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Abstract

This paper studies the dynamic behaviour of a workhorse New Keynesian model in

which households and firms can be fully rational or internally rational. First, we derive

the model with a fixed proportion n of agents fully rational and a fixed proportion

(1 − n) of agents internally rational, in a similar manner to Massaro (2013). In this

model, we establish two propositions. First, a decrease in the proportion of fully

rational agents does not destabilise the system if the rational expectations determinacy

condition for the monetary rule holds. Second, the rational expectations determinacy

condition is identical to the stability condition for the model in which all agents are

internally rational. We then extend the model to include predictor selection along

the lines of Branch and McGough (2010). In this model, we establish two further

propositions. First, the rational expectations determinacy condition ensures local

determinacy and stability as the cost of being fully rational becomes infinitely negative.

Second, if the model starts from a position of indeterminacy, an increase in the fixed

cost of being fully rational can lead to the loss of local stability via a Hopf bifurcation.

A rational route to randomness follows from this, which we explore numerically. Taken

as a whole, these results indicate that complex dynamics in the internally rational

New Keynesian model are closely associated with monetary policy failures. Finally,

we consider the robustness of our results to changes in the monetary policy rule.
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1 Introduction

This paper constructs and explores the monetary policy consequences of the workhorse

New Keynesian model with bounded rationality and heterogeneous agents. It departs from

existing models of this genre in its approach to bounded rationality and learning. As Graham

(2011) has pointed out, two main approaches to bounded rationality have been made by

the literature to date. The first of these, known as the Euler equation approach, follows the

pioneering work of Evans and Honkapohja (2001), and assumes that agents forecast their

own decisions in future periods. Furthermore, agents know the minimum state variable form

of the equilibrium, and use direct observations or VAR estimates of these states to update

their forecasts each period.

Although the Euler equation approach to bounded rationality responds to what many

regard as an extreme assumption of model consistent expectations, the departure is only a

modest one as agents still need to know the minimum state variable form of the equilib-

rium. Introducing simple behavioural heuristics, as is the case in many agent based models,

addresses this concern. However, this raises a different concern regarding the bounds on

bounded rationality, as agents using simple heuristics may fall considerably short of full

rationality. In particular, behavioural heuristics can depart from rationality in an infinite

number of ways, leading to the “wilderness” of Sargent (1993).

The second approach to bounded rationality, first introduced by Eusepi and Preston

(2011) into an RBC model, assumes that agents are internally rational given their beliefs

over aggregate states and prices. Adam and Marcet (2011) applies this approach to asset-

pricing, Spelta et al. (2012) applies it to a housing pricing model, Woodford (2013) applies

it to a New Keynesian framework, and Adam et al. (2017) applies it to a model of stock

market booms. As with the Euler equation approach, agents cannot form model consistent

expectations. The two approaches then differ with respect to what agents learn about -

their own decisions in the Euler equation approach, and variables exogenous to the agents

in the internal rationality approach.

We adopt a general definition of internal rationality used in Adam and Marcet (2011)

up to the point where they write: “agents maximize utility under uncertainty, given their

constraints and given a consistent set of probability beliefs about payoff-relevant variables

that are beyond their control or external”. Then rational expectations are both internal and

external, the latter meaning model consistent. Within internal rationality beliefs can take

the form of a well-defined probability measure over a stochastic process (the fully Bayesian

plan), or they can adopt an anticipated utility framework of Kreps (1998). Adam and

Marcet (2011) and Adam et al. (2017) adopt the former approach whereas this paper and

the other applications mentioned adopt the latter. Cogley and Sargent (2008) compares the

two and encouragingly find that anticipated utility can be seen as a good approximation to

fully Bayesian optimization (see Branch and McGough (2016) and Deak et al. (2017) for
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further discussion).1

Recently, Branch and McGough (2010), De Grauwe (2012a), De Grauwe (2012b), Jang

and Sacht (2014), and Jang and Sacht (2012), amongst others, have considered models in

which agents can be fully rational or boundedly rational using the Euler equation approach.

In these models, agents choose their behaviour based on the reinforcement learning approach

set out in Young (2004) and pioneered by Brock and Hommes (1997). This approach is

widely used in the machine learning literature, and proposes that the different strategies

available to agents (e.g. full rationality or bounded rationality) have pay-off levels associated

with them. Although adaptation can be slow and there can be a random component of

choice, the higher the pay-off from using a strategy in the past, the more likely it will be

used in the future.

The “behavioural New Keynesian model”, as this approach has come to be known,

incorporates heterogeneity and bounded rationality. In addition, it can generate significantly

non-normal equilibrium distributions, and in some cases deterministic limit cycles. However,

the reliance on the Euler equation approach to bounded rationality is problematic, as agents

forecasting their own decisions does not seem to be empirically plausible. Massaro (2013)

and Eusepi and Preston (2016) provide a good discussion of this issue. The former paper

constructs a model in which agents can be fully rational or internally rational. However,

while internally rational agents choose between competing bounded rational predictors in

this model, the proportion of fully rational agents is fixed.

Given the foregoing, the present paper studies the dynamic behaviour of a workhorse

New Keynesian model in which households and firms can be fully rational or internally

rational. Our major contribution is therefore a reworking of the seminal model of Branch and

McGough (2010) using the more plausible learning equilibrium concept of internal rationality

rather than Euler learning. In section 2, we derive the model with a fixed proportion n of

agents fully rational and a fixed proportion (1−n) of agents internally rational, in a similar

manner to Massaro (2013). In this model, we establish two propositions. First, a decrease

in the proportion of fully rational agents does not destabilise the system if the rational

expectations determinacy condition holds. Second, the rational expectations determinacy

condition is identical to the stability condition for the model in which all agents are internally

rational. In section 3, we extend the model to include predictor selection along the lines of

Branch and McGough (2010). In this model, we establish two further propositions. First,

the rational expectations determinacy condition ensures local determinacy and stability as

the cost of being fully rational becomes infinitely negative. Second, if the model starts from

a position of indeterminacy, an increase in the fixed cost of being fully rational can lead to

the loss of local stability via a Hopf bifurcation. A rational route to randomness follows from

1Sinitskaya and Tesfatsion (2015) introduce forward-looking optimizing agents into an ACE framework.

They use a concept that falls within our general definition of internal rationality which they refer to as

“constructive rational decision making”. Graham (2011) uses the term “individual rationality” to refer to

the same general concept.
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this, in which the dynamics quickly become chaotic (Brock and Hommes (1997)). Taken

as a whole, these results indicate that complex dynamics in the internally rational New

Keynesian model are closely associated with monetary policy failures.

These results rely on a monetary policy rule with no persistence in the interest rate.

This allows us to demonstrate our main results analytically - which we feel is an important

contribution, given that the existing literature relies on numerical results - but implies a

potential loss of generality. Finally, therefore, we consider the robustness of our main results

to monetary policy rules with persistence in Section 4. We demonstrate analytically that

the rational expectations determinacy condition is not identical to the stability condition for

the model in which all agents are internally rational when the interest rate is persistent. In

particular we find that under internal rationality, the policy space of parameters describing

a saddle-path stable interest rate rule is considerably reduced compared with RE. Given

our main results, this suggests that the interaction between changes in the monetary policy

rule, learning, and bounded rationality is an important area for future research. Section 5

concludes.

2 The Linearised Model with n Fixed

In this section, we derive a version of the workhorse New Keynesian model with a fixed

proportion n of agents fully rational and a fixed proportion (1 − n) of agents internally

rational. To provide a useful point of reference, section 2.1 sets out the standard linearised

New Keynesian model with rational expectations, and the determinacy condition for this

model2. Section 2.2 then extends this to incorporate heterogeneity, and section 2.3 estab-

lishes two propositions: First, that a decrease in the proportion of fully rational agents does

not destabilise the system if the rational expectations determinacy condition holds, and

second, that the rational expectations determinacy condition is identical to the stability

condition for the model in which all agents are internally rational.

2.1 The standard linearised New Keynesian model

2.1.1 Households

Households maximise discounted lifetime utility. Let Ct(j) be consumption and Ht(j) be

hours worked of the jth household. The within-period utility function is,

Ut(j) = U(Ct(j), Ht(j)) = log(Ct(j))− κ
Ht(j)

1+φ

1 + φ
, (1)

2The full non-linear model is provided in appendix A.
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and the value function of the representative household at time t is,

Vt(j) = Vt(Bt−1(j)) = Et

[
∞∑
s=0

βsU(Ct+s(j), Ht+s(j))

]
. (2)

The individual household’s problem at time t is to choose paths for consumption Ct(j),

labour supply Ht(j), and holdings of financial assets Bt(j) to maximize Vt(j) given its flow

budget constraint in period t,

Bt(j) = RtBt−1(j) +WtHt(j) + Γt(j)− Ct(j), (3)

where Wt is the wage rate, Γt is distributed profits, and Rt is the ex post real interest rate

paid on assets held at the beginning of period t.

The first order conditions are,

UC,t(j) = βEt [Rt+1UC,t+1(j)] , (4)

UL,t(j)

UC,t(j)
= Wt. (5)

Expressing variables in log deviation from the steady state in lower case, the consumption

Euler equation (4) and the household’s utility function imply that the linearised consumption

decision satisfies a standard linearised Euler equation,

ct(j) = Et [ct+1(j)− rt+1], (6)

where ct is consumption and rt is the ex post real interest rate. An alternative form of the

decision rule, which is useful in deriving the internally rational solution, solves the household

budget constraint forward in time and imposes the Euler and transversality conditions. In

symmetric equilibrium with zero net financial asets, this yields a consumption function for

the representative household of the form,

PVt(Ct) =
1

κ
1
φ

PVt

W 1+ 1
φ

t

C
1
φ

t

+ PVt(Γt). (7)

(7) simply states that the present value of consumption is equal to the present value of total

income, where present value (PVt) is defined in the usual manner. Using exogenous point
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expectations, appendices A and B demonstrate that the linearised consumption function

corresponding to (7) is given by,

α1ct(j) = α2wt + α3(ω2,t + rt) + α4ω1,t, (8)

where,

ω1,t = α5Etwt+1 − α6Etrt+1 + βEtω1,t+1,

ω2,t = (1− β)γt − rt + βEtω2,t+1,

γt =
1

1− α
ct −

α

1− α
(wt + ht).

Consumption is therefore a function of the current wage and profit income, and expected

wage and profit income, where wt is the real wage, ht is labour supply in hours, and γt

is profit per household, all in log deviation from the steady state. The parameters and

composite parameters for the model are defined in table 1.

