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Abstract

In a DSGE rational expectations model, the agents’ assumed information sets

are crucial for both the dynamics of the solution and for whether a SVAR econome-

trician can infer impulse responses to structural shocks. We adopt a heterogeneous

agent, incomplete markets general framework where agents have imperfect and id-

iosyncratic information sets. In the limiting empirically plausible case of extreme

heterogeneity, we show that a unique finite state space solution exists taking the

same form as a single agent problem. The solution induces higher-order dynamics,

hidden both from the agents and the econometrician, that would be absent in a

perfect information economy.
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1 Introduction

In a DSGE rational expectations model, the nature of agents’ information sets is cru-

cial for both the dynamics of the solution and for whether an econometrician can infer

structural shocks and impulse responses from such a DGP. In this paper we adopt a

heterogeneous agent, incomplete markets framework where agents have incomplete and

idiosyncratic information sets. Solving for a general rational expectations equilibrium in

this class of models is far from straightforward. Techniques pioneered by Nimark (2008)

and others typically involve hierarchies of expectations (“beauty contests”), which in gen-

eral imply infinite-order state-space representations that can only be solved numerically,

and, thus of necessity, sacrifice the simplicity and insights of a single agent economy.

However, in two limiting cases, things simplify considerably.

As idiosyncratic variation tends to zero, everyone is the same, so straightforwardly the

economy can be represented by the behaviour of a single agent, and the informational

problem simply disappears. But the economy also simplifies as idiosyncratic variation

becomes extreme. In such cases, any aggregate signals from the idiosyncratic economy

are effectively swamped by idiosyncratic volatility but agents must rely on whatever

purely aggregate signals are available. It should be stressed that in such an economy

there need be no “noise”, in the sense commonly used in the literature. Nothing need be

measured with error, and idiosyncratic varation will typically affect the optimal behaviour

of agents in the model, but the informational problem will arise from agents’ inability to

distinguish idiosyncratic shocks from aggregate shocks.

In this paper, we exploit the properties of this second limiting case. We show that

the typical agent’s signal extraction problem in such an economy will take the same

form as a single agent signal extraction problem and that the resulting solution will

have a finite state space. But, crucially, we also show that the aggregate solution that

results from the solution will be affected by the nature of optimal responses to strictly

idiosyncratic shocks, even when such such shocks aggregate to zero. There are clear gains

from this approach in terms of simplicity, tractability and insights on how heterogeneity

and imperfect information impact on aggregate dynamics. It also allows us to exploit

well-established results on single agent signal extraction problems.

Exploiting this solution method allows us to address the question at the start of the

paper: how the general nature of the agents’ signal extraction problem under imperfect

information impacts on the econometrician’s problem of attempting to infer the nature of

structural shocks and associated impulse responses from the data. A key feature is that,

if agents cannot directly observe nor infer structural shocks and therefore make errors in

their interpretation, this induces additional hidden dynamics in the aggregate economy

that would simply be absent in a perfect information economy. We show this manifests

itself as Blaschke factors in the DGP, the parameters of which cannot be derived even
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from an infinite data sample.

As always, with any simplifying assumption, there are also losses in descriptive ac-

curacy. But there is quite a lot of evidence, which we discuss in Section 1.6 below, that

strictly idiosyncratic variation is indeed much greater than aggregate variation, so we

argue that, for empirically relevant volatilities, outcomes are likely to be closer to our

case than to outcomes that can only arise under the (still very common) assumption that

heterogeneous agents are simply endowed with perfect information.

Our results are general and not model-specific, but to motivate them we first examine

an illustrative example. We then discuss how our analysis relates to the existing literature.

1.1 A Motivating Illustrative Example

We start by illustrating the key elements of our analysis with reference to the informa-

tional implications of a simplified log-linearized version of a heterogeneous agent RBC

economy with idiosyncratic and aggregate uncertainties as in Krusell and Smith (1998).

The model itself is taken from Graham and Wright (2010), hereafter GW:1

ksi,t+1 = κ1k
s
i,t + κ2(at + εi,t) + (1− κ1 − κ2)ci,t (1)

Ei,tci,t+1 = ci,t + κ3Ei,tvt+1 (2)

at = ϕat−1 + εa,t where εa,t ∼ n.i.i.d(0, σ2
a) (3)

vt = (1− α)(at − kt) (4)

Agents’ Information Sets : mA
t = vt ; mA

i,t = at + εi,t where εi,t ∼ n.i.i.d(0, σ2
i )(5)

where ksi,t and ci,t are, respectively, the capital stock supplied by households2 and their

consumption on island i in period t; at is aggregate technology; εi,t is an idiosyncratic

technology shock that aggregates to zero; vt is the rental rate on aggregate capital,

kt =
∫
µ(i)ki,tdi where µ(i) is the density of agent i; and κ1, κ2 and κ3 are linearisation

parameters.

The informational problem in this setting arises directly from heterogeneity in an

incomplete markets economy. Agents are assumed to have information sets that derive

only from the markets they trade in: thus they only observe the aggregate rental rate vt
3

and their local (island-specific) wage. In Appendix E.5, we show that this is equivalent

to the information assumption mA
i,t = at + εi,t in (5). Given this “market-consistent”

information set, GW show that the decentralized market equilibrium cannot replicate,

1Appendix Section E.5 sets out the model as a special case of a standard RBC model with a fixed
labour supply. The model of Rondina and Walker (2021) is a restricted case with 100% depreciation of
capital, although its structure is formally equivalent to GW.

2Note that ksi,t differs from capital stock rented by firms on island i since capital is free to flow from
less to more productive islands.

3GW show that almost identical results arise if agents observe a common risk-free rate.
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and differs in important ways from, the solution that would be achieved if all aggregate

states were directly observable. Thus in this framework, PI, as assumed originally by

Krusell and Smith (1998) (and still commonly assumed in much of the heterogeneous

agent literature), is not market-consistent: it can only arise if the information is essentially

provided as endowment.

