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Abstract

Modern trade agreements contain a large number of provisions besides tariff
reductions, in areas as diverse as services trade, competition policy, trade-related
investment measures, or public procurement. Existing research has struggled with
overfitting and severe multicollinearity problems when trying to estimate the effects
of these provisions on trade flows. In this paper, we develop a new method to
estimate the impact of individual provisions on trade flows that does not require
ad hoc assumptions on how to aggregate individual provisions. Building on recent
developments in the machine learning and variable selection literature, we propose
data-driven methods for selecting the most important provisions and quantifying
their impact on trade flows. We find that provisions related to antidumping,
competition policy, technical barriers to trade, and trade facilitation are associated
with enhancing the trade-increasing effect of trade agreements.
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1 Introduction

International trade is of vital importance for modern economies, and governments around
the world try to shape their countries’export and import patterns through numerous
interventions. Given the diffi culties facing multilateral trade negotiations through the
World Trade Organization (WTO), in the last two decades countries have increasingly
turned their focus to preferential trade agreements (PTAs) involving only one or a small
number of partners. At the same time, attention has shifted from the reduction of import
tariffs to the role of non-tariff barriers and behind-the-border policies, such as differences
in regulations, technical standards or intellectual property rights protection. Accordingly,
modern trade agreements contain a host of provisions besides tariff reductions, in areas
as diverse as services trade, competition policy, trade-related investment measures, or
public procurement (Hofmann, Osnago, and Ruta, 2017).
Against this background, researchers and policymakers interested in the effects of

trade agreements face diffi cult challenges. In particular, recent research has tried to move
beyond estimating the overall impact of PTAs and to establish the relative importance
of individual trade agreement provisions in determining an agreement’s overall impact
(e.g., Kohl, Brakman, and Garretsen, 2016, Mulabdic, Osnago, and Ruta, 2017, Dhingra,
Freeman, and Mavroeidi, 2018, and Regmi and Baier, 2020). However, such attempts
face the diffi culty that the large number of provisions, and the fact that similar provisions
appear in different trade agreements, create severe multicollinearity problems, which
make it very diffi cult to identify the effects of individual provisions. Traditional methods
such as gravity regressions of trade flows on dummies for individual provisions are not
able to deal with such multicollinearity. Instead, researchers have grouped or aggregated
provisions in different ways. For example, Mattoo, Mulabdic, and Ruta (2017) use
the count of provisions in an agreement as a measure of its ‘depth’, hence implicitly
giving equal weight to each measure. Dhingra, Freeman, and Mavroeidi (2018) overcome
multicollinearity problems by grouping services, investment, and competition provisions
and examining the effect of these “provision bundles”on trade flows.
In this paper we propose a new method to estimate the impact of individual provi-

sions on trade flows that does not require ad hoc assumptions to aggregate individual
provisions. Instead, we propose a data-driven method based on recent developments
in the machine learning and variable selection literature to select the most important
provisions and quantify their impact on trade flows.
In doing so, we build on recent advances in variable selection methods that address

diffi culties arising from a key feature exhibited by trade data, namely the high degree of
correlation between individual PTA provisions. We propose an extension of the Belloni,
Chernozhukov, Hansen, and Kozbur (2016) approach to the case of nonlinear models
with high-dimensional fixed effects, which have become standard in the analysis of trade
flows in recent years (see, for example, Head and Mayer, 2014, Yotov, Piermartini, Mon-
teiro, and Larch, 2016). In particular, we use a Poisson pseudo-maximum likelihood
(PPML) version of the well-known lasso (Least Absolute Shrinkage and Selection Oper-
ator) method for variable selection (see, for example, Hastie, Tibshirani, and Friedman,
2009) and show how to choose the tuning parameter of this estimator using either a
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plug-in method based on Belloni, Chernozhukov, Hansen, and Kozbur (2016) or cross-
validation. Notably, this requires overcoming a number of practical problems inherent
in the nature of trade data, such as the nonlinearity of the underlying gravity model and
the need to control for multilateral resistance and unobserved trade barriers.
We apply our method to a comprehensive dataset on PTA provisions recently made

available by the World Bank (Mattoo, Rocha and Ruta, 2020). Importantly, this data-
base is very rich, to the point where the number of provision variables we consider is
larger than the number of PTAs we observe in our data. In addition, due to template
effects and possible synergies between groups of provisions, these provision variables can
be highly correlated with one another. For these reasons, we complement our plug-in
lasso results with a novel methodology that seeks to identify potentially important vari-
ables that may have been missed in the initial lasso step. As we show using simulation
evidence, this new method, termed the “iceberg lasso”, presents a favorable balance
between the rigor of the plug-in lasso and the lenience of cross-validation methods in
small-to-moderate samples where the true causal variables may be highly correlated
with an unknown number of other variables in the dataset. To be clear, this two-step
approach does not completely answer the question of “which provisions matter most for
trade?”, but it does lead to substantial improvements in our ability to find the correct
provision variables and narrow down the number of potential candidates in the presence
of such rich data.
Our work contributes to several different literatures. Most directly, we contribute to

the large and growing literature on the effects of PTAs on trade flows. This literature
has been predominantly interested in estimating the overall effects of trade agreements
rather than individual provisions (see, for example, Baier and Bergstrand, 2007). More
recently, attention has shifted to trying to decompose the overall PTA effect and to dis-
entangle the effects of individual trade agreement provisions. As previously discussed,
this literature often needs to make strong assumptions about the importance of indi-
vidual provisions or needs to aggregate them in essentially arbitrary ways (see Mattoo,
Mulabdic, and Ruta, 2017; Dhingra, Freeman, and Mavroeidi, 2018). We propose in-
stead a novel set of methods to select the most important provisions and to quantify
their impact on trade flows. To provide some headline results, our plug-in lasso results
find that 6 provisions related to antidumping, competition policy, technical barriers to
trade, and trade facilitation are associated with enhancing the trade-increasing effect of
trade agreements. When we then use our iceberg lasso procedure to look beyond the
“tip”of the proverbial iceberg, we subsequently identify a set of 43 provisions out of 305
provision variables in our data that may be impacting trade. For some comparison, a
more conventional approach based on cross-validation selects 124 provisions as being rel-
evant and, based on our simulations, is actually less likely to include all of the “correct”
provisions.
In addition, we contribute to the subset of the machine learning literature inter-

ested in variable selection. In particular, we extend and adapt existing work by Belloni,
Chernozhukov, Hansen, and Kozbur (2016) to make it applicable to the context of inter-
national trade flows and trade agreements. This requires an extension to the estimation
of nonlinear models with high-dimensional fixed effects using PPML. The international
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trade context also throws up some interesting challenges when trying to select the tuning
parameter that governs the extent to which our PPML-lasso estimator penalizes coeffi -
cients on included variables and hence selects included variables. In particular, standard
cross-validation methods such as k-fold or leave-one-out approaches are not feasible in
practice, requiring us to propose a novel approach based on out-of-sample predictions of
the effects of PTAs. We find that the number of provisions selected when the tuning pa-
rameter is chosen by cross-validation is too large to have a meaningful interpretation and
that, in contrast, the number of provisions identified when using the plug-in penalty is
too small to allow us to be confident that it includes the majority of relevant provisions.
The two-step method that we propose builds on the results obtained using the plug-in
penalty and identifies an additional set of provisions that may have a causal effect on
trade.
Finally, we contribute to a small existing literature that has used machine learning

and other related methods to study the effects of trade agreements in a gravity context.
For example, Regmi and Baier (2020) use a unsupervised learning method to group PTAs
by textual similarity, so as to provide a more nuanced notion of PTA depth. Following
from a similar motivation, Hofmann, Osnago, and Ruta (2017) propose an earlier depth
measure for PTAs based on principal components analysis applied to their provisions
data. In contrast, Baier, Yotov, and Zylkin (2019) use a two-step methodology where
pair-specific PTA effects are estimated in a first stage and then predicted out of sample
using country- and pair-specific variables.
The rest of this paper is structured as follows. Section 2 presents the data on PTA

provisions and provides a descriptive analysis of these data, highlighting a number of
stylized facts about the provisions present in recent trade agreements. Section 3 intro-
duces the variable selection problem in the three-way gravity model context and explains
how we implement PPML-lasso estimation with high-dimensional fixed effects. It also
includes simulation evidence comparing relative performance of different lasso methods
in a simplified setting with high correlation between regressors. Section 4 applies our
methods to our database on PTA provisions and shows which individual provisions are
the strongest predictors of trade flows. Section 5 concludes.