Finally, under standard assumptions the linearised optimal labour supply of household

j is an intra-temporal decision, given by,

hst(j) =
1

φ
(wt − ct(j)). (9)

2.1.2 Firms

Firms in the retail sector uses a homogeneous wholesale good to produce a basket of differ-

entiated goods for aggregate consumption,

Ct =

(∫ 1

0

Ct(m)(ζ−1)/ζdm

)ζ/(ζ−1)

, (10)

where ζ is the elasticity of substitution. For each m, the consumer chooses Ct(m) at a price

Pt(m) to maximize (10) given total expenditure
∫ 1

0
Pt(m)Ct(m)dm. This results in a set of

consumption demand equations for each differentiated good m with price Pt(m) of the form,

Ct(m) =

(
Pt(m)

Pt

)−ζ
Ct, (11)
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Parameter Definition

α Elasticity of output with respect to labour input (α > 0)

β Representative household discount rate (0 < β < 1)

Υ Fixed cost of rational expectations predictor (−∞ < Υ <∞)

ζ Elasticity of substitution between consumption goods (ζ ≥ 0)

θπ Monetary policy rule elasticity of inflation (θπ ≥ 0)

θy Monetary policy rule elasticity of output (θy ≥ 0)

µ Intensity of choice parameter (−∞ < µ <∞)

ξ Calvo probability that firms change price (0 ≤ ξ ≤ 1)

φ Inverse Frisch elasticity of labour supply (φ > 0)

α1 α1 = 1 + α/φ

α2 α2 = α(1− β) (1 + 1/φ)

α3 α3 = 1− α

α4 α4 = αβ

α5 α5 = (1− β) (1 + 1/φ)

α6 α6 = 1 + 1/φ

δ δ = (1− ξ)(1− βξ)−1

κ κ = (1− ξ)(1− βξ)(1 + φ)(αξ)−1

ψ ψ = (1− βξ)−1

A A = (θπκ− θπκψ)(βθy)
−1

B B = (θy + θπκψ)(βθy)
−1

C C = (κ− δβθy − κψ)(βθy)
−1

D D = (δβθy + κψ)(βθy)
−1

Table 1: Parameters, parameter definitions, and composite parameter definitions.
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implying,

Yt(m) =

(
Pt(m)

Pt

)−ζ
Yt, (12)

where Pt =
[∫ 1

0
Pt(m)1−ζdm

] 1
1−ζ

is the aggregate price index, and Ct and Pt are Dixit-Stigliz

aggregates - see Dixit and Stiglitz (1977).

For each variety m the retail good is produced costlessly from wholesale production

Yt(m) = Y W
t = AtHt(m)α. (13)

Following Calvo (1983), we now assume that there is a probability of 1−ξ at each period that

the price of each retail good m is set optimally to P 0
t (m). If the price is not re-optimized,

then it is held fixed.3 For each retail producer m, given its real marginal cost MCt, the

objective is at time t to choose {P 0
t (m)} to maximize discounted profits,

Et
∞∑
k=0

ξkΛt,t+kYt+k(m)
[
P 0
t (m)− Pt+kMCt+k

]
, (14)

subject to (12), where Λt,t+k ≡ βk
UC,t+k/Pt+k
UC,t/Pt

is the nominal stochastic discount factor over

the interval [t, t+ k]. The solution to this is,

Et
∞∑
k=0

ξkΛt,t+kYt+k(m)

[
P 0
t (m)− 1

(1− 1/ζ)
Pt+kMCt+k

]
= 0, (15)

and by the law of large numbers the evolution of the price index is given by,

P 1−ζ
t+1 = ξP 1−ζ

t + (1− ξ)(P 0
t+1)1−ζ . (16)

In a zero-inflation steady state, it is shown in appendices A and B that the linear choice for

the optimizing retail firm m given the above can be written as,

pot (m)− pt = ω4,t − ω3,t, (17)

where pot (m) is the optimal price for firm m, pt is the aggregate price level, and,

3Thus we can interpret 1
1−ξ as the average duration for which prices are left unchanged.
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ω3,t = ξβEt+1 [(ζ − 1)πt+1 + ω3,t+1] + (1− βξ)(yt + uC,t),

ω4,t = ξβEt+1 [ζπt+1 + ω4,t+1] + (1− βξ)(yt + uC,t +mct +mst),

where πt is the aggregate inflation rate, yt is aggregate output, uC,t is household marginal

utility, mct is marginal cost, and mst is an exogenous supply shock. Substituting ω3,t and

ω4,t into (17), we have,

pot (m)− pt = βξEt[πt+1 + pot+1(m)− pt+1] + (1− βξ)(mct +mst). (18)

Finally, for the wholesale sector we have,

yt = αhdt , (19)

mct = wt − yt + hdt , (20)

where hdt is labour demand. Note that labour productivity is assumed to be constant.

2.1.3 Aggregation

Assuming a unit measure of households and retail firms, aggregation entails,

ct(j) = ct, (21)

hst(j) = hst , (22)

pot (m) = pot , (23)

ξπt = (1− ξ)(pot − pt). (24)

8



2.1.4 Equilibrium, the Fisher equation, and the policy rule

Equilibrium in the output and labour markets requires,

yt = ct, (25)

hst = hdt = ht. (26)

The model is completed with a Fisher equation,

rt = rn,t−1 − πt, (27)

where rn,t is the nominal interest rate, and a policy rule of the form,

rn,t = θππt + θyyt. (28)

In this simple model, we confine our attention to implementable policy rules with no per-

sistence in the interest rate, as this simplifies the analysis considerably. As noted in the

introduction, we consider monetary policy rules with persistence in section 4. In addition,

we only specify a single shock process (the supply shock mst), as we mainly focus on deter-

minacy and stability conditions in the sequel. All variables are expressed in log-deviations

from the steady-state, with the linearisation details presented in appendix B.

2.1.5 Reduced form

Imposing the aggregation conditions, we arrive at the familiar linearised New Keynesian

Phillips curve,

πt = βEtπt+1 +
(1− ξ)(1− βξ)

ξ
(mct +mst), (29)

which, on substituting mct = (1 +φ)yt/α, gives (31) with κ defined in table 1. We therefore

arrive at the workhorse New Keynesian three equation model,

yt = Etyt+1 − (rn,t − Etπt+1), (30)

πt = βEtπt+1 + κyt + κmst, (31)

9



rn,t = θππt + θyyt. (32)

Before presenting the determinacy condition, two points about this formulation need to

be made. First, there is no lagged output in the demand curve (30), nor lagged inflation

in the Phillips curve (31). These can enter through the introduction of external habit in

households’ utility functions and price indexing, respectively. But we choose to focus on

bounded rationality as a persistence mechanism, so both of these features are omitted.

Second, even without these persistence terms, the linearisation is only correct about a zero

inflation steady state.

2.1.6 Determinacy and stability condition

To find the determinacy and stability condition for the rational expectations model in (30)

- (32), we write the model in state space form, setting mst = 0 and substituting out rn,t

from (30) using (32). We then have,

 Etyt+1

Etπt+1

 =

 1 + θy + κ/β θπ − 1/β

−κ/β 1/β


 yt

πt

 . (33)

Denote the trace of the system in (33) by τ , and the determinant by ∆. We then have,

τ = 1 + θy + κ/β + 1/β,

∆ =
1 + θy + κθπ

β
.

For stability, we simply require a stable shock process mst. For determinacy, we require

that both of the eigenvalues of the system in (33) lie outside the unit circle, as both yt and

πt are jump variables (Blanchard and Kahn (1980)). Necessary and sufficient conditions are

(Woodford (2003)),

1. ∆ > 1,

2. 1− τ + ∆ > 0,

3. 1 + τ + ∆ > 0.

10



As β < 1 and θy + κθπ > 0, condition 1 is always satisfied, and the binding condition is

condition 2. Substituting in the trace and determinant, we arrive at the familiar condition,

θπ +

(
1− β
κ

)
θy > 1. (34)

2.2 The New Keynesian model with internal rationality

We now extend the basic model set out in section 2.1 to include both internally rational

and fully rational households and firms. This allows us to demonstrate our first and second

propositions in section 2.3, and forms the basis of the model with reinforcement learning in

section 3.

2.2.1 Households

We now distinguish between the consumption of fully rational households, cREt , and inter-

nally rational households, cIRt . The consumption of fully rational households is pinned down

by the rational expectations Euler equation as before,

cREt = Et [cREt+1 − rt+1], (35)

where we now omit the household index variable for simplicity (and hopefully without

causing confusion). With Euler learning, the consumption of bounded rational households

would be pinned down by the Euler equation,

cELt = E∗t [cELt+1 − rt+1],

where E∗t denotes a bounded rational (backwards looking) expectations operator. Hence

households base their consumption decisions on forecasts of the same decision in future

periods, which for the reasons given in the introduction we regard as unsatisfactory.

Instead of Euler learning, the consumption function for internally rational households is

as follows,

α1c
IR
t = α2wt + α3(ω2,t + rn,t−1 − πt) + α4ω1,t, (36)

with,

11



ω1,t =
1

1− β
[
α5E∗twt+1 + α6E∗h,tπt+1

]
− α6

(
rn,t +

β

1− β
E∗t rn,t+1

)
,

ω2,t = (1− β)γIRt + βE∗tγIRt+1 −
(
rn,t−1 + βrn,t +

β2

1− β
E∗t rn,t+1

)
+ πt +

(
β

1− β

)
E∗h,tπt+1,

where the budget constraint is iterated forward in time and the Euler and transversality

conditions imposed, as in (8) above, but with bounded rational expectations. Hence in-

ternally rational households base their consumption decisions on forecasts of the variables

exogenous to them - wages, profits, interest rates, and inflation rates.

The internally rational consumption function in (36) is very similar to the rational ex-

pectations consumption function in (8), but is somewhat more complicated as we assume

that internally rational households do not know that they are identical (as explained in

appendices A and B). More importantly, as there are now two types of household, we have

to differentiate between the profit flows accruing to internally and fully rational households.

In the general case, with a fully specified market for the ownership of firms, an individ-

ual household’s profit earnings would depend on their entire history of strategy choice over

fully rational and internally rational behaviour, leading to a complicated distribution over

households. To avoid this - and ensure tractability - Massaro (2013) assumes that profit

is distributed equally across households. We take a different approach, and assume that

profits accrue to households in proportion to their economic activity, i.e.,

γREt =
1

1− α
cREt −

α

1− α
(wt + hREt ), (37)

γIRt =
1

1− α
cIRt −

α

1− α
(wt + hIRt ). (38)

This assumption is obviously artificial, but arguably less so than assuming equal distribution,

and also ensures γt = nγREt + (1− n)γIRt in each period, where n is the proportion of fully

rational agents. Equally importantly, it allows us to derive particularly straightforward

analytical expressions of the model’s reduced form below.