Note that, in this model, there is no ‘noise’. Nothing is measured with error: the

island-specific technology shock has real effects, which will always affect the optimal

behaviour of agents in the model. But the information itself may be noisy which is the

source of the informational problem.

An advantage of this simple model is that it is possible to derive a finite state space

analytical solution for any value of the idiosyncratic variance σi,
4 which we can compare

with our solution for the limiting case, to which we now turn.

1.2 Extreme Heterogeneity Leads to a Single-Agent Problem

In the limiting case, as varσi approaches infinity, the idiosyncratic wage provides essen-

tially no information about aggregate technology, leaving agents with only the aggregate

signal from the return on capital as an input to their filtering problem for the aggregate

economy. Rational agents in such a heterogeneous economy will know that other agents

face an identical problem; as a result, all agents will share (and know that they share) a

common estimate of aggregate capital and aggregate technology. As a result, while the

general solution analyzed by GW involves an infinite order hierarchy of expectations, in

this special case, the hierarchy collapses, and hence the economy has a finite state-space

representation.

Since all agents share a single common signal of the aggregate economy (the rental

rate, vt), this economy closely resembles, but is not the same as an economy with a

notional single agent who only observes vt. While there has been a substantial literature

that assumes imperfect information in a single agent model, building on the foundations

developed by Pearlman et al. (1986),5 any such model is subject to the critique that it

cannot explain why information is imperfect.6

But this limitation of the single agent model with imperfect information does not stop

it being useful. If we solve the model for the limiting case of extreme heterogeneity (as

σi → ∞) we show that, as a general result (Theorem 2), the solution for the aggregate

economy turns out to have the same form as for a parallel economy with a single agent

4See Appendix D.1.
5Theorem 1 shows how a general linear RE model can be converted into a form used by Pearlman

et al. (1986).
6GW argue that the complete markets assumption required for the existence of a single agent in a

heterogeneous economy must imply perfect information. And in the limiting homogeneous case (σi → 0)
by inspection the informational problem disappear.
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with a censored imperfect information set who only observes vt. But we also show that,

crucially, the aggregate dynamics of this parallel economy are affected in important ways

by the underlying heterogeneity.

Figure 1 illustrates the underlying mechanisms. It shows the responses to a positive

technology shock in two cases of imperfect information (II): the first is the limiting case

of extreme heterogeneity (which we denote II-HA(∞)); the second is the solution for a

notional single agent with an artificially censored information set (which we denote II-

SA). For comparison, it also shows responses in the case where perfect information (PI) is

simply assumed. The key differences stem from the responses of aggregate consumption

to agents’ best estimate of the capital stock.
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Figure 1: Simple RBC Model. Impulse Responses to a Temporary Technology Shock
for PI and II-HA(Σ) as Σ → ∞ Compared. Parameter Values: r = 0.01, α = 0.333,
δ = 0.025, σ = 2

In the benchmark case in which heterogeneous agents are simply assumed to have

PI (which we denote PI-HA), the approximate aggregation result of Krusell and Smith

(1998) becomes exact, given the linearization, so the solution for the aggregate econ-

omy is identical to the solution for a single agent economy with PI (which we denote

PI). Hence the productivity shock causes the familiar response of a temporary rise in

consumption, with a modest degree of capital accumulation providing some element of

consumption smoothing. Note that while the aggregate PI-HA solution is identical to the

PI solution, heterogeneous agents also have optimal saddlepath responses to idiosyncratic

states, which, for large values of σi will actually dominate individual behaviour; but these

responses all cancel out at the aggregate level.
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In stark contrast, in both the II-HA(∞) and II-SA cases, the positive productivity

shock is initially misinterpreted as bad news, reflecting the offsetting effects of technology

and capital on the return. In both cases, estimates of aggregate capital fall, triggering a

fall in consumption. But the responses are not identical. The key difference is that, in the

II-HA(∞) case, agents can observe their own capital. So bad news for aggregate capital

must imply exactly offsetting good news for aggregate estimates of the idiosyncratic

components of capital and technology (while idiosyncratic components must cancel in

the aggregate, they do not cancel in aggregate expectations). But the optimal responses

to estimates of idiosyncratic states in the II-HA(∞) case are small. Hence as Figure 1

shows, the consumption response is still negative. In contrast, in the II-SA case, there is

only bad news, so consumption falls more sharply.

But while the II-SA case overstates the negative response, our Theorem 2 shows that

the general II-HA(∞) case can be solved as if it were an II-SA case, and hence using

the techniques of Pearlman et al. (1986). We show that the filtering problem for the

aggregate economy that agents need to solve takes an identical form to the II-SA case;

but a key matrix that feeds into the problem is shifted by the optimizing saddlepath

responses to idiosyncratic states in the PI-HA case. So heterogeneity does nontrivially

influence the dynamics of the aggregate economy, but in a way that can be captured

exactly in a parallel single agent imperfect information economy, thereby allowing the

application of a well-developed toolkit for solving the informational problem.

1.3 Extreme vs Intermediate Heterogeneity

An obvious question is how good an approximation our limiting case of II-HA∞ provides

for less extreme degrees of heterogeneity. In the simple case of this example we can address

this issue, since we can also derive an exact analytical solution for different degrees of

heterogeneity, ie for the full range of values of Σ = σi
σa
, which we denote II-HAΣ.

Figure 2 illustrates the results. It shows the responses of aggregate consumption and

other key aggregates to an iid aggregate technology shock for a wide range of values

of Σ. For a quite wide range of empirically relevant values, the limiting case matches

intermediate cases quite well, and via the same mechanism: the technology shock is

interpreted as bad (or at least less good) news on the capital stock. Even when Σ = 1

(which would be very much at the low end of the empirically plausible range), the response

of consumption to a technology shock is nontrivially damped, compared to the PI solution.

