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Abstract

Gravity regressions are a common tool in the empirical international trade litera-
ture and serve an important function for many policy purposes. We study to what
extent micro-level parameters can be recovered from gravity regressions estimated
with aggregate data. We show that estimation of gravity equations in their original
multiplicative form via Poisson pseudo maximum likelihood (PPML) is more ro-
bust to aggregation than estimation of log-linearized gravity equations via ordinary
least squares (OLS). In the leading case where regressors do not vary at the micro
level, PPML estimates obtained with aggregate data have a clear interpretation as
trade-weighted averages of micro-level parameters that is not shared by OLS esti-
mates. However, when regressors vary at the micro level, using disaggregated data
is essential because in this case not even PPML can recover parameters of interest.
We illustrate our results with an application to Baier and Bergstrand’s (2007) in-
fluential study of the effects of trade agreements on trade flows. We examine how
their findings change when estimation is performed at different levels of aggrega-
tion, and explore the consequences of aggregation for predicting the effects of trade
agreements.
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1 Introduction

Gravity equations are the workhorse model in international trade to estimate trade cost

parameters and to evaluate the effects of policy changes. Gravity equations have been used

to estimate the trade effects of free trade agreements, currency unions, WTO membership

and colonial history, amongst other institutional features (see Anderson, 2011, and Head

and Mayer, 2014). When trade costs change, the impact typically materializes at the

level of individual agents such as firms and customers. That is, the impact is governed by

parameters at the micro level, for example product-level demand elasticities. However, due

to data constraints, gravity equations are routinely estimated at the aggregate level using

country-level data.1 The resulting estimates are often assumed, explicitly or implicitly, to

be informative about the more fundamental micro-level parameters.

In this paper, we investigate to what extent this practice is justified. Specifically, we

ask two related questions. First, can we infer micro-level elasticities and other parameters

from aggregate-level gravity regressions and, if yes, under what conditions? Second, if the

elasticities estimated with aggregate data differ from the micro elasticities, what are the

implications of aggregation for the use of gravity equations in evaluating policy changes?2

Regarding the first question, we show that if there is no parameter heterogeneity at the

micro level and if regressors do not vary across micro units within more aggregated macro

units, we can recover micro-level parameters from estimation based on aggregate data. For

instance, this scenario applies when the regressors are bilateral distance and a bilateral

free trade agreement (FTA) dummy whose elasticities do not differ at the micro level, and

the fixed effects included in the regressions also do not vary at the micro level. Although

ordinary least squares (OLS) estimation with aggregate data is in principle able to recover

the micro-level elasticities, this is only possible under very restrictive assumptions that

are unlikely to hold in practice, for example because errors are heteroskedastic, leading to

aggregation bias. In contrast, we show that Poisson pseudo maximum likelihood (PPML)

1Throughout the paper we use the terms “micro”, “product”and “sector”level interchangeably. This
is in contrast to the aggregate country pair-level analysis of bilateral trade.

2Although in this paper we only explicitly consider aggregation across sectors, aggregation over time
raises similar issues and our results can easily be applied to that problem.
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estimation recovers the micro-level elasticities under more realistic assumptions allowing

for heteroskedastic errors. This invariance result extends the well-known finding by Santos

Silva and Tenreyro (2006) to the problem of aggregation.

For the more general case where parameters vary at the micro level, naturally it is not

possible to recover the micro parameters from aggregate data. However, we show that

results from aggregate regressions can to some extent still be informative about micro-level

parameters. Specifically, if there is micro-level parameter heterogeneity but regressors

do not vary at the micro level, PPML estimation using aggregate data will recover a

trade-weighted average of micro-level parameters. By contrast, the more traditional OLS

estimation of log-linearized gravity equations leads to results that are not interpretable

because they combine the aggregation bias with the bias resulting from log-linearization

(see Santos Silva and Tenreyo, 2006). Moreover, this second bias also varies with the level

of aggregation, making the OLS estimates very unstable.

If the regressors vary at the micro level, estimates obtained with aggregate data will

generally yield biased estimates of the underlying micro-level parameters. We show that

it is generally not possible to determine the sign or size of this bias, unless one is willing to

make very specific assumptions about the underlying data generating process. Therefore,

if the model contains regressors that vary across products, there is effectively no alternative

but to use disaggregate data because in this case even the PPML estimates are diffi cult

to interpret.

Having established these theoretical results, we investigate the implications of aggre-

gation for the evaluation of trade policy, focusing on the classic question of the impact

of free trade agreements. Specifically, we ask whether and how the level of aggregation

is important for predictions regarding the impact of trade agreements on trade flows.

Consistent with our theoretical results, we demonstrate that if the conditions required for

invariance hold and the corresponding gravity equations are estimated with PPML, then

the predicted trade flow increase does not vary with the level of aggregation at which

gravity equations are estimated. However, if we use OLS estimation or if the invari-
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ance conditions are violated, the predicted increase in trade flows can vary substantially

depending on whether we use micro-level or macro-level data.

Combining the insights obtained from this empirical exercise with our theoretical re-

sults, we then formulate a set of recommendations for applied researchers on how to

interpret and use estimates obtained from gravity equations. In essence, we recommend

that PPML and micro-level data should be employed whenever possible. If the model

contains regressors such as tariffs that vary by product, there may be no alternative but

to use disaggregate data. However, in the leading case where the regressors do not vary by

sector, the PPML estimates obtained with aggregate data still have a clear and interesting

interpretation as trade-weighted averages of micro-level parameters.

Our work contributes to several related strands in the literature. First, we contribute

to the econometrics literature on cross-sectional aggregation of non-linear economic mod-

els. For example, Lewbel (1992) and van Garderen, Lee and Pesaran (2000) study the

consequences of aggregation in the context of log-linearized constant-elasticity models.

They conclude that the least squares estimator of aggregated log-linearized constant-

elasticity models is consistent only under very strong conditions that are unlikely to hold

in many applications. These conditions are even stronger than the ones needed for the

OLS estimator of the log-linear model to be valid (see Santos Silva and Tenreyo, 2006).

By contrast, we consider the effects of aggregation when constant-elasticity models are es-

timated in their exponential form by PPML and find that aggregate parameter estimates

are often informative.

Second, our work is related to papers in the trade and international macro literature

concerned with learning about micro-level parameters when using more aggregate trade

data. For example, Helpman, Melitz, and Rubinstein (2008) show how to account for

the self-selection of firms into export markets when estimating aggregate gravity equa-

tions. The procedure they propose yields consistent estimates of important micro-level

parameters even when only aggregate data is available. However, their procedure makes

strong assumptions about the data generating process underlying the observed aggregate

trade flows such as CES demand, monopolistic competition and, for some of their results,
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Pareto-distributed firm-level productivities.3 By contrast, we provide results for the wider

class of log-linear models that nest the CES monopolistic competition model considered

by Helpman, Melitz, and Rubinstein (2008) as a special case.

Our work is also related to Imbs and Mejean (2015) who argue that smaller trade

elasticity estimates at the aggregate level are an artefact of aggregation, driven by het-

erogeneity bias as sectoral elasticities are constrained to be homogeneous.4 We show

that aggregation can lead to different elasticity estimates even in the absence of hetero-

geneous elasticities at lower levels of aggregation.5 Redding and Weinstein (2019a and

2019b) show that the theoretical aggregation of gravity equations is not straightforward.

The key tension is that the typical gravity equation is log-linear while aggregation of

trade flows implies summation in levels. We focus on the empirical estimation and the

underlying econometric theory.

In independent work, French (2017) also considers the aggregate estimation of bilateral

gravity equations in the presence of micro-level heterogeneity. He approaches aggregate

estimation as a problem of omitted variable bias if micro-level heterogeneity is not properly

accounted for. This view is consistent with our results, but we provide a different analyti-

cal framework that provides an interpretation of aggregation effects that is arguably more

practical and intuitive. In particular, we show that in leading cases, aggregate PPML

estimates of gravity coeffi cients can be seen as weighted averages of product-specific pa-

rameters. This interpretation emphasizes the relation between the estimated parameters

and the parameters of interest.