2 Data

Our analysis combines data on international trade flows from Comtrade with the new
database on the content of PTAs that has been collected by Mattoo, Rocha and Ruta
(2020). On trade, we use merchandise trade exports between 1964 and 2016 from 220
exporters to 270 importers. Country pairs without export information are considered
as zeros. The database on the content of trade agreements includes information on 283
PTAs that have been signed and notified to the WTO between 1958 and 2017. The data
focus on the sub-sample of 18 policy areas that are most frequently covered in trade
agreements —defined as areas that are present in 20 percent or more of the agreements
that have been mapped in Hofmann, Osnago, and Ruta (2017). These policy areas range
from environmental laws and labor market regulations, that are covered in roughly 20
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percent of the PTAs, to areas such as export taxes and trade facilitation that are present
in over 80 percent of the agreements (see Figure 1).

Figure 1: Share of PTAs that cover selected policy areas

Figure shows the share of PTAs that cover a policy area. Source: Mattoo, Rocha and Ruta (2020).

For each agreement and policy area, the database provides granular information on
the specific provisions covering stated objectives and substantive commitments, as well
as aspects relating to transparency, procedures and enforcement. The coding exercise
focuses on the legal text of the agreements and therefore excludes information on the
actual implementation of the commitments included in the agreements.1

To alleviate the problems caused by the high dimensionality of the data and the high
level of correlation across the provisions included in the agreements, the analysis pre-
sented in this paper focuses on a sub-set of “essential”provisions. This includes the set
of substantive provisions (those that require specific integration/liberalization commit-
ments and obligations) plus the disciplines among procedures, transparency, enforcement
or objectives, which are viewed as indispensable and complementary to achieving the
substantive commitments. Non-essential provisions are referred to as “corollary”.2 The
share of essential provisions in the total number of provisions included in an agreement
ranges from less than 10 percent for public procurement, movement of capital and visa
and asylum, to more than 50 percent for policy areas such as environmental laws and
labor market regulations. Overall, the sub-set of essential provisions represents almost
one third (305/937) of the total number of provisions coded in this exercise (see Table
1).

1In this dataset, information coming from secondary law (the body of law that derives from the
principles and objectives of the treaties) has not been coded. This is of particular importance for
agreements such as the EU, since most policy areas covered have used secondary law such as regulations,
directives, and other legal instruments to pursue integration.

2The classification into essential and corollary in the database is based on experts’knowledge and,
hence, is subjective.

5



Table 1: Distribution of essential provisions by policy area
Number of Number of

Policy Area provisions Essential provisions Share
Anti-dumping and Countervailing Duties 53 11 28.8%
Competition Policy 35 14 40.0%
Environmental Laws 48 27 56.3%
Export Taxes 46 23 50.0%
Intellectual Property Rights 120 67 55.8%
Investment 57 15 26.3%
Labor Market Regulations 18 12 66.7%
Movement of Capital 94 8 8.5%
Public Procurement 100 5 5.0%
Rules of Origin 38 19 50.0%
Sanitary and Phytosanitary 59 24 40.7%
Services 64 21 32.8%
State-Owned Enterprises 53 13 24.5%
Subsidies 36 13 36.1%
Technical Barriers to Trade 34 19 55.9%
Trade Facilitation and Customs 52 11 21.2%
Visa and Asylum 30 3 10.0%
Total 937 305 32.6%

The coverage of essential provisions also varies widely across trade agreements and
disciplines, indicating that not all PTAs cover the same set of essential provisions. As
shown in Table 2, more than 3/4 of agreements cover 25 percent or less of essential
provisions included in policy areas such as environmental laws, antidumping, sanitary
and phytosanitary measures, and technical barriers to trade. Conversely, for policy
areas such as visa and asylum, rules of origin, and trade facilitation and customs, more
than 70 percent of the mapped agreements cover between 25 and 75 percent of essential
provisions. With the exception of services and investment, coverage of more than 75
percent of essential provisions is rare and happens in less than 15 percent of the mapped
agreements.
One important caveat regarding this dataset is that it does not cover all of the

trade agreements that have been in force during the period under study. Specifically,
our information on provisions is limited to agreements that are in effect in present day,
i.e., excluding any agreements that are no longer in effect. For this reason, we drop
observations associated with an agreement no longer in effect. This means that the
effects of newer agreements are identified by changes in trade relative to when that
pair did not have any agreement rather than relative to pre-existing agreements. The
majority of the observations that are dropped are due to pre-accession agreements that
new European Union (EU) members sign before joining the EU. Thus, to use one of
these cases as an example, Italy-Croatia is included in our data for years 1992-2000
(after Croatian independence and before the initial EU-Croatia PTA in 2001) and for
year 2016 (after Croatia joins the EU in 2013). The EU is treated differently in our
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analysis for this reason, as we discuss further in Section 4. To identify agreements no
longer in effect, we consult the NSF-Kellogg database created by Jeff Bergstrand and
Scott Baier crosschecked with data from the WTO. The EU and the earlier European
Community are treated as the same agreement for these purposes, though it is allowed
to evolve as new provisions are added.

Table 2: Coverage of essential provisions by policy area
Share of agreements covering:

Policy Area 0 to 25% 25% to 75% over 75%
Anti-dumping and Countervailing Duties 99% 1% 0%
Competition Policy 48% 47% 5%
Environmental Laws 88% 12% 0%
Export Taxes 41% 59% 0%
Intellectual Property Rights 76% 23% 1%
Investment 6% 64% 30%
Labor Market Regulations 68% 17% 15%
Movement of Capital 44% 42% 13%
Public Procurement 53% 40% 7%
Rules of Origin 7% 93% 0%
Sanitary and Phytosanitary Measures 87% 13% 0%
Services 6% 62% 33%
State-Owned Enterprises 45% 54% 1%
Subsidies 59% 41% 0%
Technical Barriers to Trade 93% 7% 0%
Trade Facilitation and Customs 21% 78% 0%
Visa and Asylum 27% 70% 3%

Note: Coverage ratio refers to the share of essential provisions for a policy area contained
in a given agreement relative to the maximum number of essential provisions in that policy
area. Source: Mattoo, Rocha and Ruta (2020)

3 Determining Which Provisions Matter for Trade

We now outline the methodology we use to identify which PTA provisions have the
largest impact on bilateral trade. To preview our approach, we will first specify a typical
panel data gravity model for trade flows. Following the latest recommendations from
the methodological literature (Yotov Yotov, Piermartini, Monteiro, and Larch, 2016,
Weidner and Zylkin, 2020), we will use a multiplicative model where expected trade
flows are given by an exponential function of our covariates of interest plus three sets of
fixed effects. Drawing on this standard framework, we will then consider the estimation
challenges that arise when the number of covariates (here, provision variables) is allowed
to be very large. As we will discuss, it will be convenient to reformulate the usual
estimation problem as a “variable selection”problem, where we suppose that many of
the provisions have zero or approximately zero effect.
Bringing together these elements will require that we extend recent computational

advances in high-dimensional fixed effects estimation to incorporate lasso and lasso-
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type penalties. It will also require that we introduce our own innovation, the iceberg
lasso method, which we will motivate as providing a balance between “cross-validation”
approaches that tend to select too many variables and more rigorous, “plug-in”methods
that may select too few. We also include simulation evidence comparing the performance
of these various methods.

3.1 The Gravity Model

Our starting point for estimation is the following multiplicative gravity model:

µijt := E(yijt|xijt, αit, γjt, ηij) = exp(x′ijtβ + αit + γjt + ηij). (1)

Here, i, j, and t respectively index exporter, importer, and time. Bilateral trade flows
from exporter i to importer j at time t are therefore given by yijt, xijt are our covariates
of interest, and αit, γjt, and ηij are, respectively, exporter-time, importer-time, and
exporter-importer (“pair”) fixed effects.
Because of the three fixed effects, the model in (1) is often called the “three-way

gravity model”. The use of the term “gravity” is most closely associated with the
exporter-time and importer-time fixed effects αit and γjt. Intuitively, these two fixed
effects may be thought of as controlling for changes over time in the “gravitational pull”
that the exporter and importer each exert on world trade flows. More formally, these
fixed effects can be shown to depend on the market sizes of the two countries as well as
on what Anderson and van Wincoop (2003) call “multilateral resistance”, a theoretical
measure of each country’s connectedness to the overall trade network. The inclusion of
pair fixed effect ηij was suggested by Baier and Bergstrand (2007), who convincingly
argue that estimates of trade agreements and other similar variables would otherwise
be biased due to omitted cross-sectional heterogeneity. In terms of a trade model, this
omitted heterogeneity is often motivated as coming from unobserved trade costs.
An important point about (1) is that it motivates estimating the model in its original

nonlinear form using PPML; see Gourieroux, Monfort and Trognon (1984). In principle,
one could instead use a linear model after taking logs, but Santos Silva and Tenreyro
(2006) have pointed out two main pitfalls with this approach. First, if the correct model
for trade flows is given by (1), OLS estimation is consistent only if the distribution of
the error term satisfies very strong conditions. Second, it cannot deal with zero trade
flows. Given the exponential mean form, there are good reasons to instead estimate us-
ing PPML. Though the resulting model is nonlinear with three sets of high-dimensional
fixed effects, estimation is feasible due to recent computation innovations by Correia,
Guimarães, and Zylkin (2020) and others.3 Weidner and Zylkin (2020) have recently