Thus, while the limiting case is clearly restrictive, it also points clearly to the equally

restrictive nature of solutions that simply rely on the assumption of PI, provided as

an endowment. We also show in the next section that the implications for time series

properties and hidden dynamics also apply in this more general case.
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Figure 2: Simple RBC Model. Impulse Responses to a Temporary Technology Shock for
PI, II-SA and II-HA(Σ) where Σ ≡ var(εi,t)

var(at) . Parameter Values: r = 0.01, α = 0.333,
δ = 0.025, σ = 2

1.4 Time Series Properties and Hidden Dynamics

Figures 1 and 2 also illustrate another crucial feature of all II cases: the initial errors

in interpreting the productivity shock have prolonged impacts on capital accumulation,

and thus induce additional dynamics in response to a productivity shock that are entirely

absent under PI.

For an econometrician observing this model economy, this ‘contamination’ of aggre-

gate dynamics by filtering errors has crucial implications. To illustrate, in the model in

its simplest form, with no persistence in technology (ϕ = 0), and for empirically plausible

values of σ, using the general solution procedures set out in Section 2 and 3 it can be

shown that for all possible cases, the single observable vt in our simple example always

has a fundamental ARMA(1,1) representation, of the general form

vt =

(
1− ψsL

1− µL

)
es,t (6)

where both the MA parameter ψs and the fundamental innovation es,t differ across cases,
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for s ∈ {II-HA(∞), II-HA(Σ), II-SA,PI} , with

es,t = (1− α)

(
1− L

λs

1− λsL

)
︸ ︷︷ ︸

Blaschke Factor

εa,t (7)

λII−HA(∞) =
κ1

κ1 + κ2
> λII−SA = βλII−HA(∞)

ψII−HA(∞) = µλII−HA(∞) > ψII−RA = β2ψII−HA(∞)

λPI = ψPI =
1

µ
λII−HA(∞) > λII−HA(∞),

λPI < 1 for empirically plausible values of σ

but where the AR parameter µ is common across all cases, and equal to the single stable

eigenvalue in the PI case.7 Details of the solution for the non-limiting case are given in

Appendix B.3.10.

All the possible cases (including, for plausible parameters the PI case) have the com-

mon property that the fundamental innovation est that can be recovered from the history

of vt, is not a scaling of the true structural shock εa,t, but is driven by a Blaschke Factor

that maps from the history of the structural shock to the observable fundamental innova-

tion with the case-specific form (7); and the structural shock is always non-fundamental.

To this extent, all versions of this simple economy share the common feature that, from

the perspective of an econometrician observer at time t, there are hidden dynamics. But

there is a key, and crucial, difference. In the PI case,8 these dynamics are hidden from

the econometrician, but they are, given the assumption of perfect information, visible to

agents in the economy. In all the II cases they are also hidden to agents in the economy;

and as Figures 1 and 2 illustrate, the errors agents make in estimating aggregate states

result in higher order dynamics. This implies a key difference in the time series properties

of vt.

In the case of PI, the true DGP is a nonfundamental ARMA(1,1) process driven by

the structural shock εa,t, i.e., of the same order as the fundamental ARMA. In Lippi

and Reichlin’s (1994) terms it is nonfundamental but “basic”. In contrast, in all cases

of II, the true DGP is a nonfundamental ARMA(2,2) (since in all cases λs ̸= ψs) in the

same shock: implying it is both nonfundamental and “nonbasic”. This feature gener-

alises: imperfect information economies will always have higher-order dynamics than full

information economies.

This matters, because, while all the parameters of a basic representation can be re-

7See Appendices C.2–C.5 for details. We also show (in the Appendix Section E.7) that the properties
given below hold for values of σ greater than around one half, hence in line with the majority of empirical
estimates. The result generalizes easily to cases with ϕ > 0.

8As noted above, at the aggregate level, PI is identical to PI-HA.
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covered from the data (hence λPI = ψPI) this is not the case for nonbasic representations:

hence for all of the II cases, nothing in the history of vt would ever reveal the value of λs,

and hence the true structural shock. In discussing such representations Lippi & Reichlin

asserted that such representations were “not likely to occur in models based on economic

theory”. But our example provides a clear counter-argument to this assertion: in cases of

imperfect information, nonbasic representations are actually very much to be expected;

they arise directly from the agents’signal extraction problem. As a result the hidden

dynamics of an imperfect information economy are much more deeply hidden than those

of a perfect information economy.

1.5 Relating the example to our general results

The features of the simple example also illustrate the remainder of our general results.

Theorem 3 analyzes the general nature of the relationship between “A-invertibility”

and “E-invertibility”: whether, respectively, agents in the economy or an econometrician

can observe, or infer structural shocks and states from what they observe. There is

a crucial link between both properties and the “Poor Man’s Invertibility Condition”

(PMIC) of Fernandez-Villaverde et al. (2007).

For a given set of observables, Theorem 3 shows first that E-invertibility is impossible

without A-invertibility - in itself perhaps an unsurprising result. But we also show that a

necessary, but not sufficient condition for A-invertibility is that E-invertibility would hold

if (hypothetically) agents were simply endowed with PI. In our example, for empirically

plausible values of σ, the structural shock is non-fundamental even under PI, hence

this condition is not satisfied, and as a result, both A- and E-invertibility fail at the

first hurdle. However, for sufficiently low values of σ in our example, the productivity

shock would be fundamental and hence E-invertible under PI.9 But while E-invertibility

under PI is necessary, it is not sufficient for A-invertibility under general conditions of

II. Theorem 3 shows that applying a generalized version of the PMIC to the full state-

space representation of the economy under II (which, it may be recalled, must be of

higher dimension than under PI) implies additional conditions for A-invertibility. In the

illustrative example, these are violated, for any value of σ, so both A- and E-invertibility

fail.