The paper is structured as follows. In Section 2 we present a simple international

trade model that delivers gravity equations at two different levels of aggregation. This

framework provides theoretical guidance for our approach and helps to clarify the link

3See also Santos Silva and Tenreyro (2015).
4See also Pesaran and Smith (1995).
5Imbs and Mejean (2015) show that the bias typically pushes estimates towards zero in an international

trade context. All else equal, trade costs are a lesser impediment to less elastic trade flows characterized
by lower elasticities, and therefore a larger weight is placed on less elastic products. Feenstra, Luck,
Obstfeld and Russ (2018) specify a monopolistic competition model with a separate ‘macro’elasticity
between home and foreign varieties and a ‘micro’elasticity between different foreign varieties. We do not
make such a distinction but rather focus on the variation of elasticities across products.
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between parameter estimates and the underlying theoretical parameters common in in-

ternational trade models. In Section 3 we present initial motivating evidence regarding

the effects of aggregation in gravity estimation. In Section 4 we explain these findings by

deriving a number of theoretical results on the aggregation of constant-elasticity models

under different assumptions. In Section 5 we apply these results to the question of how

aggregation bias can matter for predicting the effects of policy interventions, with a focus

on the effects of free trade agreements. Drawing on the previous sections, Section 6 makes

a set of recommendations for applied researchers on how to interpret estimates obtained

from gravity equations at different levels of aggregation. Section 7 concludes.

2 Gravity at different levels of aggregation

We sketch a theoretical framework that yields gravity equations at different levels of aggre-

gation. It is based on a simple model of international trade with a two-tier nested constant

elasticity of substitution (CES) demand system. The upper tier represents the aggregate

level of the economy, and the lower tier the disaggregated (sector/industry/product) level.

Varieties in each sector are differentiated by origin according to the Armington assump-

tion.

Aggregate consumption at the upper tier is given by

Cj =

(∑
s

(cjs)
ν−1
ν

) ν
ν−1

,

where cjs is real consumption by country j of sector s aggregates, and ν is the elasticity

of substitution between sectors. The lower-tier aggregator is given by

cjs =

(∑
i

(θijscijs)
σs−1
σs

) σs
σs−1

,

where cijs is real consumption by country j of sector s varieties originating from country

i, σs is the elasticity of substitution across sector s varieties, and θijs ≥ 0 is a taste
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parameter that implies zero trade flows between countries i and j in sector s if θijs = 0

(see Redding and Weinstein, 2019b).

The CES demand relationship at the lower tier follows as

xijs =

(
pijs

θijsPjs

)1−σs
Ejs, (1)

where xijs denotes nominal trade flows from country i to country j in sector s, and pijs

denotes their unit price. Pjs is the sectoral CES price index in country j, and Ejs is the

corresponding sectoral expenditure. We assume trade costs are of the iceberg type such

that

pijs = τ ijspis, (2)

where pis denotes the price (or unit cost) at origin i. We assume a standard log-linear

specification of the trade cost function

ln τ ijs = ρs ln distij, (3)

where for simplicity we use bilateral distance distij as the sole trade cost component with

an elasticity ρs that can vary by sector.
6

Combining equations (1) and (2), we can write the micro-level gravity equation in

log-linearized form as

lnxijs = φis + ξjs − (σs − 1) ln τ ijs + ln ηijs, (4)

where the sector-origin fixed effect φis captures the origin price pis, and the sector-

destination fixed effect ξjs captures the price index Pjs and expenditure Ejs. The error

term ln ηijs absorbs the idiosyncratic taste parameter θijs and is traditionally assumed to

be independent of trade costs τ ijs. If trade costs are not fully observed, then ln ηijs could

also be seen as measurement error in trade costs.
6This trade cost function can be extended to a bilateral FTAij dummy and also to sector-specific

components such as tariffs tariff ijs.
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Aggregate bilateral trade is defined as the sum of bilateral trade flows at the sector

level

xij ≡
∑
s

xijs (5)

with i 6= j. We proceed to show that based on the micro-level framework in equations

(1)-(4), an aggregate gravity equation can be constructed but only with non-standard

properties. For this purpose, we substitute the demand function (1) into the definition of

aggregate bilateral trade (5) using equation (2):

xij =
∑
s

(
τ ijspis
θijsPjs

)1−σs
Ejs

=

(
τ ijpi
Pj

)1−σ
Ej exp(εij), (6)

where σ denotes the aggregate demand elasticity and

exp(εij) =
∑
s

(
τ ijpi
Pj

)σ−1(
τ ijspis
θijsPjs

)1−σs Ejs
Ej

. (7)

Taking logarithms of equation (6) implies

lnxij = Φi + Ξj − (σ − 1) ln τ ij + εij, (8)

with Φi = (1− σ) ln pi and Ξj = (σ − 1) lnPj + lnEj.

Superficially, equation (8) has the same structure as a conventional log-linearized grav-

ity equation. But the key point is that εij should not be considered a standard error term

because it is by construction a function of bilateral trade costs τ ij.7 The exception is the

case where θijs is the only source of sectoral heterogeneity, and therefore σs = σ, pis = pi,

7The result in equation (8) resonates with Redding and Weinstein (2019a and 2019b) who also demon-
strate that in a nested CES demand system as above, a log-linear gravity equation can be derived at the
aggregate level but only with an error term that is not orthogonal to bilateral trade costs.
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Pjs = Pj, Ejs = Ej, and τ ijs = τ ij = distρij. In this special case we have

exp(εij) =
∑
s

θσ−1ijs ,

and therefore (8) is a proper log-linearized gravity equation. This is a result we will use

later.

3 Motivating evidence

The theoretical framework in Section 2 delivers a gravity equation (4) at the disaggregate

(i.e., micro) level as well as an equation (8) at the aggregate level that can be construed as

a non-standard gravity equation. We now explore empirically how estimated coeffi cients

on gravity variables behave at different levels of aggregation. As an illustration in this

section and later in the paper, we use a replication of results from Baier and Bergstrand’s

(2007) seminal work on the effects of free trade agreements.

Baier and Bergstrand’s empirical framework is based on an OLS regression of loga-

rithmic trade flows on multiple categories of fixed effects and binary dummies for whether

two countries have a trade agreement in place. Specifically, they consider models of the

form

lnxijt = αit + αjt + αij + β1FTAijt + β2FTAijt−1 + β3FTAijt−2 + εijt, (9)

where xijt are imports of country j from country i in period t, the FTA dummies (which

include a contemporaneous term as well as two lags to allow for phasing-in effects) are the

regressors of interest, αit and αjt denote exporter-year and importer-year fixed effects that

control for price index and expenditure terms, αij are bilateral fixed effects introduced by

Baier and Bergstrand to help address the potential endogeneity of free trade agreements,

and εijt is the error term.

Santos Silva and Tenreyro (2006) show that, in general, OLS estimation of log-linear

gravity models such as specification (9) leads to biased estimates of the elasticities, and
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that estimation by PPML (see Gourieroux, Monfort and Trognon, 1984) using trade flows

in levels solves this problem. Therefore, we also estimate by PPML models of the form

xijt = exp (αit + αjt + αij + β1FTAijt + β2FTAijt−1 + β3FTAijt−2) ηijt, (10)

where ηijt is the multiplicative error term.