3Correia, Guimarães, and Zylkin (2020) and Stammann (2018) have each proposed algorithms for
estimating nonlinear fixed effects models based on iteratively re-weighted least squares (IRLS). Heuris-
tically, this type of algorithm exploits the linearity of the weighted least squares step in the IRLS
algorithm to wipe out the fixed effects in each iteration, then uses an application of the Frisch-Waugh-
Lovell theorm to update the weights, repeating until convergence. For a different approach, see Larch,
Wanner, Yotov, and Zylkin (2019).
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established the consistency and asymptotic distribution of the three-way PPML estima-
tor, and Yotov, Piermartini, Monteiro, and Larch (2016) recommend it as the workhorse
method for estimating the effects of trade policies. It is frequently applied to the context
of trade agreements in particular.
Having established these details, our focus is on the set of covariates, xijt. In most

applications in the trade agreements literature, xijt is often either a single variable–
i.e., a dummy for the presence of a trade agreement– or minor variants thereof, such
as introducing interactions with either the depth of the agreement or the bilateral char-
acteristics of the two countries (Baier, Bergstrand, and Feng, 2014; Baier, Bergstrand,
and Clance, 2018). However, a major estimation challenge that arises in our setting is
that we must treat the number of provisions as being very large. With our dataset, this
high dimensionality, combined with the relatively small number of PTAs, leads to im-
plausibly large and uninterpretable estimates due to multicollinearity. Furthermore, the
estimated model will have poor predictive performance due to overfitting. We therefore
must discuss how the standard gravity estimation approach must be modified in order
to deal with this additional source of high dimensionality.

3.2 Variable Selection and Gravity

The starting point for our methodological innovations is to suppose that only a handful
of our provision variables have a non-negligible effect on trade flows. To be more precise,
we have p = 305 essential provision variables, coded as dummies, of which a subset s < p
are assumed to have non-zero effects. We do not know s beforehand, nor do we know
the identities of any of the s provisions that substantively affect trade. Our goal then
is to use statistical methods along with the model described in (1) in order to identify
these provisions.
Because of the high dimensionality of xijt, experimenting with different subsets of

provisions to see which has the best performance is unlikely to be fruitful. Instead, we
adopt a penalized regression (or “regularization”) approach that involves appending a
penalty term to the Poisson pseudo-likelihood one would use to estimate the unpenalized
gravity model. The idea is that the penalty term “shrinks” all estimated coeffi cients
towards zero and forces some of them to be exactly equal to zero. The higher the
penalty, the fewer the variables that are found to have non-zero coeffi cients and are
therefore “selected”. By design, the variables that are selected should be those that
exert the strongest influence on the fit of the model; coeffi cients for variables that are
not as relevant should end up getting shrunken to zero completely.
Because of its computational feasibility, the most frequently used approach to this

type of variable selection problem is the lasso, introduced by Tibshirani (1996). In our
setting, the penalized objective function that defines the three-way PPML-lasso is

PL(β, α, γ, η) =
1

n

(∑
i,j,t

(
µijt − yijt lnµijt

))
︸ ︷︷ ︸
−1×PPML pseudo likelihood

+
1

n

p∑
k=1

φ̂kλ|βk|︸ ︷︷ ︸
Lasso penalty

, (2)
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where n is the number of observations,4 as in (1) above, µijt = eαit+γjt+ηij+x
′
ijtβ is the

conditional mean, and λ ≥ 0 and φ̂k ≥ 0 are tuning parameters that determine the
penalty. As indicated in (2), the first term in this expression is the standard PPML
objective function one would minimize in order to estimate the three-way gravity model.
Thus, the PPML-lasso nests PPML as a special case when λ is set to zero.
The second term in (2) is a modified lasso penalty that allows for regressor-specific

penalty weights as opposed to having λ as the only tuning parameter as in the standard
lasso. Intuitively, larger penalties increasingly shrink the estimated β-coeffi cients towards
zero. The coeffi cients for any variables that do not suffi ciently increase the likelihood
are set to exactly zero, thereby giving us a way of identifying which xijt variables to
include in the final model. For some illustration, if we consider λ→∞, the only way to
minimize PL is to set all β̂ks equal to zero, meaning that no variables are selected. As in
Belloni, Chernozhukov, Hansen, and Kozbur (2016), we will use the regressor-specific φ̂k
penalty terms to iteratively refine the model while also constructing them appropriately
to reflect any heteroskedasticity and within-pair correlation featured in the data.
Importantly, the fixed effects parameters α, γ, and η are not penalized. This is

mainly because there is no reason to believe that most of the fixed effects parameters are
actually zero. In addition, it turns out they do not pose special issues for computation.
This is because they do not depend on the penalty. As such, for any given β, the
fixed effects can obtained by solving their usual PPML first-order conditions from the
standard unpenalized regression approach. In practice, this means that the fixed effects
can actually be dealt with in the exact same manner as in Correia, Guimarães, and Zylkin
(2020). More details on our computational methods are provided in the Appendix, but,
basically, we use the original HDFE-IRLS algorithm of Correia, Guimarães, and Zylkin
(2020) to take care of the fixed effects but replace the weighted linear regression step
from that algorithm with a weighted lasso regression.5

3.3 Implementing the Lasso

The next question of course is how to determine the tuning parameters λ and φ̂k. As a
starting point, the two existing approaches we will first examine are the “plug-in”lasso of
Belloni, Chernozhukov, Hansen, and Kozbur (2016) and the traditional cross-validation
approach, both of which we have modified to fit the demands of the three-way PPML
setting. As we will discuss, each of these methods has its strengths and weaknesses.
Therefore, we will then turn to describing an extension of the plug-in lasso, termed the
“iceberg lasso”, that is intended to address one of the plug-in lasso’s key shortcomings
in this context.

4Naturally, the number of observations will depend on the number of countries for which we have
data and on the number of years we observe them. For simplicity, we do not make that relation explicit.

5For the lasso regression step, we use the coordinate descent algorithm of Friedman, Hastie, and
Tibshirani (2010).
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Plug-in Lasso

The plug-in lasso is so-named because it specifies appropriate functional forms for the
penalty parameters based on statistical theory and then uses plug-in estimates for these
parameters. It is therefore a relatively “theory-driven”approach to the variable selection
problem, whereas cross-validation, discussed next, is a more traditional machine learning
method that relies on out-of-sample prediction. The plug-in lasso was first proposed by
Belloni, Chen, Chernozhukov, and Hansen (2012), though the specific implementation we
build on is the panel data lasso method of Belloni, Chernozhukov, Hansen, and Kozbur
(2016), which allows for correlated errors within cross-sectional units.
Without delving too much into technical details, which we defer to the Appendix,

variable selection using the plug-in lasso can be thought of as involving the following
three ingredients:

i. The absolute value of the score for each βk when evaluated at 0,

ii. The standard error of the score for each βk,

iii. Values for λ and φ̂k set high enough so that the absolute value of the score for βk
must be statistically large relative to its standard error in order for regressor xijt,k
to be selected.

Intuitively, the value of the score reflects the impact that a small change in βk has
on the fit of the model. When evaluated at 0, it tells us how much the fit of the
model improves when we make βk non-zero. The standard logic of the lasso is that this
improvement in fit must be large relative to the penalty in order for β̂k to be non-zero.
One of the main innovations of the plug-in lasso is to allow the regressor-specific penalty
φ̂k to adjust to reflect the standard error of the score. This way, we counteract the
possibility that regressors could be mistakenly selected due to estimation noise rather
than because of their true impact on the model. These regressor-specific penalties play
an important role in the presence of heteroskedasticity, which of course is an important
feature of trade data. Since the gravity context often assumes that errors are correlated
over time within pair, we take this correlation into account as well in constructing these
penalty weights.
A principal advantage of the plug-in lasso is that it is very rigorous in terms of the

number of variables it selects. As shown by Drukker and Liu (2019), the plug-in method
offers superior performance versus cross-validation approaches in finite samples, in large
part because these other methods tend to select too many variables. Furthermore, the
“post-lasso”estimates obtained using unpenalized PPML on the covariates selected by
the plug-in lasso have a “near-oracle”property that ensures they will capture the correct
model if the sample is suffi ciently large relatively to the number of potential regressors
(see Belloni, Chen, Chernozhukov, and Hansen, 2012).6

6The “oracle”property of estimators such as the adaptive lasso of Zou (2006) refers to their ability
to correctly recover which parameters are zero and non-zero in a setting where the number of potential
regresors is fixed and the number of observations is large. The “near-oracle” property of the plug-in
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However, the plug-in method’s rigor can also be a weakness. In general, it attempts
to select a small number of variables that are most useful for predicting the outcome.
However, in data settings where there are a substantial number of regressors that are
highly correlated, as is the case with our provisions data, it is possible that the plug-in
lasso will wrongly select a regressor that does not affect the outcome but is strongly
correlated with another regressor that does, since either (or perhaps both) can have
similar predictive value for fitting the model. We discuss this issue in more detail when
we introduce the iceberg lasso method.