The remainder of our results draw out key general implications of imperfect informa-

tion, which can also be illustrated with reference to the example.

Theorem 4 shows that, in the absence of A- (and hence E-) invertibility, the solution

for the aggregate economy can never replicate PI, and must always incorporate Blaschke

factors of the same general form as in our example.

Theorem 5 then shows that, despite the higher dimension of the structural state-space

9Since ∂µ/∂σ > 0, for sufficiently low values of σ, λPI > 1, so the Blaschke factor disappears.
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representation induced by imperfect information, there will always be a fundamental

representation (the “innovations representation” of Fernandez-Villaverde et al., 2007) of

the same dimension as under PI, with the remainder of the structural dynamics captured

by Blaschke factors. In our example, this implies the feature noted above that, in both

cases of II, there is a fundamental ARMA(1,1) representation, i.e, of the same order as

the structural ARMA under PI, despite the fact that, in both II cases, the true structural

representations are ARMA(2,2). Crucially, however, the innovations in these fundamental

representations are not equal to the true structural shock.

Theorem 6 relates our results to the property of “recoverability”(see Chahrour and

Jurado, 2022): it shows that recoverability must also fail, at a practical level, when A-

invertibility fails. To illustrate this property in our example, consider the position of an

econometrician at some time T >> t. As T − t → ∞, nonfundamental shocks at time

t, like the productivity shock in our example, would in the limit be recoverable from the

history vT , since while Blaschke factors are not invertible working backwards in time,

they are invertible working forward in time, which is a requirement for recoverability.10

But, crucially, this will only have any practical applicability under PI, in which case the

Blaschke parameter λPI = ψPI can be estimated directly from the data (since the repre-

sentation is basic) whereas for all cases of II λs ̸= ψs,and hence λs cannot be estimated

directly from the data. Thus in in practice recoverability faces an acute identification

problem.

These results imply a clear health warning to anyone using estimated fundamental

time series representations (which we refer to generically as VARs11) in an attempt to

estimate structural shocks and impulse response functions. To do so without reference to

the informational structure of the economy, and how this compares to the information set

of the econometrician, may lead to nontrivial errors of inference. If the econometrician has

an information set that is a weak subset of the agent’s (in general, imperfect) information

set, then fundamental innovations may be erroneously labelled as structural shocks, and

impulse responses may differ nontrivially from true structural impulse responses.

But this raises an obvious question: can we assess how different structural shocks

will be from observable innovations? The final Theorem 7 constructs a general measure

of approximate fundamentalness that applies to both perfect and imperfect information

10Since from (6) and (7), the structural ARMA under PI implies

εa,t =
1

α

(
1− µL

1− λ−1
PIL

)
vt =

λPI

α

(
1− µL

1− λPIF

)
vt+1 (8)

where F = L−1 is the forward shift operator. Hence εa,t is a convergent sum of current and future
values of vt. See Appendix H for other illustrative examples of recovering shocks from future values of
observables.

11The true reduced form will typically be a VARMA, or VAR(∞), and may sometimes be estimated
directly by state-space methods (e.g., Smets and Wouters, 2007) but will more commonly be a finite
order approximation.
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assumptions. In our illustrative example, this comes down to the correlation between the

true structural innovation εa,t and the fundamental innovation es,t. It is straightforward to

show that, as λs, the MA parameter in the Blaschke polynomial becomes sufficiently close

to unity, then corr (εa,t, es,t) also tends to unity. On an empirically plausible calibration,

λHA∞ is, on the one hand, sufficiently close to unity that εa,t and es,t would be expected

to be quite strongly positively correlated; but on the other hand, sufficiently far from

unity that impulse responses to true productivity shocks are distinctly more complex and

prolonged than under PI.

1.6 Contributions to Existing Literature

There are four strands of literature related to our paper.

The first strand is a largely econometrics literature on the invertibility/fundamentalness

problem which was first pointed out in the economics literature by Hansen and Sargent

(1980). Two seminal papers are Lippi and Reichlin (1994) that introduces Blaschke ma-

trices and Fernandez-Villaverde et al. (2007) that examines conditions for a solution of a

rational expectations (henceforth RE) model to have a VAR representation. A compre-

hensive review is provided by Alessi et al. (2011) and much of this material is now found

its way into two excellent macro-econometrics textbooks: Canova (2007) and Kilian and

Lutkepohl (2017).

In the econometrics literature, a more recent approach bypasses the intervening step

of a SVAR and uses external or internal instruments which are variables correlated with

a particular shock of interest, but not with the other shocks. Instruments can then be

used to directly estimate causal effects by direct instrumental-variables regressions using

the method of local projections of Jorda (2005).

This invertibility/fundamentalness problem is often described in this first strand of

literature as one of “missing information” when the econometrician does not have all the

information that agents in the data generating process (henceforth DGP) have. This

leads to a second literature that focuses on news shocks as an example of this extra

information: see, for example, Leeper et al. (2013), Blanchard et al. (2013) and Forni

et al. (2017).12 In our paper, missing information of this form is not at the heart of

the problem, but rather it is imperfect information on the part of both agents and the

econometrician that takes centre stage; indeed the information sets can be the same for

both without removing non-fundamentalness.

A third literature on imperfect information in single agent models was initiated by

Minford and Peel (1983) and generalized by Pearlman et al. (1986) - henceforth PCL

12Recent surveys of these two strands of the literature and the relationship between VAR and DSGE
models are provided by Sims (2012) and Giacomini (2013). However, in common with the literature, these
surveys explore the issue without examining the main focus of our paper - the information assumptions
of the agents in the underlying structural model.

