ are the prices and the returns of the Lucas assets trees, τ i(y, z) ∈ R+

is the taxation that depends on (y, z) and qst is the price of money. We suppose that

R =
(
R1, R2

)
is such that for each st there exists some st+r successor of st such that

R1
st+r
6= R2

st+r
. An equilibrium for this economy is defined analogously to the original

deterministic monetary case (with market clearing for the two Lucas trees as additional

conditions) and is said to be a monetary equilibrium if the price of money is non zero.

Theorem 5. (Coexistence of Fiat Money and Lucas Trees)

For preferences given by (17), let (xi)i be an efficient allocation such that xi ≫ 0,

then, there exist initial holdings yi0, zi0 of the fiat money and the Lucas trees that manage

to implement (xi)i as an equilibrium with taxes and non-negative portfolios (yi, zi)i.

Under pure discounting and apart from some special cases, fiat money would lose

its efficient role (and its positive price) if other long-lived assets were being added to

an economy without frictions that might justify the role of money. When impatience

is replaced by wariness, our results (Theorem 5) show that, coexistence of money and

those assets is compatible with efficient monetary equilibria.

In stochastic sequential economies, the study of efficient bubbles and the possibility

of their crashing in some parts of the tree are quite interesting things to be analyzed.

Since the characterization of bubbles can be done in terms of the pure charge of the

consumers’ supergradients, if these pure charges become zero in a subtree, then the

bubble could crash all along that subtree.

7 Concluding Remarks

In this paper we implement sequentially the efficient allocations of economies where

wary agents face persistent endowments shocks. These shocks are hedged by trading
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fiat money (alone in a deterministic setting or together with other long lived assets in

the stochastic case). Inefficient money balances (or more precisely the disposal of such

balances) are taxed on the grounds of the gap between hoarding benefits and the cost

of carrying on cash. Discouraging such mismatch at the individual agent level ends up

leading agents toward efficient savings plans. These taxes can be recursive and have

the flavor of a capital gains tax: it is the gains from a sale of (all or part of the)

money balances (qt(yt−1 − yt)) net of the cost of carrying cash up to then (p1q1y
i
0 −∑

s≤t psqs(ys−1 − ys) = yt) that are being taxed.

If we would dispense with fiat money and implement using Lucas trees as the

only long-lived assets, we could face some difficulties. Under non-negative positions

in the trees, to get sequential market completeness we might also need zero-net-supply

promises. The amount of unsecured credit needed to complete the markets could be

quite huge and, presumably, creditors might not be willing to lend it.

Actually, if the implementing asset were a long-lived asset with real returns, there

are two extensions that might seem to be natural ways to overcome the dependency on

unsecured credit but end up colliding with efficiency. One extension is to allow for the

asset to collateralize the short sales of the zero-net-supply promise. The other extension

is to allow for short sales of the long lived asset itself in the way that short sales of

shares are actually done in financial markets, by borrowing the shares first rather than

doing ”‘naked”’ short sales. In both cases, it is common to observe frictions that lead

to inefficiency. In the former, the collateral constraint could be binding. In the latter,

we could have a binding constraint linking the short sale of the shares to the amount of

shares that were borrowed26. For these reasons, in this paper, by a Lucas tree, we mean

the classical notion of a long-lived real asset that can not be shorted and, furthermore,

we do not allow it to serve as collateral. In this context, the complementary negative

hedging is done through I.O.U. promises.

Fiat money has the merit of dispensing with the problematic role of that unsecured

26Actually, the two cases are often (as in repo markets) two legs of the same operation and the binding
constraint becomes the same.
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credit (in the form of I.O.U.) in completing the markets. In fact, the initial holdings of

money can always be adjusted in order to implement sequentially an efficient allocation

using non-negative money balances (alone in a deterministic setting or together with non-

negative Lucas tree positions in a stochastic setting). Dispensing with unsecured credit

allows us to avoid modeling reputation problems and complex bankruptcy procedures.

Wariness is a lack of impatience that makes consumers care about losses at far away

dates. When fiat money is being used to implement sequentially an efficient allocation,

the money supply does not have to go to zero. Wary agents can use persistently positive

money balances to hedge against endowments shocks at far away dates, as Theorem 3

and its Corollary point out (and our examples illustrate). An optimal positive limit in

the money supply is not a consequence of imposing money floors or peculiar portfolio

constraints. We just assume the usual no-short-sales constraint on money together with

a fiscal policy that taxes inefficient savings plans and correct what would be an insatiable

demand for precautionary liquidity in a deflationary context (an instance of a problem

already noticed by Friedman and Bewley).