Baier and Bergstrand estimate (9) using aggregate (i.e., country-level) bilateral trade

data from the IMF’s Direction of Trade Statistics (DOTS). In our context, the key ques-

tion is how the coeffi cient estimates on the FTA terms change as we vary the level of

aggregation, and how these changes depend on the estimator used. For this purpose

we will replicate Baier and Bergstrand’s key results but using data from the UN Com-

trade database which provides trade flows at different levels of aggregation.8 This allows

us to show results from estimating (9) and (10) at three different levels of aggregation:

aggregate bilateral imports, and imports at the 2-digit and 4-digit SITC levels.9

Baier and Bergstrand only estimate models using aggregate data and therefore do not

have a sector dimension to their fixed effects. However, when estimating (9) and (10) at

different levels of aggregation we need to decide whether the fixed effects are allowed to

vary by sector. The inclusion of exporter-year and importer-year fixed effects that vary

by sector is necessary for theoretical consistency as price indices and expenditure levels

generally vary at the sector level (see equation 4). By contrast, there is a less compelling

case to allow the pair fixed effects to vary by sector, but arguably there are pair-specific

8Baier and Bergstrand use data from the IMF’s DOTS for the years 1960-2000 at five-year intervals for
96 countries, excluding zero trade flows. To achieve a similar timespan, we rely on data from Comtrade,
based on the SITC classification, for the same countries and for the years 1962, 1965, 1970, ..., 2000
(no data is available prior to 1962 so we use 1962 data for 1960). Specifically, we use the value of
bilateral imports in current US dollars on a c.i.f. basis. These data are available at five different levels of
aggregation, from SITC 4-digit to the country-level bilateral trade flows used by Baier and Bergstrand
(SITC 0-digit). Our data on FTAs are the same as in Baier and Bergstrand (2007), based on their Table
3.

9For each country pair in the data, we observe trade flows for 61 2-digit SITC sectors and 625 4-digit
SITC sectors. However, we drop all 4-digit sectors with fewer than 2, 000 observations of positive trade
flows. This is done because in the sector-level regressions discussed below, it is not always possible to
identify the all the parameters of interest when the number of positive observations is small. To keep our
sample comparable across the different sections of this paper, we also exclude such observations for the
pooled regressions presented here. Dropping these observations reduces the number of 4-digit sectors to
576 and that of 2-digit sectors to 60.
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trade cost elements that do not vary over time but vary by sector, justifying the inclusion

of time-invariant sectoral importer-exporter fixed effects.

The results obtained when estimating models (9) and (10) at different levels of aggre-

gation are presented in Table 1. Specifically, for each estimator we present results at three

levels of aggregation and, when using disaggregated data, we present results for models

imposing that the fixed effects are the same across sectors and for models where the fixed

effects are allowed to vary by sector.10 Although we present estimates for each of the

three FTA dummies for the cases considered, we will focus our discussion on the total

FTA effect, which is reported in the last column of the table and is computed as the sum

of the estimated coeffi cients on the three FTA dummies.

Reassuringly, results for the specification most directly comparable to Baier and

Bergstrand’s (the one using OLS estimation with aggregate trade and without sector-

level fixed effects) are similar to theirs. We obtain a total FTA effect of 0.714 log points

(see the last column of the first line of Table 1) compared to 0.76 log points in the key

specification by Baier and Bergstrand (the one reported in their Table 5, column 4).

This demonstrates that changing the data source from the IMF DOTS database to UN

Comtrade does not in itself change the basic findings in Baier and Bergstrand (2007).11

After this initial check, we now turn to our question of how results change as we change

the degree of aggregation in our data. The results in Table 1 show that OLS estimates are

sensitive to the level of aggregation, irrespective of the fixed effects we use. For example,

when we use 4-digit trade flows, the estimated total effect in the specifications without

10Specifically, models with sector-level fixed effects include importer-year-sector, exporter-year-sector
and exporter-importer-sector fixed effects, whereas models without sector-level fixed effects include only
importer-year, exporter-year and importer-exporter fixed effects.
11Note, however, that the two samples are not fully comparable, as Baier and Bergstrand use log exports

as their dependent variable and thus have to exclude observations with zero bilateral trade flows from
their sample. By contrast, the results in Table 1 are based on a fully rectangularised set of bilateral trade
flows following current best practice in applied international trade research (see, e.g., Yotov, Piermartini,
Monteiro and Larch, 2016). That is, we fill in all missing country pair-product-year combinations and
assign a trade flow value of zero for all such “filled in”observations. While the additional zero observations
get dropped when taking logs (as we do for our OLS specifications), rectangularisation also changes the
structure of the lags of the FTA regressors included, making the two datasets (Baier and Bergstrand’s and
our rectangularised data) incompatible. As an additional comparability check, we have also re-estimated
Baier and Bergstrand’s key specification on our sample without zero trade flows, obtaining a total FTA
effect of 0.77 log points, which is very similar to the total FTA effect of 0.76 log points estimated by Baier
and Bergstrand (results available on request).
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sector-level fixed effects is 0.481, which is substantially lower than the aggregate effect

of 0.714 obtained with aggregate data (see lines 1 and 3 in the OLS panel in Table 1).

Note that this is despite the fact that we impose a common coeffi cient across sectors for

each of the FTA dummy variables, hence assuming that the FTA effect is the same for

all sectors, and that the FTA dummy itself does not vary with aggregation, i.e., it is the

same for every sector for a given country pair.

Table 1: Regression results at different aggregation levels

Regressor coeffi cients
(Standard errors clustered by pair)

Estimator
Aggregation

level

Sector-level

fixed effects
FTAt FTAt−1 FTAt−2 Total

OLS Aggr. trade No 0.174
(0.0453)

∗∗∗ 0.379
(0.0455)

∗∗∗ 0.161
(0.0510)

∗∗∗ 0.714
(0.0608)

∗∗∗

SITC 2-digit No 0.355
(0.0212)

∗∗∗ 0.191
(0.0206)

∗∗∗ −0.004
(0.0246)

0.542
(0.0307)

∗∗∗

SITC 4-digit No 0.285
(0.0165)

∗∗∗ 0.161
(0.0140)

∗∗∗ 0.036
(0.0180)

∗∗ 0.481
(0.0268)

∗∗∗

SITC 2-digit Yes 0.334
(0.0225)

∗∗∗ 0.168
(0.0209)

∗∗∗ 0.064
(0.0255)

∗∗∗ 0.566
(0.0326)

∗∗∗

SITC 4-digit Yes 0.326
(0.0195)

∗∗∗ 0.116
(0.0159)

∗∗∗ 0.087
(0.0199)

∗∗∗ 0.529
(0.0314)

∗∗∗

PPML Aggr. trade No 0.278
(0.0324)

∗∗∗ 0.224
(0.0242)

∗∗∗ 0.089
(0.0267)

∗∗∗ 0.591
(0.0455)

∗∗∗

SITC 2-digit No 0.278
(0.0324)

∗∗∗ 0.224
(0.0242)

∗∗∗ 0.089
(0.0267)

∗∗∗ 0.591
(0.0455)

∗∗∗

SITC 4-digit No 0.278
(0.0324)

∗∗∗ 0.224
(0.0242)

∗∗∗ 0.089
(0.0267)

∗∗∗ 0.591
(0.0455)

∗∗∗

SITC 2-digit Yes 0.235
(0.0252)

∗∗∗ 0.179
(0.0171)

∗∗∗ 0.118
(0.0217)

∗∗∗ 0.533
(0.0338)

∗∗∗

SITC 4-digit Yes 0.210
(0.0270)

∗∗∗ 0.172
(0.0160)

∗∗∗ 0.117
(0.0201)

∗∗∗ 0.500
(0.0353)

∗∗∗

Notes: The table presents the results of estimating three-way gravity equations. The de-

pendent variable is logarithmic trade in the OLS panel and the level of trade in the PPML

panel. Models with sector-level fixed effects (“Yes”) include importer-year-sector, exporter-

year-sector and exporter-importer-sector fixed effects, whereas models without sector-level

fixed effects (“No”) include only importer-year, exporter-year and importer-exporter fixed

effects; *** p<0.01, ** p<0.05, * p<0.1.
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In contrast to the OLS estimates, Table 1 shows that with PPML the estimated

coeffi cients and standard errors are invariant to aggregation if we do not allow the fixed

effects to vary by sector. This invariance result is illustrated by the fact that the estimates

and standard errors are exactly the same for the first three rows of the PPML panel in

Table 1, which of course also implies that the estimated total FTA effect is the same at

0.591.