10



- with further contributions by Pearlman (1992), Woodford (2003), Collard and Dellas

(2010) and Baxter et al. (2011). A general theme of these papers is that II can act as an

endogenous persistence mechanism in the business cycle. Ellison and Pearlman (2011)

incorporated II into a statistical learning environment. Applications with estimation were

made by Collard et al. (2009), Neri and Ropele (2012) and Levine et al. (2012). Leeper

et al. (2013), Blanchard et al. (2013) mentioned above also study information issues in a

single agent framework. Both these papers emphasize a main theme of our paper, namely,

that macroeconomic variables in the DSGE DGP process can only convey information

available to agents in the model. It follows that, if agents lack PI (non-A-invertibility in

our terminology) and do not observe current structural shocks, then the macroeconomic

time series cannot contain the information to recover the shocks in an estimated VAR.

A fourth literature is a class of heterogenous agent models that can be traced back to

Townsend (1983) which distinguish local (idiosyncratic) information and (aggregate) in-

formation, e.g., Lucas (1975), Pearlman (1986), Woodford (2003), Pearlman and Sargent

(2005), Nimark (2008), Angeletos and La’O (2009), Graham and Wright (2010), Nimark

(2014), Adams (2021), Adams (2023), Ilut and Saijo (2021), Okuda et al. (2021), Rond-

ina and Walker (2021), Huo and Pedroni (2020), Huo and Takayama (2021), Angeletos

and Huo (2021) and Broer et al. (2021). Angeletos and Lian (2016) provide a recent

comprehensive survey of what they refer to as the incomplete information literature.13

To elaborate on our paper’s contribution to this fourth strand of literature, we follow

Pearlman and Sargent (2005) who use the method of PCL to obtain a finite-space ‘single-

agent’ RE solution that avoids higher-order beliefs (which is also a feature of many of the

papers cited above). Our paper provides a general finite-space time-domain solution in a

framework that encompasses all those on offer in these citations. Our time-domain con-

tribution is closest to frequency domain solution of Rondina and Walker (2021) though

more general in the sense that the HA framework allows for non-scalar states, but less

general in the sense we assume the limiting case where idiosyncratic uncertainty far out-

weighs aggregate uncertainty. (However we do have a non-limiting case HA solution for

our illustrative model above). Unlike that paper and Adams (2021) we do more than

characterize the solution in that we provide existence and uniqueness results. Further-

more, unlike the other papers cited our solution is general and not model specific. We

can therefore claim to have a HA (limiting case) solution that generalizes BK (for PI)

and PCL (for II-RA) in a comparable general HA framework.

We also draw on empirical evidence on the relative magnitude of idiosyncratic vs ag-

13Here a comment on terminology is called for. Our use of perfect/imperfect Information (PI/II)is
widely used in the second strand of literature when describing agents’ information of the history of
play driven by draws by Nature from the distributions of exogenous shocks. The complete/incomplete
framework of the Angeletos and Lian (2016)’s survey (and other work by these authors) incorporates
PI/II, but also refers to agent’s beliefs regarding each other’s payoffs. In our framework this informational
friction (leading to “Global Games”) is as yet absent.
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gregate shocks, as a rationale for our limiting case. For instance, Ilut and Saijo (2021),

in a general equilibrium heterogeneous firm framework, estimate the idiosyncratic com-

ponent of the standard deviation of a total factor productivity (TFP) shock to be 50-100

times that of the aggregate component. Bloom et al. (2018) estimate, using macro-

and industry-level data, the standard deviation of common and idiosyncratic technol-

ogy shocks, and find evidence of substantial idiosyncratic uncertainty in causing business

cycles and large increase in variance that characterises the crisis period.14

The final strand of literature proposes the concept of approximate invertibility (fun-

damentalness) for non-invertible (non-fundamental) RE linear solutions of DSGE models

- see, for example, Beaudry et al. (2016) and Forni et al. (2019). We provide a gener-

alization of the results of these papers to a DGP where agents have II. Related to this

concept, Miranda-Agrippino and Ricco (2019) consider the case when a researcher only

wants to partially identify the system, that is, to retrieve the dynamic effects of one or a

subset of the structural shocks.

In summary, our paper makes several important contributions, addressing both method-

ological and substantive issues in model solution and in conducting applied time se-

ries and macroeconomics research related to DSGE models. Firstly, it provides a finite

state-space solution to an important general class of heterogeneous agent RE problems

first studied by of Townsend (1983). Secondly, it shows that, in this context, an a-

theoretical VAR estimation of those variables may not generate the impulse response

functions to the structural shocks of interest because the RE solution may incorporate

Blaschke factors. Thirdly, it identifies and generalizes the conditions for invertibility of

the RE solution of a SA/HA/PI/II DSGE model. Fourthly, it constructs the PI and

II measures of approximate fundamentalness which can be used to assess the (non-) in-

vertibility/fundamentalness of structural shocks for further model validation. Thus, our

paper offers a unifying, general framework based on novel theoretical results to provide

important insights into studies of heterogeneity, informational imperfections and time

series properties in DSGE models.

1.7 Structure of Paper

In Section 2, we first set out our baseline framework for a single agent with II. Theorem

1 then shows that a general class of linear RE models can always be transformed into the

14See also David et al. (2016) who estimate the posterior variance of a firm-specific TFP process.
Other important early contributions investigating the transmission of idiosyncratic uncertainty include
Bloom (2009), Arellano et al. (2012) and Christiano et al. (2014). Using a panel of Compustat firms,
Arellano et al. (2012) calibrate a model with credit frictions and heterogeneous firms, and show that
exogenous increases in uninsurable idiosyncratic volatility help generate substantial volatility in business
cycles. Similarly, Christiano et al. (2014) focus on the entrepreneurial idiosyncratic risk generating cross-
sectional dispersion of firm-level productivity with tighter credit conditions that could lead to a recession
and accounts for a large share of the macroeconomic fluctuations.
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form that allows us to solve the informational problem using the techniques originally set

out in PCL. In Section 3, we then show, in Theorem 2, that we can derive a representation

of the aggregate economy with the same form from a limiting case of an incomplete

markets, heterogeneous agent economy.