Cross-Validation

As an alternative to the plug-in method, we also consider a more traditional approach
based on cross-validation. Under cross-validation, one repeatedly holds out some of the
data and chooses λ in order to maximize the predictive fit of the model when evaluated
on the held-out data. The regressor-specific φ̂k do not play a role and are set equal to 1.
Because of the size of the data and the nature of our model, implementing this

approach presents some interesting challenges. A standard implementation would be a
“k-fold”approach that randomly partitions the sample into k folds and then uses k − 1
subsets to estimate the parameters and the excluded one to evaluate the predictive ability
of the model. To adapt this idea to our setting, we validate our model by repeatedly
dropping random groups of agreements in our data, and then predicting their effects on
trade out of sample, similar to the approach taken by Baier, Yotov, and Zylkin (2019).
In this case, all fixed effects are always present in each practice sample, so that we can
always form the necessary predictions for the omitted trade flows associated with the
PTA that has been dropped.7

The main advantage of cross-validation is that it is explicitly designed to optimize
predictive performance. Thus, it may offer a conceptual advantage where forecasting
tasks are concerned. However, a known weakness of the standard lasso with cross-
validation is that it often errs on the side of selecting too many variables that are not
relevant.8 Furthermore, it does not take into account heteroskedasticity when performing
the selection, and it generally does not have either an oracle or near-oracle property
in large samples. For these reasons, cross-validation is not our preferred method for

lasso is similar, but its rate of convergence is slower and depends on the number of potential regressors
because in the setting considered by Belloni, Chen, Chernozhukov, and Hansen (2012) the number of
potential regressors is allowed to grow with the sample size.

7It may, however, happen that some provisions are not included in the agreements used in the
estimation sample. This, is less likely to happen if k is large and therefore we use k = 25.

8In linear models, tuning λ using cross-validation is analogous to selection based on the Akaike
information criterion, which ensures that the probability of selecting too few variables goes to zero but
does not eliminate the possibility of selecting too many. Relatedly, Drukker and Liu (2019) find that
selecting λ using cross-validation also leads to the inclusion of too many regressors in Poisson regressions.
In our own application, we too find that the cross-validation method selects many more provisions than
the plug-in method.
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answering the question of which provisions matter for trade; we consider it mainly to
illustrate the basic mechanics of the lasso and as a check on our plug-in results.9

The Iceberg Lasso

One important feature of the lasso is that it selects variables that are good predictors
of the outcome, but these are not necessarily variables that have a causal impact on
the outcome. Indeed, Zhao and Yu (2006) show that only when the so-called “irrepre-
sentability condition” is valid can we expect the variables selected by lasso to have a
causal interpretation; the condition essentially imposes limits on the degree of collinear-
ity between the variables with a causal effect on the outcome and the other candidate
regressors.
As we have noted, in the case of our dataset, there is a very high degree of collinearity

between some of the variables, and therefore we cannot expect the irrepresentability
condition to hold. Furthermore, for the plug-in lasso especially, which tends to select
a very parsimonious model, we should be worried whether the selected provisions mask
the effects of a potentially more complex set of other provisions that are often included
in the same agreements as the provisions that are selected.
To address this important complication, we introduce what we call the “iceberg

lasso”. Simply put, it involves performing a subsequent set of plug-in lasso regressions in
which each of the provisions selected by the plug-in PPML-lasso estimator is regressed
on all of the provisions that were excluded. The purpose of these regressions is to identify
bundles of provisions that are highly correlated with the selected ones and therefore may
be representable by them, in the sense of Zhao and Yu (2006). That is, each of the
variables selected by the PPML-lasso with the plug-in tuning parameter may be just
“the tip of the iceberg”of a bundle of variables that have a causal impact on trade, and
these additional lasso regressions may help to identify these bundles. As such, the iceberg
lasso may be interpreted as a data-driven alternative to the method used in Dhingra,
Freeman, and Mavroeidi (2018) to construct provision bundles.10

Having described the ideas behind our methods, several further caveats are in order.
First, by construction, not all of the provisions selected by the iceberg lasso can be said
to have causal effects. Whether or not this is more informative than other methods
that are already known to over-select regressors is an empirical matter and the answer
will depend on the application. Second, in general, we need to be very humble about
potential causal interpretation of our results. We view our approach as a statistical

9Alternatively, we could consider the adaptive lasso (Zou, 2006), which adds a second tuning parame-
ter and is known to deliver consistent variable selection. However, we have still found that the adaptive
lasso is similar to the standard lasso in that it is much too lenient and it keeps too many regressors that
are not relevant.
10Our approach complements the one adopted by Regmi and Baier (2020), who use machine learning

tools to construct groups of provisions and then use these clusters in a gravity equation. The main
difference between the two approaches is that Regmi and Baier (2020) use what is called an unsupervised
machine learning method, which uses only information on the provisions to form the clusters. In contrast,
we select the provisions using a supervised method that also considers the impact of the provisions on
trade, and then add another step which can be interpreted as unsupervised learning.
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method to select a group of variables that is likely to include the ones most relevant to
the fit of the three-way gravity model. This of course requires taking the model to be an
appropriate representation of the determinants of trade. The three-way gravity model
has the considerable advantage that it isolates a particular variation in the data that is
empirically relevant for the study of trade agreements, namely the within-pair variation
that is time-varying and independent of country-specific changes in trade. However, the
initial PPML-lasso with the tuning parameter selected by the plug-in method is likely to
omit relevant variables, and that obviously complicates interpretation of those estimates.
The additional step in the iceberg lasso is explicitly designed to address this latter issue
and should at least partially alleviate this problem at the cost of possibly selecting some
variables that effectively have little or no impact on trade.

3.4 Simulation evidence

In this section we report the results of a small simulation exercise investigating the finite-
sample properties of the three methods we will use to identify the set of PTA provisions
that are likely to have more impact on trade flows. The simulation design we use covers
a range of scenarios that, to different degrees, combine two important features of our
application: a relatively small sample and a high degree of collinearity between several
potential explanatory variables. The results we obtain, therefore, provide information
on the performance of the different methods in conditions similar to those we face,
and illustrate how these performances change when we progressively move towards less
challenging environments.
In all the experiments we use n observations on a set of p potential explanatory

variables; we consider cases with sample size n ∈ {250, 1000, 4000}, and set p to 5 d
√
ne,

where d·e denotes the ceiling function; that is, depending on the value of n, p is either
80, 160, or 320. The p potential explanatory variables are obtained as random draws
from the normal distribution; the first κ variables are correlated with each other, and
the remaining ones are independent of all other variables. The covariance matrix of the
first κ regressors is given by U ′U , where U is a κ× κ matrix where each entry is a draw
from the uniform distribution on the interval (u, 1). All regressors have zero mean and
variance 1 and we perform simulations with κ ∈ {5, 10, 20} and u ∈ {0.0, 0.3, 0.6}.11
For all combinations of n, u and κ, the dependent variable is generated as

y = exp (1 + βx1 + z + σε) ,

where x1 is the first of the p potential explanatory variables described above, β and σ
are parameters, and z and ε are independent random draws from the standard normal
distribution. The parameters β and σ determine the relevance of x1 and the signal-to-
noise ratio: because gravity equations typically have an excellent fit, we set β = 0.2 and
σ = 0.3, which ensures that model has a reasonably high R2 and that the effect of x1 is
neither too small (which makes its role very diffi cult to detect) nor too large (in which

11These values of u imply average correlations between the first κ variables of around 0.75, 0.91, and
0.98, respectively.
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case all approaches have an excellent performance). When performing the selection of
the relevant elements of the p potential explanatory variables, z is always included as
a regressor whose coeffi cient is not penalized. Therefore, in this design, x1 plays the
role of the presumably small number of provisions that effectively affect trade and are
correlated with others that do not, and z mimics the role of the fixed effects that explain
a significant share of the variation of trade and are always included without penalty.
The selection of the relevant explanatory variables is performed using each of the

three methods presented before: plug-in lasso, cross-validation lasso, and the proposed
iceberg lasso, which uses the plug-in penalty in both steps. Additionally, we also perform
the variable selection using the adaptive lasso of Zou (2006), with penalty chosen by cross
validation.12 Unlike the other methods we consider, the adaptive lasso has the so-called
oracle property, implying that asymptotically it will choose the right set of regressors,
and therefore it provides an interesting benchmark against which the performance of the
other methods can be judged.13