Moreover, when PPML is used, estimation with aggregate data is equivalent to using

disaggregated data to estimate models where the parameters are assumed to be the same

for all sectors. This can be seen by noting that the change in the estimates and standard

errors resulting from aggregation (e.g., going from the bottom row to the top row in the

PPML panel) is the same as the change resulting from imposing coeffi cient homogeneity

(e.g., going from the bottom row to the middle row in the PPML panel). That is, in

this context the effect of aggregation is the same as the effect of removing the sector-level

dimension of the fixed effects.

Naturally, when we include the sector dimension into the fixed effects, the PPML

estimates do depend on the level of aggregation because changing the level of aggregation

changes the model specification. However, even in this case the PPML estimates are less

sensitive to changes in the level of aggregation, dropping from 0.591 at the aggregate

level to 0.500 at the 4-digit level (a drop of 15%). By contrast, the corresponding OLS

estimates change from 0.714 at the aggregate level to 0.529 at the 4-digit level (a drop of

26%).

In the next section, we discuss from a theoretical perspective the pattern of results

observed in this table. In particular, we will explore the fact that in the absence of sec-

toral heterogeneity PPML estimates are not affected by aggregation to develop a two-step

approach to determine the consequences of aggregation in models with sectoral hetero-

geneity.

Until now, we have constrained coeffi cient on the FTA dummies to be the same across

sectors. We now relax this restriction and estimate (9) and (10) separately for each SITC

sector at both the 2-digit and the 4-digit levels of aggregation. That is, now both the

13



fixed effects and the coeffi cients on the FTA dummies are allowed to vary by sector. This

yields 60 sets of estimates for each equation at the 2-digit level, and 576 sets at the 4-digit

level.

Figure 1 presents kernel density estimates of the total estimated FTA effects obtained

with OLS and PPML for each of the sectors at the 2-digit and 4-digit levels of aggregation.

In each panel, we add two elements to help interpret the results. The vertical solid line

represents the estimated effect obtained by estimating the models with the aggregate data

(this corresponds to the results in the first line of each panel in Table 1). We also include

a vertical dashed line representing the weighted average of the estimated coeffi cients using

shares of 2-digit or 4-digit sectors in total trade as weights.

Figure 1: Kernel density plot of the estimated FTA effects at sectoral level
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Notes: The dashed line is the trade-weighted average of the estimated sectoral effects, and

the solid line is the effect estimated with aggregate data. The left panels show estimates at

the 2-digit level, and the right panels show estimates at the 4-digit level. The top panels

are estimated with OLS and the bottom panels with PPML.
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Figure 1 shows that in all cases the aggregate estimates lie reasonably close to the

mode of the distribution of the sector-level estimates. Moreover, when PPML is used, the

aggregate estimates are very close to the weighted averages of the disaggregate estimates

(i.e., the solid and dashed lines are very close to each other); the same does not necessarily

happen when OLS is used. We will also explain these results in the next section.

4 Aggregation of constant-elasticity models

Given the initial motivating evidence from Section 3, we now examine the effects of aggre-

gation from an econometric point of view. We draw a distinction between micro/sector-

level parameters on the one hand (where coeffi cients vary at the sector level, for instance,

by letting the coeffi cients on the FTA regressors from Section 3 vary across SITC sectors),

and micro/sector-level regressors on the other hand (where regressors themselves differ

across sectors, for example the fixed effects from Table 1 that have a sector dimension).

This analysis provides insights into the coeffi cient patterns we should expect in the data

at different levels of aggregation, hence helping to explain the results from the preceding

section.

4.1 Set-up and aggregation with OLS

Let xijs denote the non-negative outcome of interest and let zijs be a vector of explanatory

variables for observation s = 1, . . . , l in the pair ij. As in equation (5), we define xij =∑l
s=1 xijs as the aggregate counterpart of xijs, but we are agnostic about how zij, the

aggregate value of the vector of regressors, is obtained.

We are interested in estimating gravity equations at either the sector or the aggregate

level. Consistent with our earlier theoretical framework (see equation 1), we assume that

sector-level trade flows (xijs) are generated by the following constant-elasticity model

xijs = exp
(
z′ijsβs

)
ηijs, (11)
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where ηijs is a non-negative error term such that E
(
ηijs|zijs

)
= 1, βs is a vector of

parameters (including fixed effects) that are potentially allowed to vary with s and in

which the slope parameters have the usual interpretation as (semi-) elasticities. The

traditional approach to estimating models such as (11) is to take logarithms of both sides

and estimate

lnxijs = z′ijsβs + ln ηijs (12)

by least squares, under the assumption that E
(
ηijs|zijs

)
is constant.

Lewbel (1992) and van Garderen, Lee and Pesaran (2000) among others have studied

the consequences of estimating models such as (12) using aggregate data. The model for

the aggregate data is given by

xij =
l∑

s=1

xijs =
∑
s

exp
(
z′ijsβs

)
ηijs, (13)

which in general is not a constant-elasticity model and therefore cannot be log-linearized

(see the discussion around equation 8 in Section 2). Therefore, estimation of the aggregate

counterpart of the model in (12) will only identify the parameters of interest under very

restrictive assumptions, even in the special case where the parameters and regressors

do not vary with s. Lewbel (1992) provides details on the conditions needed for the

parameters of interest to be identified from aggregated data.

One of the conditions considered by Lewbel (1992) is that the errors of the model

in (12) need to be independent of the regressors. As pointed out by Santos Silva and

Tenreyro (2006), this condition is very unlikely to hold in trade applications. When this

condition is violated, the estimation of log-linearized models will produce biased estimates

of the parameters of interest even when disaggregate data are used, as in (12). Because

changing the level of aggregation inevitably changes the properties of the error term, the

degree to which these conditions on the error terms are violated may depend on the level

of aggregation considered. Therefore, in trade applications, aggregation of log-linearized

models combines the bias due to aggregation with the bias resulting from log-linearization.
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The two biases may (partially) offset or compound each other, making the results very

hard to interpret.

To avoid the log-linearization bias, Santos Silva and Tenreyro (2006) recommended

that models such as (11) should be estimated in their original multiplicative form using

the PPML estimator of Gourieroux, Monfort and Trognon (1984). In the remainder of

this section, we study the consequences of using aggregated data when the multiplicative

model is estimated by PPML, and we show that this approach lessens or even eliminates

the negative consequences of aggregation.

4.2 Aggregation with PPML

Building on our earlier distinction between parameters and/or regressors varying at the

sector level s, we consider four particular cases of this problem, summarized in Table 2.

Case 1 is the simplest scenario where neither regressors nor parameters vary with s. In

Case 2 the parameters vary with s but regressors do not, and the reverse holds in Case

3. Finally, in Case 4 both parameters and regressors vary with s.

Table 2: Four cases of aggregation

Sectoral parameters

No Yes

Sectoral No Case 1 Case 2

regressors Yes Case 3 Case 4

4.2.1 Case 1: Parameters and regressors are constant

We start by considering the case where neither the regressors nor the parameters vary

with s. We have seen in Section 2 that in this particular case we have proper gravity

equations at the disaggregate and aggregate levels, and the same is found in our current

set-up. Indeed, in this case equation (11) can be written as

xijs = exp
(
z′ijβ

)
ηijs, (14)
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and expression (13) becomes

xij =
∑
s

exp
(
z′ijβ

)
ηijs = exp

(
z′ijβ

)∑
s

ηijs = exp
(
ln l + z′ijβ

)
η∗ij, (15)

where η∗ij = l−1
∑l

s=1 ηijs is an error term such that E
(
η∗ij|zij

)
= 1. Therefore, as discussed

in Section 2, in this particular case both xijs and xij are given by stochastic constant-

elasticity models.