Section 4 shows how the econometrician’s problem relates to the solution of the agents’

problems presented in Sections 2 and 3. Section 5 examines measures of approximate

fundamentalness when A-invertibility fails.

Section 6 provides a quantitative analysis illustrating Theorems 3–7 using a richer

RBC model than the earlier analytical one. Section 7 provides concluding remarks.15

Online appendices provide proofs of our key results as well as analysing a range of back-

ground issues.

2 The Single Agent’s Problem

In this section, we first examine the general informational problem for the benchmark

case of a single agent. We first show that a general class of linear rational expectations

models can always be transformed into the form utilized by PCL to generalize the solution

of Blanchard and Kahn (1980) under imperfect information (II-SA) rather than perfect

information (PI). We then provide outline RE solutions in these two cases.

2.1 The Problem

We begin by writing a linearized RE model in the following general form

A0Yt+1,t + A1Yt = A2Yt−1 +Ψεt mE
t = LEYt mA

t = LAYt (9)

where matrix A0 may be singular, Yt is an n×1 vector of macroeconomic variables; and εt

is a k×1 vector of Gaussian white noise structural shocks. We assume that the structural

shocks are normalized such that their covariance matrix is given by the identity matrix

i.e., εt ∼ N(0, I).

We define Yt,s ≡ E
[
Yt|IAs

]
where IAt is information available at time t to the single

agent, given by IAt = {mA
s : s ≤ t}. We assume that this contains the history of a

strict subset of the elements of Yt, hence information is in general imperfect; but we do

not at this stage seek to justify the restricted nature of the information set. Note that

measurement errors can be accounted for by including them in the vector εt.

15Our II solution for simulation and Bayesian estimation alongside the invertibility checks are currently
available in version 4.6.1 of Dynare. See Levine et al. (2020) and Appendix J for details.
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2.2 Conversion to Generalized Blanchard-Kahn Form

The rest of this section is structured so that we first show how (9) can be transformed

into the state-space form utilized by PCL, a generalization of the Blanchard-Kahn form

(Theorem 1), and then describes the unique RE saddle-path stable solution to the problem

under PI and II.

Anderson (2008) lists a selection of methods that can be used to solve (9) for the case

when agents have PI. The most well-known of these are Klein (2000), Sims (2002) and

Blanchard and Kahn (1980) - henceforth BK. Lubik et al. (2023) adopt the Klein-Sims

approach to a general II environment with two kinds of agents with different information

sets. However, we find that the generalized version of the BK form that was utilized by

PCL is particularly suitable for comparing with the finite-space solutions of heteroge-

neous agent problems in Section 3.2. It is also important in Theorem 4 for revealing the

spectrum of the II solution as non-minimal and incorporating a set of Blaschke factors.

In order to move seamlessly from (9) to results that are based on PCL, we introduce

our first key result, which appears to be novel in the literature:

Theorem 1. For any information set, (9) can always be converted into the following

generalized BK form, as used by PCL[
zt+1

xt+1,t

]
=

[
G11 G12

G21 G22

][
zt

xt

]
+

[
H11 H12

H21 H22

][
zt,t

xt,t

]
+

[
B

0

]
εt+1 (10)

mA
t =

[
M1 M2

] [ zt

xt

]
+
[
M3 M4

] [ zt,t

xt,t

]
(11)

where zt, xt are vectors of backward and forward-looking variables, respectively.

Proof of Theorem 1. See Appendix B.1.

The expressions involving zt,t and xt,t arise from rewriting the model in PCL form

(10). This transformation (outlined in Appendix B.1) involves a novel iterative stage

which replaces any forward-looking expectations with the appropriate model-consistent

updating equations. This reduces the number of equations with forward-looking expecta-

tions, while increasing the number of backward-looking equations one-for-one. But at the

same time it introduces a dependence of the additional backward-looking equations on

both state estimates zt,t
(
≡ E[zt|IAt ]

)
and estimates of forward-looking variables, xt,t. The

presence of the latter is the key feature that distinguishes our results on invertibility from

those of Baxter et al. (2011) - henceforth BGW - the applicability of which is restricted

to cases where all forward-looking variables are directly observable.
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2.3 The Single Agent Solution Under Perfect Information (PI)

The PI solution is an important special case. Here we assume (without seeking to justify

this assumption) that the single agent directly observes all elements of Yt, hence of (zt, xt).

Hence zt,t = zt, xt,t = xt, and using standard solution methods, there is a saddle path

satisfying

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(12)

where ΛU is a matrix with unstable eigenvalues. The saddlepath matrix N can be cal-

culated by standard techniques. If the number of unstable eigenvalues of (G+H) is the

same as the dimension of xt, then the system will be determinate.16

Given this determinacy condition, after substituting for xt, a unique saddle-path stable

RE solution exists for the states under PI of the following form

zt = Azt−1 +Bεt (13)

where

A ≡ G11 +H11 − (G12 +H12)N (14)

2.4 The Single Agent Solution Under Imperfect Information

(II-SA)

Under II, the transformation of (9) into the form (10) and (11) in Theorem 1 allows us to

apply the solution techniques originally derived in PCL. We briefly outline this solution

method below.