As in section 2.1.1 above, optimal labour supply is an intra-temporal decision, so we

have,

hs,REt =
1

φ

(
wt − cREt

)
, (39)

hs,IRt =
1

φ

(
wt − cIRt

)
, (40)

where hs,REt is the labour supply of fully rational households, and hs,IRt is the labour supply

of internally rational households.

12



2.2.2 Firms

Following (18) in section 2.1.2, optimal price setting for the internally rational retail firms

is given by,

(pot − pt)IR = βξE∗t [πt+1 + (pot+1 − pt+1)IR] + (1− βξ)(mct +mst). (41)

If firms know they are identical, they can use the aggregate relationship, pot+1 − pt+1 =

pot+1 − pt+1 = ξ
1−ξπt+1, and arrive at,

(pot − pt)IR =
βξ

1− ξ
E∗tπt+1 + (1− βξ)(mct +mst),

as for RE. But we avoid this assumption and use (41). Solving forwards, this yields,

(pot − pt)IR = E∗t
∞∑
i=0

(βξ)i[βξπt+i+1 + (1− βξ)(mct+i +mst+i)]. (42)

Note internal rationality for retail firms is somewhat more straightforward than for house-

holds, as the rational expectations solution is already in recursive form and there is no retail

firm budget constraint.

2.2.3 Aggregation

Without loss in generality (for reasons given in section 2.2.6), suppose that the proportion

n of fully rational households in the economy is equal to the proportion of fully rational

firms. Assuming a unit measure of households, aggregation entails,

ncREt + (1− n)cIRt = ct, (43)

nhs,REt + (1− n)hs,IRt = hst , (44)

n(pot − pt)RE + (1− n)(pot − pt)IR = pot − pt, (45)

ξπt = (1− ξ)(pot − pt). (46)
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2.2.4 Equilibrium, the Fisher equation, and the policy rule

The equilibrium conditions, Fisher equation, and the monetary policy rule are exactly the

same as in the basic rational expectations model, i.e. (25) - (28).

2.2.5 Expectation formation of internally rational agents

To close the model, we need to specify the manner in which internally rational households

and firms form their expectations. To do so, we assume that variables which are local to

the agents, in a geographical sense, are observable within the period, whereas variables that

are strictly macroeconomic are only observable with a lag. This categorization regarding

information about the current state of the economy follows Nimark (2014). He distinguishes

between the local information that agents acquire directly through their interactions in

markets and statistics that are collected and summarised, usually by governments, and made

available to the wider public4. The only exception to this is the nominal interest rate, which

we assume is observable within the period given the timing structure of New Keynesian

models. Given this, we assume a strict form of naive expectations. Thus internally rational

household expectations are given by,

E∗twt+1 = wt, (47)

E∗tγt+1 = γt, (48)

E∗t rn,t+1 = rn,t, (49)

E∗tπt+1 = πt−1. (50)

Internally rational households can observe their wage and profit income within the period,

and observe aggregate inflation with a lag. Similarly, internally rational firm expectations

are given by,

E∗f,tπt+1 = πt−1, (51)

E∗tmct+1 = mct. (52)

4His paper actually focuses on a third category, information provided by the news media, and allows for

imperfect information in the form of noisy signals, issues which go beyond the scope of our paper.
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Internally rational firms can observe their own marginal costs within the period, but in

a similar manner to internally rational households, can only observe aggregate inflation

with a lag. Note that firms observing their real marginal costs within the period - and

households observing their real wage and profits within the period - does not imply that

firms and households observe the aggregate price level within the period (as this would be

inconsistent with the assumption that aggregate inflation is observed with a lag). As noted

in the discussion around the derivation of (42) above, we assume that firms do not know that

they are identical. In this case, they observe their own price within the period, and therefore

their own real marginal costs and real profits, but not the aggregate price level. Similarly, we

assume that households observe prices local to them within the period, and therefore their

own real wage. However, they do not realise that the law of one price holds, and therefore

do not observe the aggregate price level or aggregate inflation. This is reasonable given

the considerable data-gathering costs of observing aggregate macroeconomic variables like

inflation, as discussed in Nimark (2014). Note, however, that fully rational agents observe all

variables within the period. Also note that we retain the Taylor rule (32) and assume that

the central bank observes current inflation and output, thus having the same information

advantage as rational agents.

2.2.6 Reduced form

Sections 2.2.1 - 2.2.5 fully describe the New Keynesian model with fixed proportions n

of fully rational agents and (1 − n) of internally rational agents. Deriving the reduced

form is relatively straightforward. First, by rearranging the internally rational household

consumption function (36) after substituting in the expectations functions (47) - (50), we

find that internally rational households choose their level of consumption such that,

rn,t = πt−1, (53)

in each period. Combining (53) with the monetary policy rule (28), we see that,

yt = −
(
θπ
θy

)
πt +

(
1

θy

)
πt−1, (54)

which greatly simplifies the analysis, as we will not need to track output as a separate state

variable. In fact, as (54) means that we do not have to separately track the consumption

levels of fully rational and internally rational households in the state space form, it is this

result that allows us to derive analytical stability conditions in the sequel. Also note that

(54) means that the proportion of fully rational households does not affect the equation of
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motion for yt, which allows us to assume that the proportion of fully rational households is

equal to the proportion of fully rational firms without loss of generality.

Using the aggregation conditions (45) and (46), and the price setting conditions (41) and

(42), we can derive the reduced form New Keynesian Phillips curve with fully rational and

internally rational firms,

πt = n(βEtπt+1 + κyt) + (1− n)(δβπt−1 + κψyt), (55)

where the shocks process mst is set equal to zero, mct = yt(1 + φ)/α, and the composite

parameters κ, δ, and ψ are defined in table 1. Finally, by substituting the equation of motion

for output (54) into the New Keynesian Phillips curve (55) and rearranging, we arrive at

the reduced form model,

Etπt+1 =

(
A+

B

n

)
πt −

(
C +

D

n

)
πt−1, (56)

where the composite parameters are defined in table 1.

2.3 State space form and stability

The New Keynesian model with fixed proportions n of fully rational agents and (1 − n)

of internally rational agents, has a reduced form (56) described by a second order forward

looking difference equation in inflation. Define the auxiliary variable zt = πt−1. Then the

state space form of our model is given by,

 Etπt+1

zt+1

 =

 A+B/n −(C +D/n)

1 0


 πt

zt

 , (57)

where πt is a jump variable and zt is a pre-determined variable. We are now in a position

to demonstrate our first and second propositions:

Proposition 1: Determinacy and stability in the model described by (57) requires one

eigenvalue inside the unit circle and one eigenvalue outside the unit circle (Blanchard and

Kahn (1980)). If the monetary policy rule is such that the condition in (34) holds, then a

decrease in n does not lead to a loss of determinacy or stability.

Proof: Denote the trace of the system in (57) by τ = A + B/n and the determinant by

∆ = C + D/n. As τ is positive, necessary and sufficient conditions for determinacy and

stability in the model described by (57) are,
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1. τ −∆ > 1,

2. τ + ∆ > −1.

As ∆ is positive, condition 1 is the binding condition. Now, suppose that n = 1 and

condition 1 is satisfied, so the model is determinate and stable. A necessary condition for a

decrease in n to render the model indeterminant or unstable is then,

d

dn
(τ −∆) > 0, (58)

as τ−∆ would have to pass through unity from above for the model to pass from determinacy

and stability to indeterminacy or instability as n decreases.

To prove proposition 1, we first demonstrate that (58) does not hold if (34) holds. From

(57), we have,

d

dn
(τ −∆) = (D −B)n−2.

Taking advantage of the definitions of B and D in table 1, after some rearranging we have,

d

dn
(τ −∆) =

[
θy(δβ − 1)− κψ(θπ − 1)

βθy

]
n−2. (59)

At this point, we assume that (34) holds as a strict inequality. Specifically, we assume that

the parameterisation satisfies,

θπ = 1−
(

1− β
κ

θy

)
+ ε, (60)

where ε is an arbitrarily small but positive constant. Substituting (60) into (59) and rear-

ranging, we find that,

d

dn
(τ −∆) = (D −B)n−2 = −

[
κψε

βθy

]
n−2. (61)

At n = 1, we therefore have,

d

dn
(τ −∆)

∣∣∣∣
n=1

= D −B = −κψε
βθy

.
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Figure 1: Graphical illustration of proposition 1, showing a stability plot in the trace τ

and determinant ∆ for a second order difference equation when τ > 0 and ∆ > 0. At point

P, which lies within the saddle path stable region (i.e. it satisfies τ −∆ > 1), a decrease in

n moves the model to P′ or P′′ if ∂τ
∂(−n)

< ∂∆
∂(−n)

, or to P ′′′ if ∂τ
∂(−n)

> ∂∆
∂(−n)

. Thus a decrease

in n moves the model to P′ or P′′ if ∂τ
∂n
> ∂∆

∂n
, or to P ′′′ if ∂τ

∂n
< ∂∆

∂n
, as in (58).

As κ and ψ are both positive (see table 1), (61) implies that (58) cannot hold if (34)

holds. Finally, as (61) implies D < B when (34) holds, (τ − ∆) → ∞ as n → 0 from

n = 1. Therefore, if the condition in (34) holds, a decrease in n does not lead to a loss of

determinacy or stability in the model described by (57). This illustrated graphically in figure

1, which shows the standard stability plot in the trace and determinant for a second order

difference equation when both the trace and determinant are positive (see e.g. Hamilton

(1994), chapter 1). �

Proposition 2: The rational expectations determinacy condition in (34) is identical to the

stability condition for (56) when n = 0, i.e. when all agents are internally rational.