APPENDIX

A Proof of Theorem 2

We construct an auxiliary economy where inter-temporal transfers of wealth are done

by trading a no-dividends asset in constant positive net supply, not subject to taxes

but subject to portfolio constraints. We denote positions in this asset by z (these will

be related to money balances by zt = yt +
∑

s≤t τ
i
s(y), which implies that zit−1 − zit =

yit−1 − yit − τt(y)). In the auxiliary economy, budget constraints are given by (8).

Consider the supergradient whose pure charge νiL takes the highest value on the

direction of the net trade27. That is, νiL is such that δ−U i(xi;xi−ωi) = (µi + νiL)(xi−

ωi). If µi is collinear with the countably additive part p of the AD price π, then we use

27This allows us to illustrate the multiplicity of equilibria and prepare for the proof of Theorem 3.
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the supergradient µi + νiL in the procedure proposed by Proposition 2. Otherwise, we

can always use the supergradient collinear with π ≡ p+νAD. This suggests the following

portfolio constraint:

limµitqtzt ≥ νiL(x(z)− ωi) (19)

Let BA(q, yi0, ω
i) be the set of plans (x, z) satisfying (8) and (19).

Definition 5. A vector (q, (xi, zi)i∈I) ∈ IR∞+ × (`∞+ × IR∞+ )I is an equilibrium for the

auxiliary economy with initial holdings (z10 , ..., z
I
0) if (xi, zi) ∈ argmax{U i(x) : (x, z) ∈

BA(q, yi0, ω
i)};

∑I
i=1 x

i =
∑I

i=1 ω
i and

∑I
i=1 z

i
t =

∑I
i=1 z

i
0 ∀ t ∈ N.

Lemma 4. If ((xi)i, π) be an AD equilibrium such that xi ≫ 0, there exist zi0 that

implement (xi)i as an equilibrium for the auxiliary economy, possibly with short-sales.

Proof. Notice that the AD budget equation holds as an equality for a plan zi when

limt ptqtz
i
t − νAD(x(zi) − ωi) = zi0p1q1. We choose zi0 so that 1

ρi
νiL(x(zi) − ωi) −

νAD(x(zi) − ωi) = zi0p1q1, where ρi is the AD Lagrange multiplier of agent i. We

can actually take ptqt = 1. By Proposition 2, the portfolios zi that satisfy (19) given zi0

and xi, will implememt the AD equilibrium allocation (xi)i for (ωi)i.

Let us map back into the original sequential economy. Suppose sequential

implementation without taxes was achieved with short sales under the constraint (19),

with ptqt = 1. If z takes negative values at some dates, we can find money holdings

Zi0 = zi0 + Ã such that the equilibrium positions zit can be replaced by non-negative

money balances. We have the freedom of either shifting up the portfolio plans by Ã

or introducing lump-sum taxes θ that retrieve the additional initial holdings gradually

(lightly at the finitely many dates where zit was negative), or a combination of both28.

Let us proceed by introducing taxes that replace the portfolio constraints.

Lemma 5. The non-negative plans Zi given by Zit = zit + Ã −
∑

s≤t θs for t ≥ 1, will

implement the same efficient allocation if portfolio constraints are replaced by personal

28Notice that if we choose to shift zi up by Ã, then Zi does not satisfy the second transversality

condition of Remark 3 (the direction Zi(n) is not left admissible for the constraint limt µtqtzt ≥ ν(x(z)−

ω) + Ã, which should replace (11), together with limt µtqtz
i
t ≥ ν(xi − ω) + Ã replacing (10))
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taxes τ i satisfying, for any portfolio plan Z,
∑∞

t=1 τ
i
t (Z) =

∑∞
t=1 θt+[νi(qt(Zt−1−Zt))−

limZ +A]+, where θt = p̃t(Ã−A).

Proof. In fact, for xit(Z) ≡ qt(Zt−1−Zt− τ it (Z)) we have
∑∞

t=1 τ
i
t (Z) ≥ νi(xi(Z)−ωi)−

limZt + Ã. Let zt = Zt − Ã +
∑

s≤t τ
i
s(Z), then limt zt ≥ νi(x(z) − ωi). That is, the

definition of taxes ensures that any plan Z has an image z satisfying constraint (11).