We first define matrices G, in (10), and H, in (11), conformably with zt and xt, and

define two more structural matrices F , J

G ≡

[
G11 G12

G21 G22

]
H ≡

[
H11 H12

H21 H22

]
(15)

F ≡ G11 −G12G
−1
22 G21 J ≡M1 −M2G

−1
22 G21 (16)

where F and J capture intrinsic dynamics in the system, that are invariant to expectations

formation. Both PCL and BGW show that the filtering problem is unaffected by these

additional terms.17

16Note that, in general, as Sims (2002) has pointed out, the dimension of xt will not match the number
of expectational variables in (9), as we see in the algorithm for the proof of Theorem 1 (see Appendix
B.1).

17By substituting from the second block of equations in (10), we can write zt = Fzt−1+

[
B
0

]
εt+1

plus additional terms involving expectations formed at time t; and mA
t = Jzt+ additional terms likewise.

Since all expectational terms are known at time t, they do not affect the solution to the filtering problem.
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Following PCL, we apply the Kalman filter updating given by[
zt,t

xt,t

]
=

[
zt,t−1

xt,t−1

]
+K

[
mA
t −

[
M1 M2

] [ zt,t−1

xt,t−1

]
−
[
M3 M4

] [ zt,t

xt,t

]]

The single agent’s best estimate of (zt, xt) based on current information is a weighted

average of their best estimate using last period’s information and the new information

mA
t . Thus the best estimator of (zt, xt) at time t − 1 is updated by the “Kalman gain”

K of the error in the predicted value of the measurement. PCL show that K is solved

endogenously as K =

[
PAJ ′

−NPAJ ′

]
[(M1 −M2N)PAJ ′]−1, where PA is defined below in

(23), but this version of the Kalman gain is not directly incorporated into the solution

for (zt, xt).

The unique saddle-path stable solution under II, as derived by Pearlman et al. (1986)

for the pre-determined and non-predetermined variables zt and xt, can then be described

by processes for the predictions zt,t−1 and for the prediction errors z̃t ≡ zt − zt,t−1:

Predictions : zt+1,t = A (zt,t−1 +KJz̃t) (17)

Prediction Errors : z̃t = QAz̃t−1 +Bεt (18)

Non-predetermined : xt = −N (zt,t−1 +KJz̃t)−G−1
22 G21 (I −KJ) z̃t (19)

Measurement Equation : mA
t = E (zt,t−1 +KJz̃t) (20)

where

K =PAJ ′ (JPAJ ′)−1
; QA = F [I −KJ ] (21)

F and J are as defined above in (16), K is an alternative Kalman gain matrix after

stripping out the predictable variation in the state variables zt+1 arising from dependence

on xt. The matrix A, defined in (14), is the autoregressive matrix of the states zt in the

solution under PI. We have introduced another non-structural matrix E defined by

E ≡M1 +M3 − (M2 +M4)N (22)

which captures the impact of predictions and prediction errors for zt on observable vari-

ables. B captures the direct (but unobservable) impact of the structural shocks εt and

PA = E[z̃tz̃′t] is the solution of a Riccati equation given by

PA = QAPAQA′
+BB′ (23)

To ensure stability of the solution PA, we also need to satisfy the convergence con-

dition, that QA has all eigenvalues in the unit circle. Since the matrix QA is also the
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autoregressive matrix of the prediction errors z̃t in (18), this is equivalent to requiring

that prediction errors are stable. Since there is a unique solution of the Riccati equation

under mild conditions that satisfies this condition, it follows that the solution (B.69)–(20)

is also unique thereby extending this property of the PI BK solution to the II case.

We can thus see that the solution procedure above is a generalization of the BK

solution for PI and that the determinacy of the system is independent of the information

set.

We finally note that the II solution can be transformed into the PI solution when the

agent’s information set is (zt, xt). Choose just a subset of the information, mt = Jzt, such

that JB is invertible. We then deduce from (23) that PA = BB′ and hence z̃t = Bεt.

Substituting into (B.69) yields zt+1,t = Azt,t−1 + ABεt = A(zt,t−1 + z̃t) = Azt. Adding

this to z̃t+1 = Bεt+1 yields zt+1 = Azt +Bεt+1, the PI solution.

3 The Heterogeneous Agent (HA) Framework

We now move from a single agent (SA) to a heterogeneous agent (HA) framework.

3.1 General Framework

We start with the following generalized version of a linearized HA model from the per-

spective of agent i that encompasses all the papers discussed in the fourth strand of

literature in Section 1.618

 ϖt+1

yi,t+1

WEi,txi,t+1

 =

 R 0 0

A21 A22 A23

A31 A32 A33


 ϖt

yi,t

xi,t



+

 I 0

0 A21

0 A31

[ ϵt+1

ϵi,t

]
+

 0 0 0 0

0 I1 0 I3

H I2 W − I I4




Ei,tzt+1

Ei,tzt
Ei,txt+1

Ei,txt

 (24)

18Note that I1, I2 are general, not identity matrices. We have normalized the equation that includes
forward expectations so that, under PI, the coefficient on expectations of xt+1 is the identity matrix.
More generally, one would include Ei,txt, but in the solution we would find that this is a linear function,
via the saddlepath relationship, of Ei,tzt, to reduce the amount of notation we therefore omit it. Also

note that

[
R 0
A21 A22

]
corresponds to G11 in (10), and A33 to G22, along with other correspondences.
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where zt ≡ [ϖ′
ty

′
t]
′ are predetermined variables, ϖt shock processes, yt =

∫
µ(i)yidi ag-

gregates and µ(i) the agent i density. Measurements of agent i are given by

mA
t =M1zt +M2xt mA

i,t = ϖt + εi,t var(εi,t) = Σ (25)

where mA
t is a common information set, Ei,t are expectations over the diverse informa-

tion set Ii,t = {mA
k ,m

A
ik : k ≤ t}. xt are non-predetermined variables. This framework

encompasses the less general frameworks of Rondina and Walker (2021), Huo and Pe-

droni (2020), Huo and Takayama (2021) and Angeletos and Huo (2021) by allowing for

predetermined endogenous variables yi,t and yt
19

When there are no idiosyncratic shocks, then all agents are identical, so that Eit = Et,
then the system can be written in the following Blanchard-Kahn form of Theorem 120 ϖt+1

yt+1

Etxt+1

 =

 R 0 0

Â21 Â22 Â23

Â31 Â32 Â33


 ϖt

yt

xt

+

 I

0

0

 ϵt+1 (26)

where matrices Âij are obtained by straightforward substitution. The information set of

econometricians, mE
t , is m

A
t as in (25). In what follows we assume the Blanchard-Kahn

determinacy eigenvalue condition holds for (26).