It is easy to show that the PPML estimates of the slopes in (14) and (15) are identical.12

To see that this is true, notice that the first order condition of the PPML estimator of β

in (14) is (see, e.g., Cameron and Trivedi, 2013)

S
(
β̂
)

=
∑
ijs

(
xijs − exp

(
z′ijβ̂

))
zij = 0,

where as usual a “hat”is used to denote parameter estimates and
∑

ijs is shorthand for∑
i

∑
j

∑
s. This condition can be written as

S
(
β̂
)

=
∑
ij

(
xij − exp

(
ln l + z′ijβ̂

))
zij = 0,

which is the first order condition of the PPML estimator of β in the aggregate model

defined by (15). Hence, the estimation results are invariant to the level of aggregation of

the data (with the exception of the intercept which is adjusted to reflect the number of

sectors being aggregated). Moreover, if the dependent variable in the aggregate equation

is the mean of xijs rather than its sum, the estimates are exactly the same at both levels,

and the invariance result continues to apply.

It is interesting to note that when clustering is taken into account, the level of aggre-

gation also does not matter for the significance of the estimates. Indeed, we can show

that the cluster-robust estimate of the covariance matrix for the estimates from (14) is

12This result first appears in the simulation evidence reported by Amrhein and Flowerdew (1992).
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identical to the estimate of the robust covariance matrix for the estimates in the aggregate

equation when the dependent variable is the average of xijs over s.13

It is important to note that the results above are obtained under the assumption that

the number of sectors l is the same for every ij pair. When that is not the case, the same

result holds when the models include pair fixed effects that will absorb the differences

in the number of sectors by pair. If the disaggregate model does not include pair fixed

effects, the aggregate and disaggregate elasticity estimates will not be numerically identical

in finite samples, but the two sets of estimates converge to the same limit if the aggregate

model includes pair fixed effects. To simplify the exposition, in what follows we continue

to assume that the number of sectors l is the same for every pair.14

In summary, when both the parameters and the regressors are constant across s, both

xijs and xij are given by constant-elasticity models with the same parameters, and the

PPML estimates and standard errors are invariant to the level of aggregation of the

data. This contrasts sharply with the results on aggregation of log-linear models where

aggregation generally leads to an inconsistent estimator of the parameters of interest, even

if the regressors and parameters do not vary with s (see Lewbel, 1992, and van Garderen,

Lee and Pesaran, 2000).

Looking back at our results from Section 3, note that the models underlying the

estimates in the first three lines of the PPML panel of Table 1 fall into our Case 1

(neither parameters nor regressors vary with s). Thus, the invariance result just outlined

explains why the estimates and standard errors obtained with these models are exactly

the same.
13Details are available on request.
14Note that this assumption will hold in any fully rectangularised dataset such as the one we are using

for our empirical illustrations (see footnote 11).
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4.2.2 Case 2: Parameters vary with s but regressors do not

We now consider the case where parameters vary with s but the regressors do not. That

is, the relevant model at the disaggregate level is

xijs = exp
(
z′ijβs

)
ηijs.

Clearly, now it is not possible to recover the individual parameters from aggregate data,

but it is interesting to study what we estimate when using aggregate data. We approach

this problem in two steps. We first examine the effect of ignoring the parameter hetero-

geneity with disaggregated data, and we then use the invariance result for Case 1 to find

the effect of aggregation.

To see the effect of ignoring the parameter heterogeneity, write the first order condi-

tions for the estimates of βs with disaggregated data as

Ss

(
β̂s

)
=
∑
ij

(
xijs − exp

(
z′ijβ̂s

))
zij = 0, s = 1, . . . , l.

Since we have that Ss
(
β̂s

)
= 0 for each s, for the full sample we have

∑
s Ss

(
β̂s

)
= 0.

Imposing homogeneity we estimate a single parameter for all s, say β̂
r
, which by definition

will satisfy S
(
β̂
r
)

=
∑

s Ss

(
β̂
r
)

= 0.15

To study the relation between β̂
r
and β̂s, s = 1, . . . , l, we can use the mean value

theorem to write

∑
s

Ss

(
β̂s

)
=
∑
s

Ss

(
β̂
r
)
−
∑
s

Hs (β∗s)
(
β̂s − β̂

r
)

with Hs (β∗s) = − ∂Ss (b) /∂b|b=β∗s , where β
∗
s is a point between β̂s and β̂

r
.

15But notice that Ss
(
β̂r

)
6= 0.
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As
∑

s Ss

(
β̂s

)
=
∑

s Ss

(
β̂
r
)

= 0, we can write

β̂
r

=

[∑
s

Hs (β∗s)

]−1∑
s

Hs (β∗s) β̂s, (16)

and therefore β̂
r
can be interpreted as an average of the estimates of βs weighted by the

matrices Hs (β∗s).
16

Noting that Hs (β∗s) =
∑

ij

(
exp

(
z′ijβ

∗
s

)
zijz

′
ij

)
, we can see that Hs (β∗s) is itself a

weighted sum of exp
(
z′ijβ

∗
s

)
, where the weights do not depend on s. Because exp

(
z′ijβ

∗
s

)
is closely related to the expectation of xijs, heuristically β̂

r
can be interpreted as a weighted

average of the estimates of βs, giving more weight to the estimates from the subsamples

where xijs tends to be larger.17

From the invariance result for Case 1, we know that estimating the model that imposes

βs = βr with aggregated data will only change the estimate of the intercept, and there-

fore the parameters estimated with aggregated data can also be interpreted as weighted

averages of the estimates of the individual parameters, with weights given by Hs (β∗s). It

also follows from these results that in Case 2 the aggregation bias is identical to the bias

caused by imposing the restriction that the coeffi cients do not vary across sectors. In Case

2, the problem is therefore not so much aggregation but the impossibility to account for

sector-level parameter heterogeneity when estimating with aggregated data.

16It is interesting to note that β̂
r
can also be seen as a minimum distance estimator obtained as

β̂
r
= argmin

b

∑
s

(
β̂s − b

)′
Hs (β

∗
s)
(
β̂s − b

)
,

which is an optimal minimum distance estimator when Hs (β
∗
s) is proportional to the inverse of the

covariance matrix of β̂s as in the Poisson distribution.
17To illustrate this, consider the case where only the intercept of β̂s varies with s. It is easy to show

that in this case

β̂
r
=

∑
s exp (κs) β̂s∑
s exp (κs)

,

where κs denotes a point between the intercepts in β̂s and β̂
r
, and therefore in this particular case β̂

r
is

a weighted average of the individual estimates, giving more weight to the estimates from the subsamples
where κs is larger.
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Note, however, that these results do not carry over to OLS estimation because in that

case the estimates are not invariant to aggregation, even if the parameters do not vary at

the micro level (see Case 1 above). Put differently, we can establish the effects of imposing

coeffi cient homogeneity in the first step, but the resulting estimates will be changed again

by aggregation in the second step. Moreover, as discussed in Section 4.1, the bias of the

OLS estimator resulting from using logarithmic trade flows as the dependent variable will

also vary with the level of aggregation. This bias can partially offset or compound the

bias resulting from aggregation, and it is therefore very diffi cult to meaningfully compare

OLS results obtained at different levels of aggregation.

Looking again at our findings from Section 3, the results just outlined help to make

sense of the patterns observed in Table 1 and Figure 1. Specifically, a key insight from

Case 2 is that with PPML the effect of aggregation can be interpreted as the result of

imposing coeffi cient homogeneity across sectors, and that this result does not carry over

to OLS estimates. This explains why in the PPML panel of Table 1 the estimates in the

top row are identical to the ones in the middle row, and why the same does not apply to

OLS.

Our results also explain why in Figure 1 the trade-weighted average of the sectoral

estimates (indicated by dashed vertical line) is always close to the estimate obtained with

aggregate data (see the solid vertical line in Figure 1), but only for the PPML estimates.