Proof: From (55), the reduced form model for the case in which n = 0 is given by,

πt = δβπt−1 + κψyt. (62)

Substituting out yt using (54), we have the reduced form,

πt =

(
δβθy + ψκ

θy + ψκθπ

)
πt−1, (63)
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Figure 2: Impulse response functions of inflation to a positive marginal cost shock, for the

model with n fixed, for three different values of n. The remaining parameter values are

φ = 1, α = 0.5, β = 0.99, ξ = 0.7, θπ = 1, θy = 0.8.

which can also be found by rearranging (56). The model in (63) is stable when the coefficient

on πt−1 is less than one in absolute value. As the coefficient will be positive given the

parameter definitions in table 1, this is the case when,

δβθy + ψκ

θy + ψκθπ
< 1. (64)

Rearranging, and taking advantage of the parameter definitions, we arrive at a stability

condition identical to (34). Therefore, the rational expectations determinacy condition in

(34) is identical to the stability condition for (56) when all agents are internally rational. �

2.4 Dynamic behaviour of the model with n fixed

Section 2.3 demonstrates that a decrease in n does not lead to a loss of determinacy and

stability if the rational expectations determinacy condition for the monetary rule holds, and
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that the rational expectations determinacy condition is identical to the stability condition

for the model in which all agents are internally rational. However, the dynamics of the

model will vary with n, as the magnitude of the eigenvalues will change as n changes.

This is illustrated in figure 2, which plots impulse response functions of inflation in

response to an ms shock with n = 0.2, n = 0.8, and n = 0.9. The remaining parameter

values are φ = 1, α = 0.5, β = 0.99, ξ = 0.7, θπ = 1, θy = 0.8, such that the condition in

(34) holds, and the marginal cost shock has no persistence. Although the determinacy and

stability properties of the model are unaffected by a reduction in n, given that (34) holds,

the response of the model to shocks becomes increasingly persistent as the proportion of

fully rational agents decreases.

3 The Model with n Variable

In section 2, we demonstrated our first and second propositions. In this section, we extend

the analysis to allow n to vary. Following the literature, we assume that n varies according to

a reinforcement learning mechanism laid out in section 3.1. We then derive the reduced form

in section 3.2, and consider the state space form and local stability conditions in section

3.3. We establish our third and fourth propositions in this section. First, the rational

expectations determinacy condition ensures local determinacy and stability as the cost of

being fully rational becomes infinitely negative. Second, if the model starts from a position

of indeterminacy, an increase in the fixed cost of being fully rational can lead to the loss

of local stability via a Hopf bifurcation. This Hopf bifurcation appears to be super-critical,

giving rise to stable limit cycles. As the speed at which agents learn increases, a rational

route to randomness appears to follow, which we explore with numerical methods in section

3.4.

3.1 Reinforcement learning and predictor fitness

We now extend the model to allow n to vary with the perceived relative forecasting strength

of the fully rational and internally rational predictors. Following Branch and McGough

(2010) and the literature described in the introduction, denote the fitness of the rational

expectations predictor by vREt , and the fitness of the internally rational (naive expectations)

predictor by vIRt . Then the proportion of fully rational agents at any point in time is given

by,

nt =
exp[µvREt ]

exp[µvREt ] + exp[µvIRt ]
. (65)
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The parameter µ in (65) is referred to as the intensity of choice parameter, as a higher µ

increases the rate at which agents choose strategies with a high fitness level. In this sense,

µ governs the speed of learning.

Denote the perceived mean squared error of the internally rational predictor by Φt, and

define it as follows,

Φt = (πt − E∗t−1[πt])
2 = (πt − πt−2)2. (66)

If - as we will do in the sequel - we consider a deterministic economy, the mean squared

error of the fully rational predictor is zero, as rational expectations is equivalent to perfect

foresight in this context. Finally, and in accordance with the literature, we define the fitness

measures as follows,

vREt = −Υ, (67)

vIRt = −Φt, (68)

where Υ is a fixed cost of using the fully rational predictor. The internally rational predictor

is then fit relative to the fully rational predictor when the mean squared error falls below

the fixed cost of being fully rational.

3.2 Reduced form

Sections 2.2.1 - 2.2.5, extended to allow n to vary with the equations set out in section 3.1,

fully describe the New Keynesian model with fully rational and internally rational agents,

where the proportion n of fully rational agents varies over time according to the perceived

relative fitness of the two strategies. By substituting (66) - (68) into (65), we find that,

nt =
exp[−µΥ]

exp[−µΥ] + exp[−µΦt]
,

⇒ nt =
exp[−µΥ]

exp[−µΥ] + exp[−µ(πt − πt−2)2]
. (69)

Thus, as the squared difference in inflation, which corresponds to the perceived mean squared

error of the internally rational predictor, falls below the fixed cost, Υ, of being fully rational,

agents move towards being internally rational and n falls. The speed of this process is

determined by the intensity parameter µ. Note that (69) implies,

21



n−1
t = 1 + exp[−µ((πt − πt−2)2 −Υ)]. (70)

As we have changed nothing in the original model other than allowing n to vary, the original

reduced form (56) becomes,

Etπt+1 =

(
A+

B

nt

)
πt −

(
C +

D

nt

)
πt−1, (71)

with A, B, C, and D defined as before. Finally, substituting (70) into (71), we arrive at the

reduced form New Keynesian model with n variable,

Etπt+1 =
[
A+B

(
1 + e−µ((πt−πt−2)2−Υ)

)]
πt −

[
C +D

(
1 + e−µ((πt−πt−2)2−Υ)

)]
πt−1. (72)

The reduced form (72) is a highly non-linear third order difference equation. The state

space form, which we turn to next, simplifies the expression somewhat and allows analytical

stability conditions to be derived.

3.3 State space form and stability

As before, define the auxiliary variable zt = πt−1, and define a second auxiliary variable

zzt = zt−1 = πt−2. Then the state space form of the model in (72) is given by,


Etπt+1

zt+1

zzt+1

 =


A+B

(
1 + e−µ((πt−zzt)2−Υ)

)
−
[
C +D

(
1 + e−µ((πt−zzt)2−Υ)

)]
0

1 0 0

0 1 0




πt

zt

zzt

 ,

where πt is a jump variable and zt and zzt are pre-determined variables. In the steady state,

πt = zt = zzt = 0, and n−1
t = (1 + eµΥ)−1. Therefore, the Jacobian matrix J evaluated at

the steady state is as follows:

J |πt=zt=zzt=0 =


A+B

(
1 + eµΥ

)
−
[
C +D

(
1 + eµΥ

)]
0

1 0 0

0 1 0

 . (73)
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For local determinacy and stability we require two eigenvalues of the Jacobian matrix (73)

inside the unit circle, and one eigenvalue outside. Local indeterminacy occurs when all

eigenvalues of the Jacobian matrix (73) are inside the unit circle. If a pair of eigenvalues

are complex conjugates, as they pass through the unit circle a Hopf (or Neimark-Sacker)

bifurcation occurs (see e.g. Hommes (2013), chapter 3). Proposition 3 considers the case of

local determinacy and stability, and proposition 4 considers the case of local indeterminacy

and Hopf bifurcation.

Proposition 3: Local determinacy and stability in the model described by (72) requires

two eigenvalues inside the unit circle and one eigenvalue outside the unit circle (Blanchard

and Kahn (1980)). As the cost of being fully rational becomes infinitely negative, the

local determinacy and stability condition is equal to the rational expectations determinacy

condition in (34).

Proof: In the steady state, πt = zt = zzt = 0, and nt =
(
1 + eµΥ

)−1
. Therefore, as

Υ → −∞, the steady state proportion of fully rational agents goes to unity. In this case,

the condition in (34) ensures local determinacy and stability. �

Proposition 4: Local indeterminacy and stability in the model described by (72) requires

all eigenvalues inside the unit circle. In this case, an increase in Υ can lead to a loss of local

stability via a Hopf bifurcation.

Proof: First, write our system as xt+1 = F (xt, ϕ), xt ∈ Rn, and ϕ ∈ R is a parameter.

Following Iooss et al. (1981) and Gabisch and Lorenz (1987), we have the following theorem:

Hopf: Let the mapping xt+1 = F (xt, ϕ), xt ∈ Rn, ϕ ∈ R, have a fixed point

at the origin. If there is a ϕ0 such that the Jacobian matrix evaluated at the

origin has a pair of complex conjugate eigenvalues λ1,2 which lie on the unit

circle, while the remainder of its spectrum lies at a non-zero distance from the

unit circle, and the Hopf transversality condition holds, i.e.

d(modλ(ϕ))

dϕ
> 0,

then if λn(ϕ0) 6= ±1 for n = 1, 2, 3, 4, there is an invariant closed curve bifur-

cating from ϕ = ϕ0. So, as a parameter ϕ is varied, a stable fixed point loses

stability as a pair of complex conjugate eigenvalues crosses the unit circle5.

Denote the trace of the Jacobian in (73) by τ = A+B(1 + eµΥ). By inspection, the matrix

is non-invertible, so the determinant ∆ = 0, and at least one eigenvalue is equal to zero. In

fact, the eigenvalues of (73) are given by,

5This wording largely follows Iooss et al. (1981), although it has been altered slightly to fit with the

notation of the present paper. Gabisch and Lorenz (1987: 161) considers the case of xt+1 = F (xt, ϕ),

xt ∈ R2.
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Figure 3: Graphical illustration of proposition 4, showing a stability plot in the trace τ

and pseudo-determinant ∆0 for the model in (72). Note this looks exactly the same as the

stability plot in figure 1, as the linearised model is effectively a second order difference

equation in πt and zt, but we have now shaded the region of complex conjugate eigenvalues

with grey lines. As the model moves from points P to P′, as Υ is increased, a Hopf

bifurcation takes place.

λ1,2 = τ/2±
√
τ 2/4−∆0, λ3 = 0,

where ∆0 = C +D(1 + eµΥ) is the pseudo-determinant of (73), i.e. the product of the non-

zero eigenvalues. When ∆0 > τ 2/4 and the non-zero eigenvalues are complex conjugate,

let λ1,2 = β1 ± β2i, where β1 = τ/2 and β2 =
√

∆0 − τ 2/4. The modulus of the complex

conjugate eigenvalues is then:

mod(λ1,2) =
√
β2

1 + β2
2 ,

from which it follows that mod(λ1,2) =
√

∆0. As the remaining eigenvalue λ3 = 0, we require

∆0 to equal unity for a Hopf bifurcation to occur.

Now, as ∆0 = C +D(1 + eµΥ), mod(λ1,2) = 1 when,

C +D(1 + eµΥ) = 1. (74)

Taking advantage of the parameter definitions in table 1 and re-arranging, this condition

reduces to,
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Figure 4: Phase plot of inflation with n variable, illustrating a stable limit cycle. The

parameter values are φ = 2, α = 0.7, β = 0.99, ξ = 0.75, θπ = 0.9, θy = 1, µ = 0.1,

Υ = −10.