As we already knew that (10) holds, it follows that Zi is optimal, for the initial holding

Zi0 = zi0 + Ã, and taxes are levied in equilibrium only if we choose to have lump-sum

taxes removing (all or part of) Ã .

Now, in order to define impersonal taxes we will increase taxes and also the initial

holdings of money. Let γi := lim sup(xi − ωi)− νi(xi − ωi) ≥ 0. We make yi0 = Zi0 + γi.

Denoting by q(y− − y) the sequence with general term qt(yt−1 − yt), for any portfolio

plan y we define the following tax

γit(y)=


(
lim sup q(y−−y)−νi(q(y−−y))

)
p̃t if lim y≤νi (q(y−−y))+A,

[lim sup q(y−−y))−lim y+A]+p̃t otherwise.

Then, the impersonal taxes satisfy

∞∑
t=1

τt(y) =
∞∑
t=1

(τ it (y) + γit(y)) =
∞∑
t=1

θt + [lim sup q(y−−y))− lim y +A]+.

Lemma 6. Given the equilibrium plans (Zi)i for the economy with just personal taxes τ i,

the plans yit = Zit +γi−
∑

s≤t p̃s(lim sup(xi−ωi)− νi(xi−ωi)) constitute an equilibrium

for the economy with impersonal taxes.

Proof. Let us see first that the proposed plans yi are in the budget set with impersonal

taxes. For the proposed plans, lim yi = limZi = νi(q(y− − y)) + Ã −
∑∞

t=1 θt and

therefore τ i(yi) =
∑∞

t=1 θt. Moreover, as limt qtτt(y) = 0 we have lim sup q(yi− − yi) =

lim sup(xi−ωi) and νiq(yi−−yi) = νi(xi−ωi). So, γit(y
i) = p̃(lim sup(xi−ωi)−νi(xi−ωi)).

Then, yit−1 − yit − τt(yi) = Zit−1 − Zit − θt, which implies that yi still accommodates xi

in the sequential budget equations.

Now, (Zi)i = (zi +A−
∑

s≤t θs)i is also an equilibrium for the auxiliary economy, with
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constraints (11). To show that yi is optimal for the economy with impersonal taxes, it

suffices to show that any plan y for consumer i in the economy with impersonal taxes

induces a plan z for i in the auxiliary economy with constraints (11). We look for z such

that yt−1 − yt − τt(y) = zt−1 − zt, then we have

zt = yt −

γi −∑
s≤t

γis(y)

+
∑
s≤t

τ is(y) (20)

Then, lim zt = lim yt +
∑∞

t=1 τ
i
t (y) ≥ νi(q(y− − y)) + Ã (since

∑∞
t=1 θt + A = Ã). Now,

νi(q(y− − y)) = νi(q(z− − z)) since lim qtτt(y) = 0. Hence, constraint (19) holds.

This concludes the Proof of Theorem 2.

The proof of Proposition 3 follows from the proof of Theorem 2 since, under A2,

taxes satisfy A3 if and only if A = 0, which is also the necessary and sufficient condition

for lim yit to be equal to the limit of the equilibrium portfolio zi of the auxiliary economy

(for which the assumptions in Remark 3 hold).

B Proof of Theorem 3 and Remark 4

Notice that for taxes to satisfy assumption A3 we make A = 0 and we get lim yi =

νi(xi−ωi). If there is at least one agent j such that νj(xj −ωj) for some supergradient

µj + νj , with µj collinear with p and νj(xj −ωj)/ρj > νAD(xj −ωj), then the monetary

equilibrium generated (according to Proposition 2) by using this supergradient for j

and supergradients collinear with p + νAD for all other agents, will have money supply

converging to
∑

i 6=j ν
AD(xi − ωi) + νj(xj − ωj)/ρj > 0.

Finally, for each i let Y i
t = yit −

∑
s≤t rs lim yi, where r ∈ `1+, ||r||1 = 1 and rtqt → 0.

Now, [νiq(Y i
−−Y i)−limY i+A]+ = [νiq(yi−−yi)+lim qtrt lim yi+A]+ = νiq(yi−−yi)+A

and therefore
∑∞

t=1 τt(Y
i) =

∑∞
t=1 τt(y

i) + lim yi. Actually, for taxes given by (12) it is

immediate to see that τt(Y
i) = τt(y

i) + p̃t lim yi. For other tax schedules (say given by

(a), (b) or (c)) we pick rt = τt(Y i)−τt(yi)
lim yi

.