As we have shown, the aggregate estimates obtained by PPML are a weighted average of

the underlying sector-level estimates, with subsamples with more trade (larger xijs) being

assigned larger weights. However, this result does not apply to OLS estimation, which is

also illustrated by Figure 1.

4.2.3 Case 3: Regressors vary with s but parameters do not

We now consider the case where regressors vary with s but parameters do not. That is,

the relevant model is

xijs = exp
(
z′ijsβ

)
ηijs. (17)
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As in Case 2, we start by considering the effects of ignoring the heterogeneity in the

disaggregated data, and we then use the invariance result for Case 1 to find the aggregation

effect. That is, we start by considering the effect of estimating

xijs = exp
(
z′ijβ

a
)
ηaijs, (18)

where zij is obtained by aggregating zijs, β
a denotes the parameters of the aggregate

equation, and ηaijs is a non-negative error term whose properties are determined by how

βa is defined.

Letting zijs = zij + εijs, we can write equation (17) as

xijs = exp
(
z′ijβ + ε′ijsβ

)
ηijs, (19)

and we can then interpret (18) as resulting from omitting ε′ijsβ from (19).18 The effects

of omitted variables are well understood in the context of linear regression models, but

general results are diffi cult to obtain for non-linear models (see, e.g., Kiefer and Skoog,

1984, Neuhaus and Jewell, 1993, and Drake and McQuarrie, 1995). To gain some insight

into the effect of omitting ε′ijsβ we can start by writing

E [xijs|zijs] = E [xijs|zij, εijs] = exp
((
z′ij + ε′ijs

)
β
)
,

from where we obtain

E [xijs|zij] = Eεijs
[
exp

((
z′ij + ε′ijs

)
β
)
|zij
]

= exp
(
z′ijβ

)
Eεijs

[
exp

(
ε′ijsβ

)
|zij
]
. (20)

Equation (20) makes clear that, as is well known, the PPML estimator of (18) is consistent

for the slope parameters in (17) when ε′ijsβ is independent of zij.
19 Unfortunately, this

18Alternatively, ignoring that the regressors vary with s and estimating specification (18) instead of
(17) could be interpreted as estimating a non-linear regression with errors-in-variables. However, this is
not a case of classical measurement error, and therefore we cannot use most of the results in the literature
on measurement error in non-linear models (see, e.g., Kukush, Schneeweis and Wolf, 2004, and Carroll
et al., 2006).
19See, e.g., Gourieroux, Monfort and Trognon (1984) and Neuhaus and Jewell (1993).

23



is unlikely to be a realistic scenario, and we therefore need to consider less favorable

situations.20

As an illustrative example, it is useful to start by considering the case where, con-

ditional on zij, ε′ijsβ has a normal distribution with mean z
′
ijµ and variance z

′
ijω (see

Nakamura, 1990, for a related approach). In this case exp
(
ε′ijsβ

)
is log-normal with

Eεijs
[
exp

(
ε′ijsβ

)
|zij
]

= exp
(
z′ijµ+ 0.5z′ijω

)
,

and therefore

E [xijs|zij] = exp
(
z′ijβ + z′ijµ+ 0.5z′ijω

)
= exp

(
z′ijβ

a
)

with βa = β + µ+ 0.5ω, which implies E
[
ηaijs|zij

]
= 1. That is, in this example βa is the

vector of parameters in E [xijs|zij], whereas β is the vector of parameters in E [xijs|zijs].

More generally, and as illustrated by the example above, the difference between the

parameters at the two levels of aggregation depends on how the conditional moments of

exp
(
ε′ijsβ

)
are related to zij. An important implication of this result is that the elements

of βa can be smaller or larger (in absolute value) than the corresponding elements of β.21

Furthermore, assuming that the models include intercepts, we have that in both cases

the residuals will have zero mean, with the residuals of the disaggregate model being

orthogonal to zijs, while the residuals of the aggregate model are orthogonal to zij but

only approximately orthogonal to the disaggregate regressors. That is, β̂
a
is such that

the fitted values of the aggregate model approximate some of the characteristics of the

fitted values of the regression with disaggregate data, and in that sense β̂
a
provides an

approximation to β̂.

Combining these results with those for Case 1, we can conclude that the effect of

aggregation on the estimated elasticities will be the same as replacing zijs with zij in the

model for disaggregate data. That is, the aggregate model will estimate βa rather than

20For example, higher average collected tariff rates tend to be associated with a higher variance across
sectors (see, e.g., Pritchett and Sethi, 1994).
21This contrasts with the so-called attenuation bias caused by classical measurement error.
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β,22 and it is diffi cult to predict the magnitude and sign of the differences between the

elements of the two vectors unless we have information on how the conditional moments

of the omitted variable ε′ijsβ vary with zij.

4.2.4 Models where only the fixed effects vary with s: Case 2 or Case 3?

In the models providing motivating evidence in Section 3, the sectoral fixed effects can be

interpreted as a set of dummies that depend on s but with constant coeffi cients. Therefore,

these models can be seen as examples of Case 3. This way of approaching the problem,

treating the sector-specific fixed effects as regressors that vary with s, is similar to that

of French (2017) in that he also establishes that the consequences of aggregation in this

context are equivalent to the omission of a variable. However, because we know from Case

3 that it is diffi cult to guess how the omission of ε′ijsβ will impact the elasticity estimates,

this approach is not particularly useful because it does not provide much information on

the relation between the estimated parameters and the parameters of interest.

Alternatively, the sectoral fixed effects in the models presented in Section 3 can be

interpreted as a set of dummies whose coeffi cients vary with s. Therefore, in the leading

case where these are the only regressors with sectoral variation, the model can be seen as

an example of Case 2 where at least the coeffi cients on the fixed effects vary with s. This

alternative interpretation is more useful because it follows from our previous results that

in this case the PPML estimates of the aggregate model have a clear interpretation as a

weighted average of the sector-specific parameters, something that is illustrated in Figure

1.23

It is worth noting that, even if the fixed effects are the only coeffi cients that vary with s,

neglecting this heterogeneity will impact the estimates of all coeffi cients because neglecting

the sectoral variation of the fixed effects effectively restricts the set of fixed effects included

22Except, of course, for the intercept.
23Naturally, a comparable result is not available for OLS estimation because in that case aggregation

leads to inconsistency even if the parameters and the regressors do not vary with s.
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in the model and, consequently, alters the remaining coeffi cient estimates.24 However,

these are always weighted averages of the underlying micro parameters,25 and this explains

why the PPML estimates of the FTA effect in Table 1 vary with the aggregation level

when the fixed effects vary by sector, and also why these variations are relatively minor.

In summary, the leading case where the fixed effects are the only variables to vary by

sector can be reinterpreted as a situation in which the parameters vary by sector but the

regressors do not, and this approach is more informative about the effects of aggregation.

Naturally, this interpretation does not extend to the case where other variables vary by

sector such as tariffs (see, e.g., Amiti, Redding, and Weinstein, 2019). Our results for

Case 3 suggest that in such situations it is essential to use disaggregated data on trade

flows and tariffs, as done by Amiti, Redding, and Weinstein (2019), since even with PPML

the magnitude and the direction of the bias resulting from aggregation are unknown and

diffi cult to interpret.

4.2.5 Case 4: Regressors and parameters vary with s

Finally we consider the case where both the regressors and the parameters vary with s.

This problem can be addressed by combining earlier results. As we know from Case 3, the

effect of replacing zijs with zij in the regressions for each s is that in each case we estimate

a vector βa that is an approximation to βs. From Case 2 we know that imposing the same

coeffi cients for all s will lead to a weighted average of these individual estimates. Finally,

the invariance result for Case 1 shows that aggregation will only change the intercept.

Therefore, in Case 4 we estimate a weighted average of the approximations to βs.