µΥ = ln

[
βθy − κ
δβθy + κψ

]
. (75)

As the right hand side of (75) is finite, as Υ → ∞, ∆0 will pass through unity from below

if it starts from a parameterisation in which ∆0 < 1. Precisely, we have,

d(modλ2,3(Υ))

dΥ
=
d
√

∆0

dΥ
> 0.

Therefore, if the non-zero eigenvalues are complex conjugate as ∆0 passes through unity,

then the model undergoes a Hopf bifurcation. This is illustrated graphically in figure 3,

which presents the same stability plot as in figure 1, as the model in (72) linearised is

effectively a second order difference equation, but with the region of complex conjugate

eigenvalues highlighted. �
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Figure 5: Simulated trajectories for various values of µ, illustrating the rational route to

randomness. The remaining parameter values are φ = 2, α = 0.7, β = 0.99, ξ = 0.75,

θπ = 0.3, θy = 1, Υ = 0.1.

3.4 Rational route to randomness

Section 3.3 demonstrates that an increase in the fixed cost of being fully rational can lead to

the loss of local stability via a Hopf bifurcation if the model starts from a position of local

indeterminacy. The existence of limit cycles therefore depends on the underlying parame-

terisation, and in particular the choice of Υ. Figure 4 presents a plot of a single simulated

trajectory of the model in (72), numerically demonstrating the existence of a stable limit

cycle in the inflation rate. The underlying parameterisation is the same parameterisation

used in the rest of the paper, and is a fairly standard prior for the basic New Keynesian

model.

The existence of a Hopf bifurcation and stable limit cycles indicate the possibility of a

rational route to randomness. Following Brock and Hommes (1997), this is a bifurcation

route to instability, cycles, and chaos as the intensity of choice parameter (speed of learn-

ing) increases. Mathematically, this route to chaos is associated with the emergence of a

homoclinic loop, as the equilibrium becomes a saddle-focus with one stable and two unstable

eigenvalues after the Hopf bifurcation, associated with a one dimensional stable manifold

26



Figure 6: Simulated trajectories for various values of µ, illustrating the rational route to

randomness. The remaining parameter values are φ = 2, α = 0.7, β = 0.99, ξ = 0.75,

θπ = 0.3, θy = 1, Υ = 0.1.

and a two dimensional unstable manifold, respectively.

Retaining the same underlying parameterisation, and setting Υ = 0.1, figures 5 and 6 plot

several trajectories as µ increases. As is evident from the plots, the stable limit cycle quickly

loses its smoothness as µ increases, and then varies between periodic attractors and strange

attractors. This evolution is not dissimilar to the evolution in the Henon-like map discussed

in Gonchenko et al. (2014), in which simple Shilnikov scenarios in three dimensional maps

are discussed in some detail. Finally, figure 7 plots a bifurcation diagram as µ is increased,

and the simulated largest Lyapunov exponents for the model over the same range of µ. Both

panels in figure 7 are plotted using the software E&F Chaos - see Diks et al. (2008).

The bifurcation diagram is constructed by simulating the model for T periods, k times

for k different values of µ equally spaced between 1 and 3. For each of the k values of

µ, this yields T different simulated values of inflation which are plotted on the vertical

axis (although a long burn-in period for each simulation ensures that the simulated values

of inflation constitute the fixed point(s) for the system). The Lyapunov exponents are

simulated, and measure the average rate of separation of a trajectory before and after a small

perturbation. As a positive Lyapunov exponent is an important indicator of chaos, we can
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Figure 7: Panel A: Bifurcation plot of the orbit of inflation against µ. Panel B: Largest

Lyapunov exponent against µ. The parameter values are φ = 2, α = 0.7, β = 0.99,

ξ = 0.75, θπ = 0.3, θy = 1, Υ = 0.1.

state with some confidence that the model in (72) displays a rational route to randomness.

Finally, although an analytical proof of the existence of a homoclinic loop is not forth-

coming, there exist parameterisations in which near-homoclinic trajectories are particularly

apparent in numerical simulation. Figure 8 presents an example of this, and plots the phase

diagram in two dimensions and three dimensions. The plotted trajectory starts very close

to the steady state, and spirals away from it across the unstable manifold. Throughout this

process the proportion of internally rational agents fluctuates with the fluctuations in infla-

tion. As the trajectory gets further from the steady state, it becomes increasingly difficult to

forecast, leading to agents shifting away from the internally rational predictor towards the

rational expectations predictor for longer periods of time. At this point the model stabilises,

and re-approaches the steady state down the stable manifold. The corresponding time series

of inflation and n, the proportion of rational firms, are plotted in figure 9, which illustrates

this dynamic from a different perspective. This dynamic is common to models of this form,

in which agents shift between destabilising bounded rational predictors and stabilising fully

rational predictors, following Brock and Hommes (1997).
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Figure 8: Trajectories in two and three dimensions, respectively, of the first 103 iterations

of the model in which µ = 1 and Υ = 0. The remaining parameterisation is φ = 2, α = 0.7,

β = 0.99, ξ = 0.75, θπ = 0.3, θy = 1.

4 Robustness to Monetary Policy Rules with Persistence

In sections 2 and 3, we demonstrate four propositions. First, with n fixed, we demonstrate

that a decrease in the proportion of fully rational agents does not destabilise the system

if the rational expectations determinacy conditions holds. Second, the rational expecta-

tions determinacy condition is identical to the stability condition for the model in which

all agents are internally rational in this model. Third, with n variable, that the rational

expectations determinacy condition ensures local determinacy and stability as the cost of

being fully rational becomes infinitely negative. Fourth, if this model starts from a position

of indeterminacy, an increase in the fixed cost of being fully rational can lead to the loss of

local stability via a Hopf bifurcation.

These are analytical results, which have been achieved by imposing some relatively re-

strictive assumptions. Arguably the most important of these is the lack of persistence is

the policy rule (28). In this final section, we relax this assumption in order to check the

robustness of our results in sections 2 and 3, and suggest a fruitful line of future enquiry.
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Figure 9: Trajectories, respectively, of the first iterations 10 to 140 of the model in which

µ = 1 and Υ = 0. The remaining parameterisation is φ = 2, α = 0.7, β = 0.99, ξ = 0.75,

θπ = 0.3, θy = 1.

Specifically, we generalise the monetary policy rule to the standard rule with persistence,

rn,t = ρrrn,t−1 + (1− ρr)(θππt + θyyt), (76)

where ρr ∈ (0, 1].

For the case of pure rational expectations, with n fixed and equal to 1, the policy space

for the rule in (76) is given by,

θπ +
1− β
κ

θy > 1− ρr, (77)

which is a result obtained in Woodford (2003), appendix C.

For the case of pure internal rationality, with n fixed and equal to 0, using the monetary

policy rule (76) leads to a second order generalisation of the model in (63),
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πt =

[
ψκ+ (1− ρr)δβθy

(1− ρr)(θy + ψκθπ)

]
πt−1 −

[
ρr

(1− ρr)(θy + ψκθπ)

]
πt−2. (78)

Using zt = πt−1 as before, we can re-write the model in (78) as,

 πt

zt

 =


ψκ+ (1− ρr)δβθy

(1− ρr)(θy + ψκθπ)
− ρr

(1− ρr)(θy + ψκθπ)

1 0


 πt−1

zt−1

 . (79)

Denoting the trace of the model in (79) by τ and the determinant by ∆, necessary and

sufficient conditions for stability are (also see Section 2.1.6),

1. ∆ < 1,

2. 1− τ + ∆ > 0,

3. 1 + τ + ∆ > 0.

As τ and ∆ are both positive the third condition is not binding, and for ρr < 1 condition 3

yields the familiar condition θπ + 1−β
κ
θy > 1. But condition 1 adds a further restriction on

persistence in the monetary policy rule, given by,

ρr <
θπψκ

θy + ψκ(1 + θπ)
. (80)

Thus we have our fifth and final result:

Proposition 5: With persistence in the interest rate, the policy space (θπ, θy) under rational

expectations is increased to θπ + 1−β
κ
θy > 1− ρr. Under internal rationality the policy space

remains as θπ + 1−β
κ
θy > 1 and persistence is constrained by (80).

By considering the limiting case of θy = 0, one can see that (80) restricts the stability region

of the model with n = 0 quite substantially. This is further illustrated by considering the

limiting case of ρr = 1. By re-parameterising the rule as,

rn,t = rn,t−1 + αππt + αyyt, (81)

then the case αy = 0 gives ∆rn,t = θπ∆pt, where πt = pt−pt−1 and pt is the price level. Thus

rn,t = θπpt, and (81) is a price level rule. Putting απ = (1− ρr)θπ and αy = (1− ρr)θy into

the previous result and letting ρr → 1, the policy space (απ, αy) under rational expectations

is απ + 1−β
κ
αy > 0 and the policy space under internal rationality is απ + (1−βξ)

κ
αy > 1.
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Hence under rational expectations and ρr = 1, at least one slightly positive feedback from

inflation and output is necessary and sufficient to result in saddle-path stability. Under

internal rationality and ρr = 1, the policy space is considerably reduced for plausible values

of ξ. Thus proposition 5 qualifies proposition 2, and implies that the latter is not robust to

changes in the monetary policy rule. In turn, this suggests that proposition 1 and proposition

3 may be qualified when alternative monetary policy rules are considered. Although we do

not consider the general model with n fixed or the model with n variable when the monetary

policy rule incorporates interest persistence, as these cases induce a considerable increase in

complexity, proposition 5 suggests that a fruitful line of future enquiry would be to examine

the interplay between bounded rationality, learning, and the choice of monetary policy rule.

5 Concluding Remarks

This paper constructs and explores the monetary policy consequences of the workhorse New

Keynesian model with internal rationality and heterogeneous agents. First, we derive the

model with a fixed proportion n of agents fully rational and a fixed proportion (1 − n) of

agents internally rational, in a similar manner to Massaro (2013). We then extend the model

to include predictor selection along the lines of Branch and McGough (2010).

In the model with n fixed, we establish two propositions. First, a decrease in the pro-

portion of fully rational agents does not destabilise the system if the rational expectations

determinacy condition holds. Second, the rational expectations determinacy condition is

identical to the stability condition for the model in which all agents are internally rational.

In the model with n variable, we establish two further propositions. First, the rational

expectations determinacy condition ensures local determinacy and stability as the cost of

being fully rational becomes infinitely negative. Second, if the model starts from a position

of indeterminacy, an increase in the fixed cost of being fully rational can lead to the loss of

local stability via a Hopf bifurcation.