Then, qt(Y
i
t−1−Y i

t −τt(Y i)) = qt(y
i
t−1−yit+rt lim yi−rt lim yi−τt(yi)) = qt(y

i
t−1−yit

−

τt(y
i)) and, therefore, Y i is optimal for agent i.
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C Proof of Corollary 1

We just need to rule out that LIMAD(xi − ωi) = lim sup(xi − ωi), for any i. Adding

across agents, 0 =
∑

i lim sup(xi−ωi). Say it is agent 1 whose net trade x1−ω1 does not

converge. Now, lim sup(x1 − ω1) = −
∑

i 6=1 lim sup(xi − ωi) =
∑

i 6=1 lim inf(ωi − xi) ≤

lim inf(x1 − ω1), a contradiction.
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A ADDITIONAL EXAMPLE 1

A Additional Example

Another example is obtained by taking ni ∈ N and Ci to be the weak∗ closed convex hull

of {(δim)m∈N : δim(t) = ζit + βi/ni for m + 1 ≤ t ≤ m + ni, δim(t) = ζit elsewhere} to get

U i(x) :=
∑

t ζ
i
tu
i(xt)+βi inft

(
1
ni

∑ni

k=1 u
i(xt+k)

)
. The agent is worried about the worst

possible cycle of consumption in ni dates (say one year). The concern is not anymore

with the worst consumption or with worst mean losses (worst consumption could be in

a cycle in which consumption is large in average). A single low consumption may be

negligible at distant dates. Supporting prices are π(c) =
∑∞

t=1 ζ
i
t(u

i)′(xt)ct + βiLIM(c̃)

where c̃t := 1
ni

∑ni−1
k=0 ct+k.

And when ui(y) =
√
y, ni = 2, ηit =

(
1
2

)t−1√
1 + 1/t, βi = 4, endowments are

defined as ωit := 161+t
t +Git where G1

t = 6 if t = 4k+ 2 or t = 4k+ 3 for k = 0, 1, . . . and

G1
t = −4 if t = 4k + 1 or t = 4k + 2 for k = 0, 1, . . . , and G2

t = −G1
t for all t ∈ N, the

equilibrium allocation that results from using a Banach limit B in the AD price, that

is xit = 161+t
t and the AD price is π(c) =

∑∞
t=1

(
1
2

)t+2
ct + 1

2B(c) where ct := ct + ct+1.

Note that · : `∞ → `∞ is Frechet differentiable and, due to the chain rule, pure charges

of each agent are of the form LIM(·). Therefore, the left derivative in the net trade and

its lim sup coincide (since 1
2

(
x1 −W 1

)
= (4,−1,−6,−1, 4,−1,−6,−1, 4, . . . )), which

implies that zi0 = 5 (by the implementation argument as in Example 1). For taxes

defined as in Example 1, the AD equilibrium is implemented with positive net supply.

B On Example 1 and the Marginal Utility in the Direction

of Net Trades

We show here that for a utility function U of the form given by (4), if z∗ is an optimal

portfolio plan in BA(q, yi0, ω
i) (defined in Subsection 8.2.1) such that, at x∗ := x(z∗) ≫

0, we have inf x∗ not attained and lims x
∗
s = infs x

∗
s, then

δ−U(x∗)(x∗;x∗ − ωi) = µ(x∗ − ωi) + α lim sup(x∗ − ωi)
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for α > 0 equal to the norm of the pure charge component of a supergradient of U at

x∗, where µ is given by µt = ζtu
′(x∗t ).

We will estimate limr→0
1
r [U ◦x(z∗+rz∗)−U ◦x(z∗)]. Consider the direction ∆ ∈ `∞

given by ∆t = qtz
∗
t−1 − qtz

∗
t . Notice that limr→0

1
r

∑
t≥1 ζt[u(x∗t + r∆t) − u(x∗t )] =∑

t≥1 ζt limr→0
1
r [u(x∗t + r∆t) − u(x∗t )] =

∑
t≥1 ζtu

′(x∗t )∆t. So, what we still need to

do is to estimate limr↑0
1
rβ[inft u(x∗t + r∆t) − infs u(x∗s)], which is δ− inft u(x∗,∆), the

left-derivative of the function inft u(.) along the direction ∆ evaluated at x∗.