Since estimating a weighted average of approximations to the true coeffi cient is unlikely

to be useful in most practical applications, the implications of Case 4 are clear. If the

regressors vary at the micro level (such as tariffs) and the coeffi cients on those regressors

24For example, when we eliminate sector-level fixed effects from Table 1, we change the set of included
fixed effects from importer-sector-year, exporter-sector-year and exporter-importer-sector fixed effects to
importer-year, exporter-year and exporter-importer fixed effects (see the notes to Table 1).
25As (16) makes clear, the weights in these averages are matrices, which is another way to see that the

entire vector of estimates can be affected even if only a single coeffi cient varies with s.
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are also likely to vary across products (e.g., because price elasticities vary across products),

there is no alternative to using appropriately disaggregated data.26

5 Implications for gravity-based forecasts: An appli-

cation to free trade agreements

Given that coeffi cient estimates often depend on the level of aggregation at which they are

estimated, an important question that arises is what the consequences are for the use of

gravity equations for trade policy-related questions. One of the policy questions for which

the gravity equation has been used extensively is the impact of free trade agreements

on trade flows, which is of course the application that we use throughout this paper to

illustrate our findings. Given the results from the previous sections, a natural next step is

to ask whether aggregation also matters for predictions of the trade flow increases expected

after the implementation of FTAs. That is, if we estimate (9) and (10) at the aggregate

level and predict the total trade impact of a free trade agreement using the estimated

coeffi cients, do we obtain different effects compared to the alternative of estimating the

same equations at the sector level, predicting sector-level trade flow changes and then

adding up to the country level? Put differently, would a researcher who has access to

trade data at the sector level reach the same conclusion as another researcher who only

has country-level trade data available?

In trying to answer this question, and as in Section 3, we consider again two estimation

methods (OLS and PPML), three levels of aggregation, and models that impose coeffi cient

homogeneity or allow the estimates to vary at the sector level.27 Note that there are three

26An example of work which fits the setting of Case 4 is Bas, Mayer and Thoenig (2017) who use
firm-product-level trade flows combined with product-level tariff data to obtain price elasticity estimates
that potentially vary by product. They regress firm-product-level trade flows on (product-level) tariffs
separately for each of the products in their data. Our results for Case 4 suggest that there is no alternative
to using such disaggregated data since relying on more aggregate data (e.g., by regressing bilateral trade
flows on average bilateral tariffs) would render the resulting elasticity estimates uninformative, irrespective
of whether PPML or OLS estimation is used. Note, however, that our results do not imply the necessity
of firm-level data but only of data that have variation at the micro level of interest (in this case, the
product level).
27See the description of Figure 1 and Table 1 for details.
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types of counterfactuals we can perform. First, we could ask by how much trade flows

between existing FTA partners are higher because of the FTAs in place. Second, we

might be interested in finding out by how much trade would be larger if countries without

FTAs put such agreements in place. Third, we could consider the change in trade moving

from a situation without FTAs to a situation with FTAs in place between all countries.

Conceptually, the first counterfactual corresponds to the average treatment effect on the

treated (ATT), the second captures the average treatment effect on the untreated (ATU),

and the third captures the average treatment effect (ATE).28

Denoting by xijst,1 the value of trade for country pair ij in sector s at time t in the

presence of an FTA, and by xijst,0 the same flow in the absence of an FTA, the relevant

counterfactuals are easily computed from the estimates of β1, β2 and β3 obtained either

from (9) with OLS or (10) with PPML. For example, trade among FTA partners is simply

the observed trade flow, xijst,1,FTAijt=1 = exp
(
α̂ist + α̂jst + α̂ijs + β̂1s + β̂2s + β̂3s

)
η̂ijst,

where we let the estimated parameters vary with s and we have assumed that the agree-

ment is fully phased in (for the purpose of this illustration, we drop all pairs for which

there is an FTA that is not fully phased in).29 The (counterfactual) trade flow be-

tween the partners in the absence of an agreement is then given by xijst,0,FTAijt=1 =

exp (α̂ist + α̂jst + α̂ijs) η̂ijst = xijst,1,FTAijt=1×exp
(
−β̂1s − β̂2s − β̂3s

)
, which can be com-

puted using data on actual trade flows and the coeffi cient estimates from (9) or (10) ob-

tained at the disaggregated level. Likewise, current trade among non-FTA partners can be

expressed as xijst,0,FTAijt=0 = exp (α̂ist + α̂jst + α̂ijs) η̂ijst, and the (counterfactual) trade

in the presence of an FTAwould be xijst,1,FTAijt=0 = xijst,0,FTAijt=0×exp
(
β̂1s + β̂2s + β̂3s

)
.

Once we have computed these counterfactuals, we can calculate the implied percentage

28Note, however, that we are interested in changes in total trade flows rather than the average change
in bilateral flows. That is, if we allow for sectoral coeffi cient heterogeneity, estimates for sectors with
more trade get more weight. We also note that we are only concerned with the direct trade cost effects
(i.e., what Head and Mayer, 2014, call “the partial trade impact”), not the indirect general equilibrium
effects that operate through price indices, income and expenditure.
29Using standard Neyman—Rubin notation, the subscript FTAijt indicates whether or not countries i

and j have an FTA in place at time t. Thus, xijst,1,FTAijt=1 is the trade flow with an FTA for country
pair ij in sector s at time t, given that country pair ij has an FTA in place. Note that this is of course
simply the observed trade flow. By contrast, xijst,0,FTAijt=1 is the trade flow for country pair ij in sector
s at time t without an FTA, which is a counterfactual trade flow given there is currently an FTA in place.
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changes in trade flows as

ATT =

∑
ijst xijst,1,FTAijt=1∑
ijst xijst,0,FTAijt=1

− 1

=

∑
ijst xijst,1,FTAijt=1∑

ijst xijst,1,FTAijt=1 × exp
(
−β̂1s − β̂2s − β̂3s

) − 1,

ATU =

∑
ijst xijst,1,FTAijt=0∑
ijst xijst,0,FTAijt=0

− 1

=

∑
ijst xijst,0,FTAijt=0 × exp

(
β̂1s + β̂2s + β̂3s

)
∑

ijst xijst,0,FTAijt=0
− 1,

and

ATE =

∑
ijst xijst,1∑
ijst xijst,0

− 1 =

∑
ijst

[
xijst,1,FTAijt=1 + xijst,1,FTAijt=0

]∑
ijst

[
xijst,0,FTAijt=1 + xijst,0,FTAijt=0

] − 1

=

∑
ijst

[
xijst,1,FTAijt=1 + xijst,0,FTAijt=0 × exp

(
β̂1s + β̂2s + β̂3s

)]
∑

ijst

[
xijst,1,FTAijt=1 × exp

(
−β̂1s − β̂2s − β̂3s

)
+ xijst,0,FTAijt=0

] − 1,

where the summations are over all country pairs ij, sectors s and time periods t in our

data.30

Table 3 presents the results of this exercise. The first row of the table shows the pre-

dicted increases in trade flows when we estimate our FTA coeffi cients using country-level

data (i.e., 0-digit). As there is no sector-level dimension, we have that ATT=ATU=ATE.

We also have that ATT=ATU=ATE whenever we impose coeffi cient homogeneity. The

reason is obvious on inspection of the relevant expressions above. Indeed, if the coeffi cient

30Since we compute treatment effects as percentage changes, the above definition of the ATE yields
the same results as the more traditional ATE definition in terms of the average effect of a treatment
(here: the presence of an FTA) across the units in a population (here: all country pairs, sectors and time
periods) when the effect is expressed relative to the average baseline trade flows without FTAs. To see
this write

ATE =

∑
ijst (xijst,1 − xijst,0)∑

ijst xijst,0
=

∑
ijst xijst,1 −

∑
ijst xijst,0∑

ijst xijst,0
=

∑
ijst xijst,1∑
ijst xijst,0

− 1.
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estimates do not vary by sector s, the trade flow terms in the numerator and denomi-

nator of the ATT and ATU cancel so that the estimated treatment effect is simply the

exponential of the sum of the coeffi cients for both the ATT and ATU. Since the ATE is

simply a weighted mean of the ATT and the ATU, it will also be equal to whatever value

the ATT and ATU take.