After the Hopf bifurcation, a rational route to randomness appears exists as the speed

of learning increases. The model readily exhibits chaotic behaviour over wide ranges of

the parameter space, which we have illustrated numerically. Taken together, these results

indicate that complex dynamics in the internally rational New Keynesian model are closely

associated with monetary policy failures. Finally, we consider the robustness of our results

to alternative monetary policy rules, and demonstrate that the rational expectations deter-

minacy condition is not identical to the stability condition for the model in which all agents

are internally rational for a monetary policy rule with interest rate persistence.

The major contributions of the present paper is the reworking of the model presented in

Branch and McGough (2010) using the more plausible learning equilibrium concept of in-

ternal rationality rather than Euler learning. The result is a model similar to that presented

in Massaro (2013), with strategy switching between internal rationality and full rationality.
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Moreover, we demonstrate our main results analytically, which we feel is particularly useful

given the reliance of the existing literature on numerical results. Our results suggest that

a fruitful line of enquiry would be to examine the interplay between bounded rationality,

learning, and the choice of monetary policy rule, which we leave to future work.
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Appendices

A Non-Linear Foundations of the New Keynesian Model

In this appendix we make explicit the micro-foundations of the New Keynesian model. We proceed

from rational expectations to internal rationality in stages.

A.1 The Rational Expectations Model

A.1.1 Households

Household j chooses between work and leisure. Let Ct(j) be consumption and Ht(j) be hours

worked. The within-period utility function is,

Ut(j) = U(Ct(j), Ht(j)) = log(Ct(j))− κ
Ht(j)

1+φ

1 + φ
, (A.1)

and the value function of the representative household at time t is,

Vt(j) = Vt(Bt−1(j)) = Et

[ ∞∑
s=0

βsU(Ct+s(j), Ht+s(j))

]
. (A.2)

The household’s problem at time t is to choose paths for consumption {Ct(j)}, labour supply

{Ht(j)}, and holdings of financial savings to maximize Vt(j) given by (A.2) given its flow budget

constraint in period t,

Bt(j) = RtBt−1(j) +WtHt(j) + Γt − Ct(j), (A.3)

where Bt(j) is the given net stock of financial assets at the end of period t, Wt is the wage rate

and Rt is the ex post real interest rate paid on assets held at the beginning of period t. The ex

post real interest rate is given by,

Rt =
Rn,t−1

Πt
, (A.4)

where Rn,t and Πt are the nominal interest and inflation rates respectively and Γt are profits from

wholesale and retail firms owned by households. Wt, Rt, and Γt are all exogenous to household j.

As usual all variables are expressed in real terms relative to the price of final output.

The first order conditions are,

37



UC,t(j) = βEt [Rt+1UC,t+1(j)] , (A.5)

UL,t(j)

UC,t(j)
= Wt. (A.6)

An equivalent representation of the Euler consumption equation (A.5), which will be useful when

we consider the behaviour of firms, is,

1 = Et [Λt,t+1(j)Rt+1] , (A.7)

where Λt,t+1(j) ≡ β UC,t+1(j)
UC,t(j)

is the real stochastic discount factor for household j, over the interval

[t, t+ 1].

For our choice of utility function, UC,t = 1
Ct

and UH,t = −κHφ
t , so the household’s first order

conditions become,

1

Ct(j)
= βEt

[
Rt+1

Ct+1(j)

]
, (A.8)

κCt(j)Ht(j)
φ = Wt ⇒ Ht =

(
Wt

κCt(j)

) 1
φ

. (A.9)

In a symmetric equilibrium of identical households, Ct(j) = Ct, aggregate per household consump-

tion, and Ht(j) = Ht, average hours worked.

A.1.2 Firms in the Wholesale

Wholesale firms employ a Cobb-Douglas production function to produce a homogeneous output,

Y W
t = F (At, Ht) = AtH

α
t , (A.10)

where At is total factor productivity. Profit-maximizing demand for labour results in the first

order condition,

Wt =
PWt
Pt

FH,t = α
PWt
Pt

Y W
t

Ht
. (A.11)
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A.1.3 Firms in the Retail Sector

The retail sector uses a homogeneous wholesale good to produce a basket of differentiated goods

for aggregate consumption,

Ct =

(∫ 1

0
Ct(m)(ζ−1)/ζdm

)ζ/(ζ−1)

, (A.12)

where ζ is the elasticity of substitution. For each m, the consumer chooses Ct(m) at a price Pt(m)

to maximize (A.12) given total expenditure
∫ 1

0 Pt(m)Ct(m)dm. This results in a set of consumption

demand equations for each differentiated good m with price Pt(m) of the form,

Ct(m) =

(
Pt(m)

Pt

)−ζ
Ct ⇒ Yt(m) =

(
Pt(m)

Pt

)−ζ
Yt, (A.13)

where Pt =
[∫ 1

0 Pt(m)1−ζdm
] 1

1−ζ
. Pt is the aggregate price index. Ct and Pt are Dixit-Stigliz

aggregates - see Dixit and Stiglitz (1977).

For each variety m the retail good is produced costlessly from wholesale production according

to

Yt(m) = Y W
t = AtHt(m)α. (A.14)

Following Calvo (1983), we now assume that there is a probability of 1− ξ at each period that the

price of each retail good m is set optimally to P 0
t (m). If the price is not re-optimized, then it is

held fixed.6 For each retail producer m, given its real marginal cost MCt, the objective is at time

t to choose {P 0
t (m)} to maximize discounted profits,

Et
∞∑
k=0

ξkΛt,t+kYt+k(m)
[
P 0
t (m)− Pt+kMCt+k

]
, (A.15)

subject to (A.13), where Λt,t+k ≡ βk
UC,t+k/Pt+k
UC,t/Pt

is now the nominal stochastic discount factor over

the interval [t, t+ k]. The solution to this is,

Et
∞∑
k=0

ξkΛt,t+kYt+k(m)

[
P 0
t (m)− 1

(1− 1/ζ)
Pt+kMCt+k

]
= 0, (A.16)

and by the law of large numbers the evolution of the price index is given by,

6Thus we can interpret 1
1−ξ as the average duration for which prices are left unchanged.
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P 1−ζ
t+1 = ξP 1−ζ

t + (1− ξ)(P 0
t+1)1−ζ . (A.17)

In order to set up the model in non-linear form as a set of difference equations, we need to represent

the price dynamics as difference equations. First define k period ahead inflation as,

Πt,t+k ≡
Pt+k
Pt

=
Pt+1

Pt

Pt+2

Pt+1
· ·Pt+k−1

Pt+k
= Πt,t+1Πt+1,t+2 · ·Πt+k−1,t+k,

noting that Πt,t+1 = Πt+1 and Πt,t = 1.

Next, using (A.13) with Pt+k(m) = P0(m), the price set at time t which survives with proba-

bility ξ, we have that,

Λt,t+kYt+k(m) = βk
UC,t+k
UC,t

Pt
Pt+k

(
P0(m)

Pt+k

)−ζ
Yt+k = βk

UC,t+k
UC,t

Πζ−1
t,t+k

(
P0(m)

Pt

)−ζ
Yt+k.

Hence, cancelling out
(
P0(m)
Pt

)−ζ
and multiplying by

UC,t
Pt

, we can write (A.16) as,

Et

∞∑
k=0

(ξβ)kUC,t+kΠ
ζ−1
t,t+kYt+k

[
P 0
t (m)

Pt
−Πt+kMCt+kMSt+k

]
= 0. (A.18)

We seek a symmetric equilibrium where firms who are either re-setting their prices or are locked

into a contract are identical. In such an equilibrium, the price dynamics can be written as difference

equations as follows:

P 0
t

Pt
=

Jt
JJt

, (A.19)

JJt − ξEt
[
Πζ−1
t+1JJt+1Λt,t+1

]
= Yt, (A.20)

Jt − ξEt
[
Πζ
t+1Jt+1Λt,t+1

]
=

(
1

1− 1
ζ

)
YtMCtMSt, (A.21)

1 = ξΠζ−1
t + (1− ξ)

(
Jt
JJt

)1−ζ
, (A.22)

∆t = ξΠ
ζ
α
t ∆t−1 + (1− ξ)

(
Jt
JJt

) ζ
α

, (A.23)

(A.24)

MCt =
PWt
Pt

=
Wt

FH,t
, (A.25)

where (A.34) uses (A.11). Note that we have introduced a mark-up shock MSt, and that the real

marginal cost, MCt, is variable.
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Price dispersion lowers aggregate output as follows. Market clearing in the labour market gives,

Ht =
n∑

m=1

Ht(m) =
n∑

m=1

(
Yt(m)

At

) 1
α

=

(
Yt
At

) 1
α

n∑
m=1

(
Pt(m)

Pt

)− ζ
α

, (A.26)

using (A.13). Hence equilibrium for good m gives,

Yt =
Y W
t

∆α
t

, (A.27)

where price dispersion is defined by,

∆t ≡

(
n∑

m=1

(
Pt(m)

Pt

)− ζ
α

)
. (A.28)

Price dispersion is linked to inflation as follows. Assuming as before that the number of firms is

large, we obtain the following dynamic relationship:

∆t = ξΠ
ζ
α
t ∆t−1 + (1− ξ)

(
Jt
JJt

)− ζ
α

. (A.29)

A.1.4 Profits

To close the model in a manner that will be useful when we come to consider internal rationality,

we require total profits from retail and wholesale firms, Γt, remitted to households. This is given

in real terms by,

Γt = Yt −
PWt
Pt

Y W
t︸ ︷︷ ︸

retail

+
PWt
Pt

Y W
t −WtHt︸ ︷︷ ︸

Wholesale

= Yt − α
PWt
Pt

Y W
t , (A.30)

using the first-order condition (A.11).
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A.1.5 Closing the Model

The model is closed with a resource constraint,

Yt = Ct, (A.31)

and a monetary policy rule for the nominal interest rate given by the following Taylor-type rule,

log

(
Rn,t
Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θθ log

(
Πt

Π

)
+ θy log

(
Yt
Y

))
. (A.32)

Finally, there is an exogenous AR1 shock process to marginal cost (e.g. a mark-up shock):

logMSt − logMS = ρMS(logMSt−1 − logMS) + εMS,t. (A.33)

A.1.6 Summary of Model

Households:

Ut = U(Ct, Ht) = logCt − κ
H1+φ
t

1 + φ

UC,t = βEt [Rt+1UC,t+1]

Rt =
Rn,t−1

Πt

UC,t =
1

Ct

UH,t = −κHφ
t

UL,t
UC,t

= Wt
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Firms:

Y W
t = F (At, Ht) = AtH

α
t

Yt =
Y W
t

∆α
t

PWt
Pt

FH,t =
PWt
Pt

αY W
t

Ht
= Wt

P 0
t

Pt
=

Jt
JJt

JJt = ξEt
[
Πζ−1
t+1JJt+1Λt,t+1

]
+ Yt

Jt = ξEt
[
Πζ
t+1Jt+1Λt,t+1

]
+

(
1

1− 1
ζ

)
YtMCtMSt

1 = ξΠζ−1
t + (1− ξ)

(
Jt
JJt

)1−ζ

∆t = ξΠ
ζ
α
t ∆t−1 + (1− ξ)

(
Jt
JJt

) ζ
α

MCt =
PWt
Pt

=
Wt

FH,t

Closure:

Yt = Ct

log

(
Rn,t
Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θθ log

(
Πt

Π

)
+ θy log

(
Yt
Y

))
+ εM,t

logMSt − logMS = ρMS(logMSt−1 − logMS) + εMS,t

A.1.7 Steady State

In recursive form the zero-growth zero-inflation (Π = 1) steady state of can be written,
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R =
1

β

Λ = β

PW

P
= 1− 1

ζ
C

Y
= 1

H =
(α
κ

) 1
1+φ

Y W = (AH)α

Y = Y W

W = α
PW

P

Y W

H

J = JJ =
Y

1− βξ
∆ = 1

using PWY W = PY by the free entry condition.