We repeat the simulations 1000 times, recording the number of times the variable x1

is correctly selected as a regressor, and the total number of variables selected by each
method. For each of the cases considered, Tables 3 and 4 present the percentage of
times the regressor x1 is selected and the average and standard error of the number of
regressors selected by each method.
The results in Table 3 reveal a number of interesting patterns. For n = 250, lasso

with the penalty chosen by the plug-in method (PI) is the method that most often
fails to identify x1 as a relevant regressor, and its performance deteriorates quickly as
u increases. The adaptive-lasso (AL) performs better, but its performance is also very
poor when u is high. Lasso with the penalty chosen by cross-validation (CV) provides
a substantial improvement, but it also struggles for larger values of u. The iceberg
lasso (IL) is marginally outperformed by CV when u = 0.0, but in the more challenging
cases it can have a substantial advantage over all other methods.14 The performance
of all methods improves for the larger sample sizes, but the iceberg lasso maintains its
advantage in the more challenging cases.
The results in Table 4 are equally interesting. In all cases considered, CV tends to

lead to a high average number of selected regressors; this method also generally leads to
high variability in the number of selected regressors. Remarkably, the average number of
regressors picked by CV increases with n, and therefore with p, but is almost insensitive
to κ. The average number of regressors selected by PI is always very small, and we do
not see a clear pattern as n and κ vary. In contrast, the average number of variables
selected by AL drops with the sample size and for n = 4000 it is always very close to 1, as
we would expect from its oracle property. Finally, not surprisingly, the average number
of variables selected by the IL increases with κ, and this is the feature that allows it to
more frequently identifying x1 as a relevant regressor.

12The adaptive lasso requires a set of initial estimates; we used those obtained by the cross-validation
lasso.
13Note, however, that the plug-in lasso has a related near-oracle property.
14Part of the reason why in some cases IL does not perform well is that sometimes PI selects no

regressors at all, and in those cases IL cannot improve on it.
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Table 3: Percentage of times x1 is selected
u = 0.0 u = 0.3 u = 0.6

n κ = 5 κ = 10 κ = 20 κ = 5 κ = 10 κ = 20 κ = 5 κ = 10 κ = 20
250 CV 95.49 96.89 97.70 82.16 82.87 79.80 56.41 47.80 37.70

AL 93.69 95.09 95.60 76.35 75.15 71.10 47.39 37.78 28.60
PI 85.37 82.76 81.90 67.23 60.62 54.50 41.38 32.06 21.80
IL 94.09 93.99 92.00 90.18 86.77 83.10 79.66 71.64 60.00

1000 CV 99.60 100.00 100.00 97.20 98.10 99.00 82.20 78.90 72.10
AL 98.90 99.90 100.00 93.20 95.20 96.40 71.50 66.40 57.80
PI 98.50 98.60 99.00 92.60 94.30 93.10 73.30 67.50 58.40
IL 100.00 100.00 99.70 99.60 99.30 98.90 96.30 93.10 89.60

4000 CV 100.00 100.00 100.00 99.80 100.00 100.00 96.20 98.30 98.60
AL 99.80 100.00 100.00 98.50 99.50 100.00 86.60 90.70 91.80
PI 99.80 100.00 100.00 99.10 99.90 100.00 94.50 95.20 94.50
IL 100.00 100.00 100.00 100.00 100.00 100.00 99.80 100.00 99.30

Table 4: Average and standard error of the number of selected regressors
u = 0.0 u = 0.3 u = 0.6

n κ = 5 κ = 10 κ = 20 κ = 5 κ = 10 κ = 20 κ = 5 κ = 10 κ = 20
250 CV 8.51

(7.69)
9.08
(7.74)

8.76
(7.62)

8.46
(7.43)

9.14
(7.60)

8.64
(7.05)

8.40
(7.42)

8.79
(7.54)

8.16
(7.07)

AL 7.32
(7.10)

7.59
(6.94)

7.38
(6.68)

7.32
(7.01)

7.65
(7.00)

7.22
(6.55)

7.00
(6.84)

7.20
(6.80)

6.71
(6.45)

PI 1.33
(0.66)

1.59
(0.84)

1.85
(1.08)

1.40
(0.72)

1.68
(0.86)

1.98
(1.10)

1.26
(0.60)

1.43
(0.73)

1.52
(0.80)

IL 5.12
(5.32)

5.98
(2.29)

9.95
(4.19)

5.73
(7.18)

6.20
(2.31)

10.67
(4.22)

5.09
(8.02)

5.72
(2.19)

9.16
(3.70)

1000 CV 9.63
(9.31)

9.90
(9.25)

10.11
(10.16)

9.94
(9.39)

10.34
(9.34)

10.94
(10.32)

10.02
(9.36)

10.32
(9.26)

10.66
(9.52)

AL 4.35
(8.13)

4.91
(9.32)

4.86
(8.86)

5.02
(8.60)

5.89
(9.63)

6.37
(9.70)

5.20
(8.63)

6.40
(9.98)

6.70
(9.61)

PI 1.41
(0.61)

1.62
(0.81)

1.99
(1.16)

1.69
(0.71)

2.08
(0.99)

2.68
(1.37)

1.69
(0.67)

2.08
(0.88)

2.54
(1.13)

IL 5.37
(5.27)

7.16
(1.98)

11.86
(4.11)

5.98
(7.20)

7.22
(2.04)

12.99
(4.03)

6.55
(11.25)

7.23
(1.91)

12.94
(3.66)

4000 CV 10.48
(11.52)

10.34
(11.13)

10.77
(11.15)

10.91
(11.57)

10.71
(11.06)

11.52
(11.59)

11.11
(11.54)

11.06
(11.12)

12.09
(11.57)

AL 1.00
(0.04)

1.04
(1.10)

1.00
(0.00)

1.03
(0.50)

1.14
(1.98)

1.15
(2.27)

1.16
(1.84)

1.31
(2.76)

2.04
(6.01)

PI 1.35
(0.57)

1.52
(0.74)

1.79
(1.03)

1.68
(0.74)

2.05
(1.01)

2.49
(1.30)

1.93
(0.80)

2.40
(1.10)

3.02
(1.30)

IL 5.19
(5.65)

8.36
(1.70)

15.39
(3.44)

6.00
(11.38)

8.04
(1.89)

14.16
(3.88)

6.51
(10.51)

7.55
(1.96)

14.13
(3.54)
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In summary, for very large samples, the adaptive lasso with penalty parameter se-
lected by cross validation is the preferred method; this is justified both by our simulation
results and by its oracle property. However, for small to medium samples, and especially
with high correlation between potential explanatory variables, the adaptive lasso is out-
performed by other methods. In these cases, the choice of method depends on whether
we favour selecting the relevant regressors or having a parsimonious model. If parsimony
is paramount, the lasso with penalty parameter selected by the plug-in method is diffi -
cult to beat. However, if selecting the relevant regressor is important, the iceberg lasso
is a safe bet and is the best method. This is particularly the case if the relevant variable
is highly correlated with other potential controls because in that case the iceberg lasso
outperforms the adaptive lasso even for the larger samples considered in our experiments.
These results, which confirm and extend the findings of Drukker and Liu (2019), have

important implications for our work. Given that in our application we only have data on
283 trade agreements,15 we cannot expect any of the methods considered to be able to
precisely identify the set of provisions that matter for trade. The task of identifying the
correct set of explanatory variables is particularly challenging in our application because
many of the provisions have very strong correlations with others, and there are even
cases of perfect collinearity. In this challenging context, the iceberg lasso emerges as
providing a good compromise between parsimony and the ability to identify the relevant
variables. It consequently is our preferred approach.

4 Lasso Results

In this section, we present our lasso results obtained using the methods described in the
previous section. We first present results for the plug-in method before briefly discussing
the results obtained using cross-validation. We then turn to the iceberg lasso results,
which themselves are based on provisions selected by the plug-in method.

4.1 Plug-in Lasso Results

Table 5 presents results for the plug-in lasso and post-lasso regressions discussed before.
In column 1, we start by presenting the results of a traditional PPML estimation with a
dummy for the presence of a preferential trade agreement between the trading partners.
This shows that we can replicate the usual finding that PTAs lead to a significant increase
in trade flows in our data. Specifically, we find that the PTAs in our data increase
trade by exp (0.130) − 1 = 13.8%. Column (2) then shows the results of our first-step
lasso regression, showing only the coeffi cients that the lasso finds to be non-zero. In a
subsequent step, we then estimate a “post-lasso”PPML regression– a standard PPML
regression using only the provisions that were selected by the lasso in the first step.