Table 3: Estimated treatment effects at different aggregation levels

Aggregation Heterogeneous Treatment Estimator

level coeffi cients effect type OLS PPML

SITC 0-digit No ATT=ATU=ATE 104.2% 80.7%

SITC 2-digit Yes ATT 56.3% 66.2%

SITC 2-digit Yes ATU 61.7% 83.4%

SITC 2-digit Yes ATE 60.5% 79.8%

SITC 2-digit No ATT=ATU=ATE 71.9% 80.7%

SITC 4-digit Yes ATT 61.0% 57.6%

SITC 4-digit Yes ATU 92.0% 105.4%

SITC 4-digit Yes ATE 85.3% 95.0%

SITC 4-digit No ATT=ATU=ATE 61.8% 80.7%

Notes: The table shows the predicted effect of FTAs at the 0-digit, 2-digit and 4-digit levels

of aggregation. ATT is average treatment effect on the treated, ATU is average treatment

effect on the untreated, ATE is average treatment effect. See text for details.

After these preliminary observations, we now move on to the more interesting com-

parison of how predicted trade flow increases vary with the level of aggregation and the

underlying estimation method. Consistent with our results from Case 1, which demon-

strated the invariance of PPML estimates when coeffi cient estimates do not vary at the

sector level, Table 3 shows that the predicted trade flow increase under PPML with ho-

mogeneous estimates is the same regardless of whether we use aggregate, 2-digit or 4-digit

data (it is always 80.7%). However, the same is not true for predictions based on OLS
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estimates, even if we impose coeffi cient homogeneity. Specifically, with OLS the esti-

mated ATE is 61.8% when using 4-digit data but 71.9% when using 2-digit data and

104.2% when using country-level data. Thus, using country-level data instead of 4-digit

sector-level data can lead to substantially different predictions regarding the trade effects

of FTAs when based on traditional OLS estimation.

As expected from our results for Case 2 above, however, aggregation matters even

with PPML when the underlying sector-level elasticities are heterogeneous. Looking at

the results in Table 3, when we use 4-digit data we estimate an ATE of 95.0%. When we

instead use 2-digit data (allowing coeffi cient estimates to vary at that level), the estimated

ATE is 79.8%. When we aggregate up further to bilateral trade at the country level, we

obtain an ATE of 80.7% as mentioned previously.31 The corresponding results for OLS

estimation are considerably more heterogeneous, with estimated ATEs of 85.3% when

using 4-digit data, 60.5% when using 2-digit data and 104.2% when using aggregate data.

This variability reflects the fact that, as noted before, OLS combines the aggregation bias

and the bias resulting from log-linearization, and that these biases can partially offset or

compound each other.

6 Aggregation in gravity equations: A practitioner’s

guide

Having systematically analyzed the issue of aggregation in gravity equations, we now

present a number of recommendations for applied work resulting from our findings.

A first lesson is that clearly there will be situations where there is no good substitute

for using disaggregated data. As we have shown, recovering micro-level elasticities from

macro-level data will not be possible if these elasticities vary at the micro level, and fore-

casts based on elasticities estimated on the basis of macro data may prove inaccurate.

However, even in this case our results suggest that using PPML rather than OLS esti-

31Note that with aggregate bilateral trade, there is of course no sector dimension and so we cannot
allow for sector heterogeneity in our FTA estimates. Accordingly, Table 3 only reports results without
coeffi cient heterogeneity at the aggregate (0-digit) level.
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mation is preferable because PPML will recover a (trade-weighted) average of the true

micro-level elasticities, whereas OLS estimates will be altogether uninformative.

The result that PPML estimation is to be preferred to OLS holds a fortiori when

we expect no micro-level variation in the elasticities of interest. In this case, we have

shown that PPML is able to recover the micro-level elasticities even with aggregate data,

whereas OLS is not. But if the regressors vary at the sector level (as will be the case,

for example, for bilateral tariffs), the interpretation of results is hard even with PPML

because we can provide guidance on neither the sign nor the magnitude of the resulting

bias, irrespective of whether the underlying elasticities also vary at the micro level. In

such cases, as well as when the objective is to predict the effects of policy changes, there

is no good alternative to estimating the corresponding models on the basis of micro-level

data.

7 Conclusion

In this paper, we have investigated the consequences of aggregation for the estimation of

gravity equations, using both PPML and OLS. We started by asking two related sets of

questions. First, is it possible to infer micro-level elasticities and other parameters from

aggregate-level gravity regressions? Second, what are the implications of aggregation

for the use of gravity equations in evaluating policy changes? We provided motivating

evidence on the consequences of aggregation using the classic question of the impact of

free trade agreements on trade flows.

We then examined the aggregation properties of gravity equations from an econometric

point of view, distinguishing four different cases. In the simplest case (Case 1), neither

the regressors nor the parameters vary at the micro (i.e., product or sector) level. In Case

2, the parameters vary across products but the regressors do not. In Case 3, the regressors

vary across products but the parameters do not. For Case 4, we assume that both the

regressors and the parameters vary.
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In Case 1, when gravity equations are estimated in the original multiplicative form

with PPML, we obtain an invariance result. This means that aggregation is innocuous

in the sense that the micro-level elasticities can be recovered using aggregate data. How-

ever, a comparable result is not generally available when gravity equations are estimated

in their log-linear form using OLS, even when neither regressors nor parameters vary

across sectors. These findings demonstrate that, in this particular case, the negative con-

sequences of using aggregate data for the estimation of constant-elasticity models (such

as the gravity model) are eliminated when the model is estimated in its multiplicative

form by PPML.

When we allow the parameters to vary across sectors (Case 2), it is obviously im-

possible to recover the micro-level parameters. However, we showed that also in this

case gravity estimation by PPML is more informative than OLS estimation. Specifically,

PPML estimates are trade-weighted averages of the underlying micro-level parameters so

that they still provide economically meaningful information. By contrast, no such result

exists for OLS since OLS estimation combines aggregation bias with bias resulting from

log-linearization, rendering the corresponding parameter estimates uninformative about

the parameters of interest.

However, when the regressors vary across sectors (Case 3), even the PPML estimates

no longer provide much useful information about the underlying parameters. We showed

that the estimates obtained from aggregate data are generally different from the true

parameters, and it is impossible to establish the sign or magnitude of the corresponding

bias. Finally, when both regressors and parameters vary across sectors (Case 4), it is again

impossible to recover useful information about the micro-level parameters of interest,

as PPML only estimates a weighted average of approximations to the true micro-level

parameters.

Having established these theoretical results, we then argued that they have straight-

forward implications for the use of gravity equations in applied policy analysis. We again

used the effect of trade agreements as an example. Consistent with our theoretical results,

we showed that when the parameters and regressors do not vary at the micro level, pre-
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dictions based on PPML estimates are robust to aggregation in the sense that we predict

the same effect on trade flows irrespective of whether we use aggregate (country-level) or

disaggregated (product-level) data. This aggregation property does not carry over to OLS

estimation, nor to the case where there is heterogeneity in the micro-level parameters or

regressors.

We concluded our analysis by drawing lessons for applied researchers who are in-

terested in the estimation of gravity equations but who might not have disaggregated

micro-level data at their disposal. Santos Silva and Tenreyro (2006) have shown that

PPML estimation is superior even when disaggregated data are available. In our paper

we showed why in situations where only aggregate data are available, researchers are

likely to obtain more informative estimates when using PPML as opposed to OLS. We

therefore see our results as further strengthening the case for estimating gravity equations

in their multiplicative form using PPML, irrespective of whether researchers have access

to aggregate or disaggregated data.
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