For a particular steady state inflation rate Π > 1 the New Keynesian features of the steady

state become,

J

JJ
=

(
1− ξΠζ−1

1− ξ

) 1
1−ζ

MC =
PW

P
=

(
1− 1

ζ

)
J(1− βξΠζ)

JJ(1− βξΠζ−1)

∆ =
(1− ξ)α

(
J
JJ

)−ζ
1− ξΠζ

Then PWY W /PY = MC∆ 6= 1.

A.2 Exogenous Point Expectations

As a first step towards internal rationality we now formulate the consumption and pricing decision

of the household and firms respectively in terms of current and expected future aggregate variables

exogenous these agents.

A.2.1 Households

For households, solving (A.3) forward in time and imposing the transversality condition on debt

we can write,
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Bt−1(j) = PVt(Ct(j))− PVt(WtHt(j))− PVt(Γt), (A.34)

where the present (expected) value of a series {Xt+i}∞i=0 at time t is defined by,

PVt(Xt) ≡ Et
∞∑
i=0

Xt+i

Rt,t+i
=
Xt

Rt
+

1

Rt
PVt+1(Xt+1), (A.35)

where Rt,t+1 ≡ RtRt+1Rt+2 · · ·Rt+i is the real interest rate over the interval [t, t+ i].

The forward-looking budget constraint (A.34) holds for the representative household. In ag-

gregate there is no net debt so Bt−1 = 0. Then in a symmetric equilibrium, substituting for Ht

from (A.9) we have,

PVt(Ct) =
1

κ
1
φ

PVt

W 1+ 1
φ

t

C
1
φ

t

+ PVt(Γt). (A.36)

Solving (A.8) forward in time we have, for i ≥ 1,

1

Ct
= βiEt

[
Rt+1,t+i

Ct+i

]
. (A.37)

The internally rational solution to the household optimization problem seeks a solution to its

decision functions for Ct and Ht that are functions of non-rational point expectations {E∗tWt+i}∞i=0,

{E∗tRt,t+i}∞i=0 and {E∗tΓt+i}∞i=0, treated as exogenous processes given at time t as opposed to

rational model-consistent expectations {EtWt+i}∞i=0, etc7. With point expectations we use (A.37)

to obtain,

E∗tCt+i = Ctβ
iE∗tRt+1,t+i ; i ≥ 1, (A.38)

E∗t (Wt+iHt+i) =
1

κ
1
φ

(E∗tWt+i)
1+ 1

φ

(E∗tCt+i)
1
φ

. (A.39)

Substituting (A.38) and (A.39) into the forward-looking household budget constraint, and using∑∞
i=0 β

i = 1
1−β , we arrive at,

Ct
Rt(1− β)

=
1

Rt(κCt)
1
φ

(
W

1+ 1
φ

t +
∞∑
i=1

(β
1
φ )−i

(
E∗tWt+i

E∗tRt+1,t+i

)1+ 1
φ

)
+

∞∑
i=0

E∗tΓt+i
E∗tRt,t+i

, (A.40)

7With point expectations agents treat E∗t (·) as certain, although the environment is stochastic (see Evans

and Honkapohja (2001), page 61). Since Etf(Xt) ≈ f(Et(Xt)) and Etf(XtYt)) ≈ f(Et(XtYt)) up to a first-

order Taylor-series expansion, assuming point expectations is equivalent to using a linear approximation of

(A.36) and (A.37) as is usually done in the literature.
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Ht =

(
Wt

κCt

) 1
φ

. (A.41)

(A.40) and (A.41) constitute the consumption and hours decision rules given point expectations

of {E∗tWt+i}∞i=0, {E∗tRt,t+i}∞i=0, and {E∗tΓt+i}∞i=0.

A.2.2 Retail Firms

Turning next to price-setting by retail firms, write (A.20) and (A.21) as,

Jt =

(
1

1− 1
ζ

)
YtMCtMSt + Et

∞∑
k=1

ξkΛt,t+kΠ
ζ
t,t+kYt+kMCt+kMSt+k, (A.42)

JJt = Yt + Et
∞∑
k=1

ξkΛt,t+kΠ
ζ−1
t,t+kYt+k. (A.43)

Assuming point expectations, as for households, we have,

Jt =

(
1

1− 1
ζ

)(
YtMCtMSt +

∞∑
k=1

ξkE∗tΛt,t+k(E∗tΠt,t+k)
ζE∗tYt+kE∗tMCt+kE∗tMSt+k

)

=

(
1

1− 1
ζ

)
(YtMCtMSt + Ω3,t) , (A.44)

JJt = Yt +
∞∑
k=1

ξkE∗tΛt,t+k(E∗tΠt,t+k)
ζ−1E∗tYt+k

= Yt + Ω4,t, (A.45)

where, noting that E∗tΛt,t+1 = 1
E∗tRt+1

and Πt,t+1 = Πt+1, we have,

Ω3,t = ξ
(E∗tΠt+1)ζE∗tYt+1E∗tMCt+1E∗tMSt+1

E∗tRt+1
+ ξ

E∗tΠ
ζ
t+1

E∗tRt+1
Ω3,t+1,

(A.46)

Ω4,t = ξ(
E∗tΠt+1)ζ−1E∗tYt+1

E∗tRt+1
+ ξ

E∗tΠ
ζ−1
t+1

E∗tRt+1
Ω4,t+1. (A.47)

Recalling that the optimal price re-setting decision rule is given by
POt
Pt

= Jt
JJt

, (A.44) and (A.45)

now give us the this rule given exogenous expectations of {E∗tΠt+i}∞i=0, {E∗tRt,t+i}∞i=0, {E∗tYt+i}∞i=0,

{E∗tMCt+i}∞i=0, and {E∗tMSt+i}∞i=0.
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A.3 Internal rationality in the NK Model

The final step to complete the IR equilibrium is to choose the learning rule for {E∗tWt+i}∞i=0,

{E∗tRt,t+i}∞i=0 and {E∗tΓt+i}∞i=0 for households and {E∗tΠt+i}∞i=0, {E∗tRt,t+i}∞i=0, {E∗tYt+i}∞i=0, {E∗tMCt+i}∞i=0

and {E∗tMSt+i}∞i=0 for retail firms.

We assume general bounded rational expectations rules so that,

E∗t [Wt+i] = E∗t [Wt+1] for i ≥ 1, (A.48)

and similarly for {E∗tΓt+i}∞i=0, {E∗tΠt+i}∞i=0, {E∗tYt+i}∞i=0, {E∗tMCt+i}∞i=0 and {E∗tMSt+i}∞i=0, whilst,

E∗tRt,t+i = Rt
Rn,t

E∗tΠt+1
(E∗tRt+1)i−1, (A.49)

which takes into account the observation of Rn,t at time t. One-period ahead forecasts are given

in the main body of the text.

With adaptive expectations, (A.40) becomes,

Ct
Rt(1− β)

=
1

Rt(κCt)
1
φ

(
W

1+ 1
φ

t +
(E∗tWt+1)

1+ 1
φ

β
1
φ (E∗tRt+1)

1+ 1
φ − 1

)
+

E∗tΓt+1

E∗tRt+1 − 1
,

whilst (A.46) and (A.47) now become,

Ω3,t =
ξ(E∗tΠt+1)ζE∗tYt+1E∗tMCt+1E∗tMSt+1

E∗tRt+1 − ξ(Πt+1)ζ

Ω4,t =
ξ(E∗tΠt+1)ζ−1E∗tYt+1

E∗tRt+1 − ξ(E∗tΠt+1)ζ−1
.

This completes the internally rational equilibrium with point adaptive expectations.

A.4 Proof of Lemma

In the first order conditions for Calvo contracts and expressions for value functions we are con-

fronted with expected discounted sums of the general form,

Ωt = Et

[ ∞∑
k=0

βkXt,t+kYt+k

]
, (A.50)
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where Xt,t+k has the property Xt,t+k = Xt,t+1Xt+1,t+k and Xt,t = 1 (for example an inflation,

interest or discount rate over the interval [t, t+ k]).