15Note that the information on the effect of the different provisions is limited by the relatively small
number of PTAs that are observed. Therefore, despite having a large number of observations, we
effectively only have a small sample to identify the effect of the different provisions.
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Using the plug-in approach, the lasso selects a small number of trade agreement
provisions related to anti-dumping, competition policy, domestic subsidies, technical
barriers to trade (TBT), and trade facilitation. Broadly speaking, these variables all
can be rationalized as having intuitive effects on trade. The selected anti-dumping,
competition policy, and subsidy provisions all create more certainty as to how disciplinary
investigations and proceedings will be carried out in these various policy areas. This
increased certainty may increase entry by foreign exporting firms. The inclusion of
provisions related to technical barriers to trade and trade facilitation is likewise intuitive,
but the selection of TF45, which facilitates obtaining certificates of origin, seems of
particular note in that it highlights the costs of complying with rules of origin.
The corresponding post-lasso PPML results, shown in column (3), finds that some of

the selected provisions have large effects when estimated in the conventional way. For ex-
ample, the inclusion of anti-dumping provision AD14, which requires that anti-dumping
proceedings establish “material injury”to domestic producers, is associated with an in-
crease in trade flows of about 36.8% (exp (0.313) − 1 = 0.368). Even larger effects are
found for having trade facilitation provisions that regulate customs and other duties
collection (TF42), which has an estimated effect of 42.5% (exp (0.354) − 1 = 0.425).
Interestingly, not all of the provisions selected by the lasso step are found to be statisti-
cally significant in the post-lasso step. This apparent contradiction arises for two reasons.
First, the lasso focuses on the implications for model fit when a variable is not included,
which is not the same as testing whether its coeffi cient is statistically different from zero.
Second, because the lasso shrinks all coeffi cients towards zero simultaneously, it reduces
the influence of the collinearity between them and can allow individual provisions that
are not significant in the conventional regressions to speak more loudly.
In column (4), we re-estimate the model using the same covariates as column (3) but

now re-adding our original PTA dummy from column 1. In this case, the coeffi cient on
PTA captures any effect on trade flows that is not already captured by the 8 provision
variables that were selected by the lasso. With this in mind, we take the insignificant
and near-zero coeffi cient on PTA in column (4) as an encouraging indication that the
selected provisions completely explain the average PTA effect estimated in column (1).
Next, column (5) returns to our original simple model from column (1) but adds a

second dummy variable for the EU agreement. Our reasons for treating the EU sepa-
rately from other agreements are three-fold. First, we suspect that not all of the EU’s
efforts to promote trade are captured in how their provisions variables are coded in our
data. There could also be unobserved effects that are channeled through the EU’s sec-
ondary law process, in which the EU’s governing institutions are empowered to pass new
regulations and directives on an ongoing basis. Second, our provisions data does not
include agreements that are no longer in effect. For the most part, the agreements that
cannot be included are EU pre-accession agreements, which obviously are subsumed by
the EU agreement once each new member joins the EU. As discussed in Section 2, we
deal with this data issue in practice by dropping all observations associated with obsolete
agreements. Nonetheless, this could lead to biased estimates of the EU agreement and
the provisions associated with it. Third, the EU has in place six of the eight provisions
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selected in column 2 (all except AD14 and TBT7); thus, we want to make sure we are
not simply picking up an “EU effect”in the provisions that are selected.
As the PPML results in column (5) show, the estimated EU effect is large, several

times that of non-EU PTAs in fact. However, the more important exercise is in column
(6), where we now treat the EU as a possible predictor in the lasso. Because the EU
is indeed selected as being an important predictor of changes in trade flows, the value
of this exercise is that the selection of other predictors is solely based on information
from other agreements aside from the EU. Consequently, the set of provision variables
selected by the lasso is now slightly different than in column (2), adding TF41 (which
calls for harmonization of customs procedures) but losing TBT2, SUB12, and TF42.
Notably, the post-lasso estimates in column (7) find TF41 to be highly significant both
statistically and economically, with an estimated effect of exp (0.550)−1 = 73.3%. Given
the possible issues with the EU we have outlined, this last set of provision variables is
our preferred set to work with in the subsequent iceberg lasso analysis.

4.2 Cross-Validation Lasso Results

As discussed previously, the plug-in approach to choosing λ is conservative, in the sense
that it tends to choose a relatively small set of regressors and may fail to pick the
“correct”regressors. For comparison, we now discuss the choice of regressors when we
use the cross-validation approach. Figure 2 shows how the out-of-sample mean square
error (MSE) varies with the log of the tuning parameter, which is scaled by

∑
ijt yijt

so that the results do not depend on the scale of the data. The out-of-sample MSE
initially decreases as λ is increased and then increases again, with a minimum reached
at λ/

∑
ijt yijt = 0.00025.

Figure 2: Cross-validation MSE vs. tuning parameter
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For more illustration, Figures 3 and 4 show the corresponding regularization paths
for selected provisions. That is, the figures show how the value of the estimated (post-
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lasso) coeffi cient on the selected provisions changes as we vary λ. As expected, fewer
provisions are selected as we increase λ. At the optimal value of λ/

∑
ijt yijt = 0.00025,

our cross-validation approach selects 124 provisions to have non-zero effects, which is
many more than what we found using our plug-in approach.16

Note, however, that it is not necessarily the case that the set of provisions selected
at lower levels of λ includes the set of provisions selected at higher levels. For example,
Figure 3 shows that provision AD14, which was one of the provisions selected by our
plug-in approach, is only selected for higher values for λ. Intuitively, as we lower λ,
more provisions are selected and some of these are correlated with provision AD14. This
then implies that adding AD14 itself does not lead to significant improvements in out-
of-sample forecasts during cross-validation and hence it is no longer selected. It is only
when the provisions correlated with AD14 are purged from the model as λ increases that
AD14 on its own gains predictive power and is included. That said, for higher values of
λ, we generally see a close correspondence between the results along the regularization
path indicated in Figures 3 and 4 and those that we found earlier using the plug-in
method.
Overall, Figures 3 and 4 show that our two approaches to selecting λ lead to very

different sets of trade agreement provisions being selected. While some provision, such as
CP23 or SUB12 are selected by both approaches, others, such as AD14, are only selected
by the plug-in method, and many provisions are only selected using cross-validation, such
as anti-dumping provision AD05. Furthermore, we also see in Figures 3 and 4 that many
of the estimated effects for the provisions that are selected are too large in absolute
magnitude to be plausible when interpreted on their own. These observations reflect the
known shortcomings of the cross-validation approach that we stated earlier and found
support for in our simulations.

4.3 Iceberg Lasso Results

As previously mentioned, we cannot be certain whether the variables selected by the
lasso have a causal effect on trade, or are simply highly correlated with the variables
that have a causal effect. In this section, we investigate this issue further by carrying
out the iceberg lasso analysis we proposed earlier. That is, for each of the provisions
from our preferred set of estimates (those from the last column of Table 5), we run an
additional plug-in lasso regression where we regress each selected provision on all of the
provisions excluded by our first-stage lasso. As discussed, the purpose of these auxiliary
regressions is to construct bundles of provisions that, at least when combined together,
are likely to have a causal impact on trade flows when included in trade agreements.
As we have noted, the reader should be cautioned that we will not be able to say with
high certainty whether a given provision is important for promoting trade but, as we
will see, this method gives us significantly increased parsimony versus instead relying on
cross-validation. Furthermore, as we have seen from our simulations, it should also give
us more confidence in the results.
16In each panel of the figure, the second-to-last set of estimates corresponds to the 124 variables

selected by the cross-validation method.
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Table 6 presents the results of our iceberg lasso analysis. The first two rows of Table 6
list each of the six provisions selected by the first-stage plug-in lasso when the EU dummy
is included, as well as their estimated impact on trade flows from column (6) of Table 5.
The subsequent rows of Table 6 report all provisions that were not selected by the lasso
in the first step but are identified in the second step of the iceberg lasso; we also report
the correlation of each of these provisions with the selected provision in the first row.
Finally, the last row reports the R2 of the regression of each selected provision on the
corresponding correlated provisions. For example, column (1) shows that antidumping
provision AD14 is highly correlated with two further antidumping provisions (AD06 and
AD08) as well as with one provision on environmental protection (ENV42);17 the R2 of
the regression of AD14 on these three provisions is 0.95.