Observe that there exists χ > 0 such that ∀r ∈ (−χ, 0) the following holds: (1+r)z∗ >

0 is a non-negative plan, x(z∗+rz∗) satisfies (16) and x(z∗+rz∗) = x∗+r(x∗−ω) ≫ 0.

Claim: limr↑0
1
r [inft u(x∗t + r∆t)− inft u(x∗t )] = u′(x∗) lim supt ∆t

Proof. Let us suppose that x∗t converges to x∗ = inf x∗, then limr↑0
1
r [inft u(x∗t + r∆t)−

u(x∗)] since inf(.) : `∞ → IR is a concave function.

Fixed r ∈ (−χ, 0) and given ε > 0, it is valid for all τ large enough that (1/r)[inft u(x∗t+

r∆t)−u(x∗)]+ε = (−1/r)[u(x∗)−εr− inft u(x∗t +r∆t)] ≥ (−1/r)[u(x∗τ )−u(x∗τ +r∆τ )] ≥

u′(x∗τ )∆τ . Making τ →∞ we get (1/r)[inft u(x∗t+r∆t)−u(x∗)]+ε ≥ lim supt u
′(x∗t )∆t =

u′(x∗) lim supt ∆t, for an arbitrary ε > 0.

To prove the reverse inequality, notice that, under the hypothesis, δU(x∗; ll(n)) =∑
t>n ζ

tu′(x∗t ) + βu′(x∗) and, therefore, any supergradient has a pure charge compo-

nent with norm βu′(x∗) by Lemma 1. Hence, for any supergradient T of U at x∗ we

have T (∆) =
∑

t≥1 ζtu
′(x∗t )∆t + βu′(x∗)LIM(∆), for some generalized limit LIM. So,

δ− inft u(x∗,∆) ≤ u′(x∗) lim supt ∆t.

Now, if there is a subsequence S such that ∆t ≥ 0, infS x
i
t = x∗ and lim supS ∆t =

lim sup ∆t, the left derivative on the direction {∆t}t is u′(x∗) lim supt ∆t, which concludes

the proof.

C Proof of Theorem 1

Proof. (xt)t∈N ≫ 0 implies that the marginal utility in xt of the function u is uni-

formly bounded from above and below, that is, 0 < m ≤ u′(xt) ≤ M < ∞ implying
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that the condition of uniform convegence can be written as limt supδ∈C

{∑
s≥t δs

}
= 0.

Therefore,

0 ≥ lim
n→∞

lim
h→0−

−1

h
(U(x+ hllEn)− U(x))

= lim
n→∞

lim
h→0−

−1

h

(
inf
m∈C

{
n−1∑
t=1

δtu(xt) +
∞∑
t=n

δtu(xt + h)

}
− inf
m∈C

{ ∞∑
t=1

δtu(xt)

})

≥ lim
n→∞

lim
h→0−

−1

h

(
inf
m∈C

{ ∞∑
t=n

δt (u(xt + h)− u(xt))

})

≥ lim
n→∞

lim
h→0−

−1

h

(
inf
m∈C

{ ∞∑
t=n

δt (Mh+ o(h))

})
= −M lim

n→∞
sup
m∈C

{ ∞∑
t=n

δt

}
= 0,

which concludes proves that the left derivative is 0, for h→ 0+ is analogous.

D Proofs for Section 6.

Proof of Proposition 3. We start by implementing the efficient allocation in an auxiliary

economy without taxes but with portfolio constraints. Consider BA
(
Q, yi0, ω

i
)

the set

of plans (x, z) satisfying

xt − ωit ≤ Qt (zt−1 − zt) +Rtzt−1 ∀t ∈ N (1)

Lemma 7 can be adapted to an asset paying dividends if we replace (15) by (1) and (16)

by µtQt = µt+1(Qt+1 + Rt+1). We now denote xt(z) ≡ Qt(zt−1 − zt) + Rtzt−1. Then,

by (A4), ρi lim ptQtz
i
t = νiL(xi −W i) and we use the portfolio constraint lim ptQtzt ≥

lim sup
(
x(z)− ωi

)
, where xt(z) = ωit + Qt (zt−1 − zt) + Rtzt−1. Now xi(z) satisfies the

AD budget equation if and only if ν
(
xi(z)− ωi

)
− limt ptQtz

i
t = zi0 (ν(R)− lim ptQt),

equivalently,

(ρi)−1ν̃i
(
xi − ωi

)
− ν

(
xi − ωi

)
= zi0

(
p1Q1 −

∞∑
t=1

ptRt − ν(R)