Lemma

Ωt can be expressed as,

Ωt = Yt + βEt [Xt,t+1Ωt+1] . (A.51)

Proof

Ωt = Xt,tYt + Et

[ ∞∑
k=1

βkXt,t+kYt+k

]

= Yt + Et

[ ∞∑
k′=0

βk
′+1Xt,t+k′+1Yt+k′+1

]

= Yt + βEt

[ ∞∑
k′=0

βk
′
Xt,t+1Xt+1,t+k′+1Yt+k′+1

]
= Yt + βEt [Xt,t+1Ωt+1] . �

A.5 Proof of Equation A.29

In the next period, ξ of these firms will keep their old prices, and (1 − ξ) will change their prices

to POt+1. By the law of large numbers, we assume that the distribution of prices among those firms

that do not change their prices is the same as the overall distribution in period t. It follows that

we may write,

∆t+1 = ξ
∑

jno change

(
Pt(j)

Pt+1

)−ζ
+ (1− ξ)

(
Jt+1

JJt+1

)−ζ

= ξ

(
Pt
Pt+1

)−ζ ∑
jno change

(
Pt(j)

Pt

)−ζ
+ (1− ξ)

(
Jt+1

JJt+1

)−ζ

= ξ

(
Pt
Pt+1

)−ζ∑
j

(
Pt(j)

Pt

)−ζ
+ (1− ξ)

(
Jt+1

JJt+1

)−ζ
= ξΠζ

t+1∆t + (1− ξ)
(
Jt+1

JJt+1

)−ζ
. �
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B Linearization

B.1 Households

The Euler equation and choice of hours supplied,

UC,t = βE∗t [Rt+1UC,t+1] , (B.1)

−
UH,t
UC,t

= Wt, (B.2)

which with choice of utility function,

Ut = U(Ct, H
s
t ) = log(Ct)− κ

(Hs
t )1+φ

1 + φ
, (B.3)

gives,

1

Ct
= βE∗t

[
Rt+1

Ct+1

]
, (B.4)

Hs
t =

(
Wt

κCt

) 1
φ

. (B.5)

Let ct ≡ log(Ct/C) and rt ≡ log(Rt/R). Then the log-linearization of (B.4) (B.5) and the Fischer

equation gives,

ct = E∗t [ct+1 − rt+1],

hst =
1

φ
(wt − ct),

rt = rn,t−1 − πt.

The forward-looking consumption equation under perfect foresight (or assuming point expecta-

tions) is,

Ct
Rt(1− β)

=
1

Rt(κCt)
1
φ

(
W

1+ 1
φ

t + Ω1,t

)
+ Ω2,t, (B.6)

Ω1,t ≡
∞∑
i=1

(β
1
φ )−i

(
E∗tWt+i

E∗tRt+1,t+i

)1+ 1
φ

,

Ω2,t ≡
∞∑
i=0

E∗tΓt+i
E∗tRt,t+i

,

Ht =

(
Wt

κCt

) 1
φ

. (B.7)
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Hence,

Ω1,t =
1

β
1
φ

(E∗tWt+1

E∗tRt+1

)1+ 1
φ

+
E∗tΩ1,t+1

E∗tR
1+ 1

φ

t+1

 , (B.8)

Ω2,t =
1

Rt
(Γt + E∗tΩ2,t+1) . (B.9)

(B.6) and (B.7) constitute the consumption and hours decision rules given expectations {E∗tWt+i}∞i=0,

{E∗tRt,t+i}∞i=0, and {E∗tΓt+i}∞i=0.

Let ct ≡ log(Ct/C), wt ≡ log(Wt/W ), rt ≡ log(Rt/R), γt ≡ log(Γt/Γ), ht ≡ log(Ht/H),

ω1,t ≡ log(Ω1,t/Ω1), and ω2,t ≡ log(Ω2,t/Ω2). Then the log-linearization of (B.6) and (B.7) gives,

α1ct = α2wt + α3(ω2,t + rt) + α4ω1,t, (B.10)

ω1,t = α5E∗twt+1 − α6E∗t rt+1 + βE∗tω1,t+1, (B.11)

ω2,t = (1− β)(γt − rt)− βrt + βE∗tω2,t+1, (B.12)

γt =
cy
γy
ct −

α

γy
(wt + ht), (B.13)

where the (positive) coefficients are given by,

α1 ≡ 1 +
α

φcy
,

α2 ≡ (1− β)

(
1 +

1

φ

)
α

cy
,

α3 ≡ γy
cy
,

α4 ≡ βα

cy
,

α5 ≡ (1− β)

(
1 +

1

φ

)
,

α6 ≡ 1 +
1

φ

where cy = 1 and γy = 1− α

B.2 Firms

The non-linear price dynamics are given by,
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JJt − ξβEt[Πζ−1
t+1JJt+1] = YtUC,t, (B.14)

Jt − ξβEt[Πζ
t+1Jt+1] =

(
1

1− 1
ζ

)
YtUC,t(MCt +MSt), (B.15)

1 = ξΠζ−1
t + (1− ξ)

(
Jt
JJt

)1−ζ
. (B.16)

The zero growth and positive inflation rate steady state, Π, for the NK features are,

J(1− βξΠζ) =
Y UCMC(

1− 1
ζ

) , (B.17)

JJ(1− βξΠζ−1) = Y UC , (B.18)

J

JJ
=

(
1− ξΠζ−1

1− ξ

) 1
1−ζ

, (B.19)

MC =

(
1− 1

ζ

)
J(1− βξΠζ)

JJ(1− βξΠζ−1)
, (B.20)

∆ =
(1− ξ)

1
1−ζ (1− ξΠζ−1)

−ζ
1−ζ

1− ξΠζ
. (B.21)

For a zero-inflation steady state Π = 1, we arrive J
JJ = ∆ = 1 and MC =

(
1− 1

ζ

)
, but in general

there is a long-run inflation-output trade-off in the choice of the steady-state inflation rate. The

implications of introducing a non-zero inflation steady state into the standard New Keynesian

model are explored by Ascari and Ropele (2007).

Expanding (B.14) as a Taylor series yields,

JJ + JJt − JJ − ξβEt[Πζ−1JJ + (ζ − 1)Πζ−2JJ(Πt+1 −Π)

+ Πζ−1(JJt+1 − JJ)] = Y UC + UC(Yt − Y ) + Y (UC,t − UC). (B.22)

Cancelling out the constants on both sides, putting Π = 1 and dividing by JJ , we have,

jjt ≡
JJt − JJ

JJ
= ξβEt [(ζ − 1)πt+1 + jjt+1] +

Y UC
JJ

(yt + uC,t). (B.23)

Similarly linearizing (B.15), we arrive at,

jt ≡
Jt − J
J

= ξβEt [ζπt+1 + jt+1] +
Y UCMC

J
(

1− 1
ζ

)(yt + uC,t +mct +mst). (B.24)

Next we linearize (B.16) and put Π = 1 to obtain,
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ξ(ζ − 1)πt + (1− ξ)(1− ζ)

(
J

JJ

)−ζ
(jt − jjt) = 0. (B.25)

Using the steady state relationships with Π = 1, we have that Y UC
JJ = Y UCMC

J = 1−βξ, and (B.24)

and (B.25) give,

jjt = ξβEt+1 [(ζ − 1)πt+1 + jjt+1] + (1− βξ)(yt + uC,t), (B.26)

jt = ξβEt+1 [ζπt+1 + jt+1] + yt + (1− βξ)(uC,t +mct +mst), (B.27)

ξπt = (1− ξ)(jt − jjt). (B.28)

Finally, subtracting (B.27) from (B.26), and using (B.28), we arrive at the linear NK Phillips

Curve,

πt = βEtπt+1 +
(1− ξ)(1− βξ)

ξ
mct. (B.29)

This can be solved forward in time to give,

πt =
(1− ξ)(1− βξ)

ξ

∞∑
i=0

βimct+i, (B.30)

telling us that in the NK model in proportional deviation terms about the steady state, inflation

is proportional to the discounted sum of expected future deviations of marginal costs.

The rest of the supply sides consists of a first-order demand for hours and a Cobb-Douglas

production function:

Wt = α
PWt
Pt

Y W
t

Hd
t

,

Yt = Y W
t = At(H

d
t )α,

MC ≡ PWt
Pt

,

from which we arrive at the log-linearization,

yt = at + αhdtmct = wt − yt + hdt . (B.31)
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B.3 Monetary Rule, equilibrium, and shock process

We consider a monetary policy rules for the nominal interest rate given by the following Taylor-type

rule:

log

(
Rn,t
Rn

)
= ρr log

(
Rn,t−1

Rn

)
+ (1− ρr)

(
θθ log

(
Πt

Π

)
+ θy log

(
Yt
Y

))
, (B.32)

The log-linear form is,

rn,t = ρrrn,t−1 + (1− ρr)(θππt + θyyt). (B.33)

Equilibria in the output and labour markets are given by,

Yt = Ct, (B.34)

Hs
t = Hd

t = Ht, (B.35)

which have the log-linear forms,

yt = ct, (B.36)

hst = hdt = ht. (B.37)

Finally, the AR1 shock process us already in log-linear form if mst ≡ logMSt − logMS =

logMSt/MS:

logMSt − logMS = ρMS(logMSt−1 − logMS) + εMS,t. (B.38)

B.4 Summary of Linearized RE-IR Model

B.4.1 RE Model

To summarise, the linearised rational expectations model is given by,
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ct = Et [ct+1 − rt+1]

or α1ct = α2wt + α3(ω1,t + rt) + α4ω2,t

ω1,t = α5Etwt+1 − α6Etrt+1 + βEtω1,t+1

ω2,t = (1− β)(γt − rt)− βrt + βEtω2,t+1

γt =
cy
γy
ct −

α

γy
(wt + hst )

hst =
1

φ
(wt − ct)

rt = rn,t−1 − πt

πt = βEtπt+1 +
(1− ξ)(1− βξ)

ξ
(mct +mst)

yt = at + αhdt

mct = wt − yt + hdt

yt = ct

hst = hdt

plus a policy rule,

rn,t = ρrrn,t−1 + (1− ρr)(θππt + θyyt) +mpst (B.39)

giving 9 (or 11) equations in ct (or ct, ω1,t, ω2,t), yt, h
s
t , h

d
t , wt, rt, rn,t, πt and mct given the AR1

exogenous process for mst.

B.4.2 IR Model

The linearised model with internal rationality is given by,

α1ct = α2wt + α3(ω1,t + rt) + α4ω2,t

γt =
cy
γy
ct −

α

γy
(wt + hst )

ω1,t =
1

1− β
[
α5E∗twt+1 + α6E∗h,tπt+1

]
− α6(rn,t +

β

1− β
E∗t rn,t+1)

ω2,t = (1− β)γt + βE∗tγt+1 − (rn,t−1 + βrn,t +
β2

1− β
E∗t rn,t+1) + πt +

β

1− β
E∗h,tπt+1

hst =
1

φ
(wt − ct)
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πt =
(1− ξ)
ξ

(pot − pt)

=
(1− ξ)
ξ

(
1

1− βξ
E∗f,tπt+1 + (1− βξ)

(
(mct +mst) +

βξ

1− βξ
E∗t (mct+1 +mst+1)

))

with point expectations given in the main body of the text.

B.4.3 Composite RE-IR Model

hdt = nt (hst )
RE + (1− nt) (hst )

IR = ht

yt = at + αht

ct = nt (ct)
RE + (1− nt) (ct)

IR = yt

pot = nt (pot )
RE + (1− nt) (pot )

IR

πt =
(1− ξ)
ξ

(pot − pt)

55