Table 6: Iceberg lasso results
(1) (2) (3) (4) (5) (6)
AD14 CP23 TBT07 TBT33 TF41 TF45
(+41%) (+4.7%) (+11.2%) (+4%) (+73.3%) (+8.2%)
AD06 (0.97) AD06 (0.46) AD06 (0.54) AD06 (0.48) AD05 (0.89) AD11 (0.09)
AD08 (0.97) AD08 (0.46) AD08 (0.54) AD08 (0.48) CP15 (0.73)
ENV42 (0.97) CP22 (0.78) ENV42 (0.54) AD12 (-0.11) ET03 (0.51)

CP24 (0.89) ENV44 (0.06) ENV42 (0.48) SUB10 (0.25)
ENV42 (0.46) SPS21 (0.23) ENV44 (-0.01) SUB11 (0.28)
ET41 (0.16) SUB07 (0.08) INV24 (0.11) TF44 (0.98)
IPR42 (-0.00) TBT15 (0.73) IPR71 (-0.08)
IPR55 (-0.01) TBT34 (0.94) IPR103 (-0.11)
IPR63 (-0.00) IPR107 (-0.12)
IPR74 (-0.01) MOC26 (-0.10)
PP08 (0.08) SPS21 (0.19)
SPS21 (0.17) SUB04 (-0.11)
STE31 (0.57) SUB07 (0.07)
TBT02 (0.56) TBT05 (0.61)
TBT15 (0.37) TBT06 (0.98)
TBT29 (0.56) TBT15 (0.69)
TF42 (0.56) TBT32 (0.61)
TF44 (0.38) TBT34 (0.53)

0.95 0.83 0.89 0.97 0.80 0.96

Notes: Table shows PTA provisions associated with increases in bilateral trade flows (row 1),

together with the estimated increase in trade flows (row 2), as well as other provisions that predict

the provision in row 1 (rows 3-20; numbers in brackets are raw correlations with the provision

from line 1). The last row displays the R2 of the regression of each selected provision on the

corresponding correlated provisions.

The results in Table 6 show that the iceberg-lasso identifies 43 provisions that are
likely to be associated with increased trade. This finding contrasts with the 124 provi-
sions identified by the cross-validation lasso, and the 6 provisions selected by the plug-in
lasso. Therefore, as in the simulations in the preceding section, the iceberg lasso appears

17In our data, ENV42 is perfectly colinear with AD06 and AD08.
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to provide a good compromise between the cross-validation lasso, which selects so many
provisions that makes it diffi cult to interpret its results, and the plug-in lasso, which is
likely to miss important provisions.
As noted above, we find that provision AD14 is correlated other antidumping pro-

visions; this correlation is not surprising because all these provisions fulfill a similar
purpose, which is to increase transparency in the use of antidumping duties. In that
sense, one conclusion to be drawn from this exercise is that antidumping provisions are
likely to increase trade flows, although we cannot say which of them has the biggest
effect. Table 6 shows that, more surprisingly, AD14 is also strongly correlated with
ENV42. This correlation seems to be due to what might be called a template effect,
that is, the tendency of important trading blocs such as the EU and the US to use
similar provisions in all their agreements. For example, most agreements signed by the
EU include provisions on antidumping and the environment, hence leading to a high
correlation between the corresponding provisions in our data.
Template effects may also be important for understanding the variables highly corre-

lated with the selected TBT provisions, TBT07 and TBT33. Indeed, some of the same
anti-dumping and environmental provisions that were found to be correlated with AD14
show up here as well (AD6, AD8, ENV42). That said, the strongest correlations in these
cases are with other TBT provision such as TBT06, TBT15 and TBT34. This is not
surprising as these provisions also relate to the use of international standards. Thus, it
seems likely that provisions encouraging the use of international standards in the area
of technical barriers to trade are likely to be behind the trade increases associated with
provisions TBT07 and TBT33, although we cannot say which of the individual TBT
provisions is driving the observed effect.
The lasso also selects two provisions that reduce the administrative burden resulting

from compliance with rules of origin and other customs procedures (TF41 and TF45),
which are estimated to have a very large trade increasing effect (over 70% for TF41).
Table 6 also indicates that other trade facilitation provisions are correlated with some
of the provisions selected by the lasso; this is true both for TF45 and CP23. Thus,
our results suggest that trade facilitation procedures are likely to be associated with
significant trade flow increases.
Finally, we find that provision CP23, which serves to promote transparency in com-

petition policy, is correlated with some of the previously identified types of provisions,
as well as with two further provisions on competition policy (CP22 and CP24). Thus, it
seems likely that the presence of provisions on competition policy is behind the observed
trade increasing effect of CP23, although we are again unable to say which provision
exactly is driving this effect.
The iceberg lasso also identifies provisions from other areas that help predict the

provisions identified in the first step. For example, provisions in policy areas such as
intellectual property rights and sanitary and phytosanitary measures are related both
to CP23 and TBT33, but these types of provisions are associated with smaller raw
correlations. By the logic of the lasso, it is likely that these provisions are informative for
predicting the presence of CP23 and TBT33 in a relatively small number of agreements
where other provisions with higher raw correlations are not found.
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In summary, although it is not possible to identify with certainty which provisions
are most important for increasing trade, our results allow us to find a relatively small
bundle of provisions that are likely to have the desired effect. In particular, provisions
related to TBTs, antidumping, trade facilitation, and competition policy are likely to
enhance the trade-increasing effect of trade agreements.

5 Conclusions

In this paper, we have proposed new methods for assessing the impact of individual trade
agreement provisions on trade flows. While other work in this area has relied on summary
measures of agreement depth or on specific provision bundles of interest, our approach
is instead to study the rich provision content of PTAs as a variable selection problem.
By combining the three-way PPML estimator that is popular in the study of PTAs with
lasso methods for variable selection, we are able to identify which of the many provisions
in our data set should be treated as relevant for affecting trade flows. Using our preferred
method, a two-step “iceberg lasso”approach, we identify a relatively parsimonious set
of 43 provisions that are most likely to impact trade. While these 43 provisions span a
range of policy areas, our results generally support the conclusion that a select number
of provisions related to anti-dumping, competition policy, technical barriers to trade,
and trade facilitation are most effective at promoting trade as compared to other types
of provisions that appear in PTAs.
We need to be clear that interpreting these results requires some important caveats.

We know that it is possible that our preferred method may fail to discover important
trade-promoting provisions, and it is almost certain to lead to the inclusion of provisions
that are not relevant. At present, we are not able to quantify either type of uncer-
tainty. Developing metrics that can be used to guide researcher confidence represents an
important avenue for future research.
In terms of broader applications, our methods are not limited to just PTAs or even

just to trade. There are many other contexts in which the iceberg lasso method we
have introduced could be a helpful tool for any researcher wishing to determine which
of a large number of variables are worth focusing on as most relevant for the outcome.
Furthermore, by integrating the lasso into a nonlinear model with high-dimensional fixed
effects, we show how variable selection and other related machine learning approaches
can be utilized in much more generalized settings than what had been possible previously.
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More Details on HDFE-PPML-lasso Estimation

The minimization problem that defines the three-way PPML-lasso is

(α̂, γ̂, η̂, β̂) := arg min
α,γ,η,β

1

n

∑
i,j,t

exp(x′ijtβ + αit + γjt + ηij)

− 1

n

∑
i,j,t

yijt
(
x′ijtβ + αit + γjt + ηij

)
+

1

n

p∑
k=1

φ̂kλ|βk|. (3)

The first-order conditions (FOCs) for this problem are

α̂it :
1

n

∑
j

yijt − µ̂ijt = 0, ∀i, t,

γ̂jt :
1

n

∑
i

yijt − µ̂ijt = 0, ∀j, t,

η̂ij :
1

n

∑
t

yijt − µ̂ijt = 0, ∀i, j,

β̂k :
1

n

∑
i,j,t

(
yijt − µ̂ijt

)
xijt,k +

1

n
φ̂kλsign(β̂k) = 0, k = 1...p,

where µ̂ijt denotes µijt evaluated at α̂, γ̂, η̂, β̂. Notice that the penalty only affects the
FOCs for the main covariates of interest. The FOCs for the fixed effects are exactly the
same as they would be in unpenalized PPML. That said, further simplification is still
needed because it is generally not possible to estimate all of the parameters directly,
with or without the penalty. Instead, we first need to “concentrate out”the fixed effect
parameters. That is, instead of minimizing (3) over all of the parameters, we treat
α̂it(β̂), γ̂it(β̂), and η̂it(β̂) as functions of β̂ that are implicitly defined by their FOCs.
The resulting “concentrated”minimization problem is

β̂ := arg min
β

1

n

∑
i,j,t

exp
(
x′ijtβ + α̂it (β) + γ̂jt (β) + η̂ij (β)

)
− 1

n

∑
i,j,t

yijt
(
x′ijtβ + α̂it (β) + γ̂jt (β) + η̂ij (β)

)
+

1

n

p∑
k=1

φ̂kλ|βk|, (4)

such that β is now the only argument we need to solve for. The FOC for each β̂k
associated with this modified problem is:

β̂k :
1

n

∑
i,j,t

(
yijt − exp

(
x′ijtβ̂ + α̂it

(
β̂
)

+ γ̂jt

(
β̂
)