)
(2)

If xi−ωi converges for every agent, we choose Q1 such that p1Q1 = ν(R)+
∑∞

t=1 ptRt

and zi0 ≥ 0 such that Mzi0 < W i where W i = inft
{
W i
t

}
. If xi − ωi does not converge
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for some i, we choose Q1 big enough so that p1Q1 > ν(R) +
∑∞

t=1 ptRt and zi0 satisfying

the condition above and Mzi0 < W i. Let us define a constant sequence of taxes by

τt(y) :=

 1

1+
∥∥∥Q̃∥∥∥

1
γ

((β−1lim sup(Qt(yt−1−yt)+Rtyt−1)−lim
t
yt

)
∨0
)

where γ :=
∏∞
t=1

(
Rt
Qt

+ 1
)

,
(
Q̃t

)
t

= (1/Qt)t ∈ `1 and β := p1Q1 −
∑∞

t=1 pt.

The relationship between y and z is given by:

zt − yt =
t∑

r=1

∏t−r−1
s=0 (Qt−s +Rt−s)∏t−s

j=0 (Qt−s)
τ(y) =

t∑
r=1

τ(y)

Qr

(
t−r−1∏
s=0

(
1 +

Rt−s
Qt−s

))

Making the proper substitutions we have
∑∞

r=1
βτ(y)

Qr
γ ≥ lim sup

(
x(y)− ωi

)
−limt ptQtyt

with equality for y = yi, where yi is the asset portfolio, which implements the AD allo-

cation with taxes τ .

Let us prove next Theorem 5 and leave the proof of Theorem 4 to the end.

Proof of Theorem 5. Let us assume that p1q1 = 1 and ||νiL|| = 1, where νiL is the pure

charge of the supergradient of U i that takes the highest value on xi −W i. Now, let us

present sufficient conditions for individual optimality:

Lemma 1. Let (ỹ∗, z̃∗) be a feasible portfolio and let x∗ = x (ỹ∗, z̃∗). Suppose there

is T ∈ ∂U(x∗) with T = µ + ν, µ ∈ `1+ and ν ∈ pch+ such that for every node st

and both promises j = 1, 2, µstQst(j) =
∑

s−t+1=st
µst+1 (Rst(j) +Qst(j)) and µstqst =∑

s−t+1=st
µst+1qst and limt

(∑
st∈St

[
µstQst ỹ

∗
st + µstqst z̃

∗
st

])
= ν (x∗ − ω) . Suppose also

that every feasible portfolio (ỹ, z̃) satisfies the portfolio constraint

lim
t

(∑
st∈St

[µstQst ỹst + µstqst z̃st ]

)
≥ ν (x (ỹ, z̃)− ω) .

Then (ỹ∗, z̃∗) is an optimal solution for the consumption problem with sequential budget

constraints.

As usual, implementation follows by imposing the portfolio constraint and choosing

(zi0)i such that the AD budget equation holds, that is, (ρi)−1ν̃i
(
xi − ωi

)
−ν

(
xi − ωi

)
=

ỹi0
(
limt

∑
st
µstQst−ν(R)

)
+ z̃i0 limt

∑
st
µistqst .
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As in Theorem 2, the no short sale constraints of money and the Lucas trees are

satisfied by adding an extra money holding A at t = 0 to all agents 1.

Similarly to the proof of Theorem 2, we first implement the efficient allocation with

personal taxes, τ ist(y, z), given by the pure charge ν̃(xi(y, z) − ω), and then we define

additional personal taxes, γist((ỹ, z̃), (y, z)), such that the sum τst(ỹ, z̃) = τ ist(y, z) +

γist((ỹ, z̃), (y, z)) have the following form

τst(ỹ, z̃) =p̃t max

{
0, lim sup

sr

(
Qsr

(
ỹsr−1 − ỹrt

)
+Rsr ỹsr−1 + qsr

(
z̃sr−1 − z̃st

))]

− lim
t

(∑
st∈St

[pstQst ỹst + pstqst z̃st ]

)
+A

}

where {p̃t}t ∈ `1++, ||p̃||1 = 1 and p̃t maxst Qst → 0, p̃t maxst qst → 0. Therefore there is

an initial money holding z̃i0+A+γi such that the efficient allocation can be implemented

with impersonal taxes that in equilibrium are not necessarily zero where γi is defined as

in the proof of Theorem 2.