+ η̂ij

(
β̂
)))

x̃ijt,k +
1

n
φ̂kλ sign(β̂k) = 0,

where

x̃ijt,k := xijt,k +
dα̂it,k
dβ

+
dγ̂it,k
dβ

+
dη̂ij,k
dβ

(5)
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captures both the direct and indirect effects of a change in β on the conditional mean of
yijt.
To explain how we deal with the fixed effects, assume for the moment that we know

the true values of µijt := exijtβ+αit+γjt+ηij that we will eventually estimate. If that is the
case, then the penalized PPML solution (β, α, γ,η) is also the solution to the following
weighted least squares problem

min
β

1

2n

∑
i,j,t

µijt
(
zijt − αit − γjt − ηij − x′ijtβ

)2
+

1

n

p∑
k=1

φ̂kλ |βk| ,

where
zijt =

yijt − µijt
µijt

+ log µijt

is the transformed dependent variable that is used to motivate estimation via iteratively
re-weighted least squares (IRLS). The convenient thing about this representation of the
problem is that we can rewrite it as

min
β

1

2

∑
i,j,t

µijt
(
z̃ijt − x̃′ijtβ

)2
+

p∑
k=1

λφ̂k |βk| , (6)

where z̃ijt and x̃ijt are respectively defined as the “partialed-out” versions of xijt and
zijt, which are obtained by within-transforming xijt and zijt with respect to it, jt, and
ij and weighting by µijt. The within-transformation steps involved in computing z̃ijt
and x̃ijt are the same as in Correia, Guimarães, and Zylkin (2020) and can be computed
quickly using the methods of Gaure (2013). Furthermore, one can show that the x̃ijt
that appears in (6) is consistent with the definition given for x̃ijt,k in (5).
The nice thing about expressing the problem as in (6) is that it now resembles a simple

penalized regression problem. It can thus be quickly solved using the coordinate descent
algorithm of Friedman, Hastie, and Tibshirani (2010). Furthermore, though we do not
know the correct estimation weights (the µijts) beforehand, we can follow the approach
of Correia, Guimarães, and Zylkin (2020) by repeatedly updating them until convergence
after each new estimate of β, as in IRLS estimation. Altogether, our algorithm closely
follows Correia, Guimarães, and Zylkin (2020) and otherwise only involves swapping out
their weighted least squares step for a penalized weighted least squares step, as shown
in (6). In principle, this algorithm can be easily modified to other settings that feature
multi-way fixed effects in order to simplify estimation.

More Details on Plug-in Lasso

Rather than relying on out-of-sample performance, the Belloni, Chernozhukov, Hansen,
and Kozbur (2016) “plug-in”lasso method chooses the penalty parameters λ and φ̂k using
statistical arguments. Their specific framework is a simple linear panel data model, but
their reasoning involves modifying the standard lasso penalty to reflect the variance of
the score. These concepts are quite general; thus, we can modify their approach to take
into account the more complex case of a nonlinear model with multiple fixed effects.
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The key condition in choosing these penalty parameters is that they should satisfy
the following inequality for all k:

λφ̂k
n
≥ c

∣∣∣∣∣ 1n∑
i,j,t

(yijt − exp(x′ijtβ + αit + γjt + ηij))x̃ijt,k

∣∣∣∣∣ ∀k, (7)

for some c > 1. Intuitively,∣∣∣∣∣ 1n∑
i,j,t

(yijt − exp(x′ijtβ + αit + γjt + ηij))x̃ijt,k

∣∣∣∣∣
is the absolute value of the score for βk.When evaluated at βk = 0, it tells us to what
degree moving each βk away from zero will affect the fit of the model. If it does not
produce a suffi cient improvement in fit as compared to the penalty λφ̂k, then regressor
xijt,k will not be selected.
Next, set

φ̂
2

k =
1

n

∑
i,j

(∑
t

x̃ijt,kε̂ijt

)2

=
1

n

∑
i,j

∑
t

∑
t′

x̃ijt,kx̃ijt′,k ε̂ijt̂εijt′ ,

where ε̂ijt = yijt−exp(x′ijtβ̂+ α̂it+ γ̂jt+ η̂ij), but can also be obtained as ε̂ijt = µ̂ijt(z̃ijt−
x̃′ijtβ̂). By inspection, this expression provides an estimate of the variance of the score
for βk under the assumption that errors are correlated over time within the same pair,
as is commonly assumed in this context. Provided there is weak temporal dependence
(in the sense described by Hansen, 2007), φ̂

2

k − φ2
k = op(1) uniformly in k, where φ2

k is

the analogue of φ̂
2

k evaluated at the true values of εijt. By choosing φ̂k in this way we
ensure that the score for βk when evaluated at zero must be large as compared to its
standard deviation in order for regressor k to be selected.
The choice of λ then involves setting a value that is suffi ciently large that the statis-

tical probability an irrelevant regressor is selected is small. By the maximal inequality
for self-normalized sums (see Jing, Shao, and Wang, 2003), it follows that

Pr
(
φ̂
−1

k
1√
n

∑
i,j,t x̃ijt,kεijt ≥ m

)
Pr (N(0, 1) ≥ m)

= o(1),

for |m| = o(n1/6), thus establishing a bound for the tails of the normalized sum. This
suggests that by choosing a λ that is suffi ciently large to dominate a p-dimensional stan-
dard normal, the inequality in (7) is satisfied. Hence, following Belloni, Chernozhukov,
Hansen, and Kozbur (2016), we set

λ = λplug = 2c
√
nΦ−1 (1− γ/2p) ,

where c = 1.1 and γ = 0.1/ log(n).
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As discussed in the main text, after the lasso step, we then perform an unpenalized
PPML estimation using the selected covariates, a so-called “post-lasso”regression. Let
β̂PL be the estimator of the parameters associated with the s selected covariates. Such
an estimator is said to have the “oracle property”if the asymptotic distribution of β̂PL
coincides with that of the estimator we would obtain if we knew exactly which coeffi cients
were equal to zero, i.e., for large enough samples we would have β̂PL,k = 0 if and only
if βk = 0 for k = 1, ..., p. Hence, for estimators with the oracle property, asymptotically
the post-lasso model is indeed the right model. In general, the lasso does not satisfy the
oracle property. Nevertheless, under some additional regularization conditions, the use
of the plug-in lasso method just described ensures the following “near-oracle”property
for β̂PL, ∥∥∥β̂PL − β∥∥∥

1
= Op

(√
s2 max (log n, log p)

n

)
,

and hence the post-lasso estimates are consistent at a rate that differs from the oracle
rate only up to the log factor max (log n, log p).
In practice, the plug-in lasso method only requires adding one additional step to the

procedure used for the estimation of the PPML-lasso with high-dimensional fixed effects
described before. Though the φ̂k penalty terms are not known beforehand, they, too,
can be iterated on in the same fashion as µijt. Simply use the most recent values of ε̂ijt
in each iteration to construct new values for φ̂k.

More Details on Cross-Validation

As discussed in the main text, the idea behind cross-validation (CV) is to repeatedly hold
out a subset of the sample during estimation and then use it to validate the resulting
estimates. In our setup, rather than holding out observations in an unstructured way,
we keep together all observations for which a given agreement is in effect, and hold out
subsets of agreements. Doing so allows us to obtain estimates for the all the fixed effects
in the model.
To describe the implementation of CV, suppose that the observations associated with

trade agreements are partitioned into G subsets. Each resulting hold-out sample g will
have ng observations, where ng is the number of observations associated with agreements
that are held out in partition g. Because our variables of interest are all dummies, a
problem that may occur is that over some subsamples some regressors may not be present,
but that is less likely to happen when G is large.
The CV approach sets all regressor-specific penalty weights φ̂k equal to 1. Let β̂L,g(λ)

be the lasso estimator obtained via the minimization of (4) when holding out the ng
observations contained in partition j. Define the CV bandwidth as

λCV = arg min
λ∈Λ

1

G

G∑
g=1

1

ng

∑
(i,j,t)∈g

(yijt

− exp
(
x′ijtβ̂L,g(λ) + αit

(
β̂L,g(λ)

)
+ γjt

(
β̂L,g(λ)

)
+ ηij

(
β̂L,g(λ)

)))2

.
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Since λCV is based on the minimization of the average MSE over different subsamples, we
expect it to deliver a much more lenient variable selection. There is some disagreement
over whether dummy variables, such as the ones used in our application, should be
standardized before applying the CV lasso. This consideration is in contrast to the plug-
in lasso, since standardization of the covariates simply causes the φ̂k terms to be re-scaled
without otherwise affecting estimation in that case. We have computed CV lasso results
with and without first standardizing and found that the results with standardization are
noticeably more similar to the plug-in lasso results. Thus, our preference is to work with
standardized dummy covariates.
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