Proof of Theorem 4. We start by characterizing the supergradients of the utility (13).

Lemma 2. Consider a consumption plan x∗ ≫ 0 such that infs≥1 Es [u (x∗s)] > Et [u (x∗t )]

for all t ≥ 0 and Et [u (x∗s)]→ infs≥1 Es [u (x∗s)].

π ∈ ∂U (x∗) if and only if it is given by

π(x) =
∑
t≥0

ζtEt
[
u′(x∗t ) · xt

]
+ β ν

((
Et

[
u′(x∗t ) · xt

])
t≥0

)
where ν ∈ pch(`∞) such that ‖ν‖ = 1 2.

Proof. It is enough to show that, given x ∈ `∞(S),

inf
t
Et[u(xt)]− inf

t
Et[u(x∗t )] ≤ ν

(
(Et[u

′(x∗t ) · (xt − x∗t )])t≥0
)
.

1Due to the indeterminacy produced by the three assets in the economy, large money holding at t = 0
can prevent short sales also for the Lucas tree.

2The right part of the π is a bounded functional on `∞ due to x≫ 0.
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Given ε > 0, we have, for t1 > 0 large enough,

inf
t
Et[u(xt)]− inf

t
Et[u(x∗t )]− ε < Et1 [u(xt1)]− Et1 [u(x∗t1)] ≤ Et1 [u′(x∗t1) · (xt1 − x∗t1)].

Making t1 →∞, we get inft Et[u(xt)]− inft Et[u(x∗t )]−ε ≤ lim inft Et[u
′(x∗t ) ·(xt−x∗t )].

Now ‖ν‖ = 1 implies ν(z) ≥ lim inf z ∀z ∈ `∞ and ε is arbitrary.

To prove the other part of the lemma, let us use some results of nonsmooth analysis

(see Clarke [1990]) for U(x) = V ◦ φ(x) where φ : `∞(S)→ `∞ and V : `∞ are given by

x 7→ (φt(x))t∈N := (Et [u (xt)])t∈N and y 7→ V (y) :=
∑

t≥1 δtyt + β inft yt.

Since U is concave and Lipschitz3 close to x∗ (since x∗ ≫ 0), we have that ∂cU (x∗) =

∂U (x∗) (see page 36 proposition 2.2.7), where ∂cF (y) is the Clarke subdifferential, see

page 10. Notice that V have also the same property.

And since φ is Lipschitz close to x∗, we have that φ is strictly differentiable (see page

30 proposition 2.2.4). And as a consequence of the Chain Rule (see page 45 proposition

2.3.10), we have that ∂U(x) ⊆ ∂V (φ(x∗)) ◦ φ′(x∗) which concludes the proof.

To proceed with the proof of Theorem 4, let us look first at the case where the

zero-net-supply promises are available. As a preliminary step, we obtain the following

personal taxes:

τ ist(y) =
1

αiβi + γi
max

{
0, lim sup
{{tr}r : limr Etr [ui(xstr )]=inft Et[ui(xst)]}

Et

[
u′i(x

i
t)

(
Qst
(
yst−1

− yst
)

+Rstyst−1

)]
− lim

t

(∑
st

µistQstyst

)}

where αi = lim sup{{tr}r : limr Etr [ui(xstr )]=inft Et[ui(xst)]} Et
[
ui
′ (
xist
)]

, βi = µi1,1Q1,1−

∑
st
µistR1,st , and γi =

∑
sj

∏∞i=j+1

(
1+

R1,si
Q1,si

)
Q1,sj

(
limt→∞

∑
s̃ : s̃
−(t−j)
t =sj

µi1,stQ1,st

).

Under assumption H’2, these taxes can be rewritten in an impersonal way, by an

argument similar to the one used in the proof of Theorem 5.

3In the sup-norm.
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If I.O.U.s were added in order to complete markets, we can define optimality con-

ditions, similarly to Lemma 1, which allow us to define a fiscal policy τ to avoid the

long-run improvement opportunities, under a no short sales constraint on the Lucas

trees.
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