A critical if uncontroversial assumption is that current aggregate shocks affect obser-

vations of aggregates with their input/output relationship being full rank. If not, then

there is no chance of VAR estimation being able to relate residuals to structural shocks.

To reduce notation, we also assume that the exogenous variables follow a VAR(1)

process with autoregressive matrix R.

We assume for convenience that expectations of future variables do not affect agents’

decisions on yi,t; this can be justified within an optimizing framework because if an agent

makes a decision on a variable that depends on expectations of future values of aggregate

variables, then this would be coupled with expectations of that variable’s future value.

So the variable would be an element of the vector xi,t.

Note that, crucially, we make the assumption that agents observe their own actions

perfectly, so that Ei,t[Yi,t] = Yi,t; in that respect, the derivation of the state-space repre-

sentation via Theorem 1 is more straightforward. However, account has to be taken of

agent i’s best estimate of current and future values of aggregate variables.

19Angeletos and Huo (2021) assume a different information set where typically there are fewer observa-
tions of aggregates than there are aggregate shocks, so their work is not applicable to VAR comparison..
Also, our solution procedure is entirely in the time domain (as in Sections 2.3 and 2.4) as opposed to the
frequency domain used in these studies. It therefore provides a seamless progression from the familiar
Blanchard-Kahn PI solution, conducted in the time-domain, to II-HA case.

20Note in a HA framework we must put M3 = M4 = 0 in (11) in our choice of aggregate information
set. The exact representation of the Âij appears in the proof of Theorem 2 below.
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There are, however, some modifications, and in addition, some simplifications that

we use to ease the burden of notation in the proof of the main theorem of this section.

Firstly, we make the usual assumption for heterogeneous agents in this literature, that

any aggregate shocks ϖt are both perceived and acted upon with the addition of an

idiosyncratic component εi,t; agent i therefore only observes the composite ϖt + εi,t.

But, crucially, as noted in the introduction, εi,t is not simply ‘noise’: it also directly

affects the agent’s state variable yi,t. In addition, we make the usual assumption in this

literature that εi,t is a vector white noise process.

While we write the system (26) in an unrestricted form, our results below will focus

on a limiting case where we allow var(εi,t) → ∞, so there is no useful information about

zt provided by mi,t. Then Ei,tzt+1 = Etzt+1. We denote this case by II-HA(∞) which is

the focus of the next section. On the basis of available evidence, cited in Section 1.6, we

argue that this limiting case is of empirical interest.

As in the single agent case, we also exploit properties of the heterogeneous case where

all agents have PI (which we denote PI-HA) where this information is simply assumed

to exist as an endowment so agents (somehow) observe all current realizations of the

shock processes εt and εi,t. In this solution, the saddlepath matrix N for any individual

agent i will include optimal responses to purely idiosyncratic components, but, as in

the example analysed in the Introduction, it is straightforward to show that, given the

linearity of the setting, these responses cancel out in aggregate, so that the PI-HA solution

for the aggregate economy is identical to the PI- SA solution derived above. However,

a key feature of our next result is that the saddlepath responses to purely idiosyncratic

responses in the PI-HA case still play a key role in determining the nature of the filtering

problem when information is imperfect.

Lemma 1. The solution for agent i under PI-HA is given by

yi,t+1−yt+1 = (A21−A23Nεi)εit+(A22−A23Nyi)(yit−yt) xit−xt = −Nyi(yit−yt)−Nεiεit

(27)

where yt and xt are the solutions to the aggregate economy under PI as set out in sub-

section 2.3 to be consistent with (24), provided that A22 − A23Nyi is a stable matrix.

Proof of Lemma 1. See Appendix B.2.

3.2 The Limiting Case of a Heterogeneous Agent Model

Before stating our main theorem, we introduce the following notation that resets matrices

J and E:

J =M1 −M2A
−1
33 A32 E =M1 −M2N (28)
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Note that if M2 = 0, then E = J . Writing J = [J1 J2] conformably with zt so that

Jzt = J1ϖt + J2yt, we define S = J−1
1 J2.

Theorem 2. Assume a general HA framework as in (24). Assume that the number of

observables equals the number of shocks (m = k) . Then, as the diagonal elements and

determinant of Σ, the idiosyncratic shock covariance matrix, tend to infinity, the limiting

aggregate solution, II-HA(∞) will have two possibilities: (a) it is equivalent to the PI case

or (b) it will be different from PI but still with a finite set of states. A unique saddle-path

solution exists with an identical structure to the single agent II-SA solution of (9), as in

(B.69) to (20), but replacing F in (16) with

F (∞) =

[
R 0

A21 − A23Nεi A22 − A23Nyi

]
(29)

where Nεi and Nyi are saddlepath responses to εi,t and yi,t in the PI-HA case as in

Lemma 1.

Proof of Theorem 2. See Appendix B.3.

Thus we have shown that the aggregate solution in such an economy can be derived

from (but in important respects differs from) the informational problem of a notional

single agent with the same aggregate information set, and will therefore, in contrast to

intermediate cases, have a finite state-space solution.

It is important to note that Theorem 2 does not say that the II-HA(∞) case is in

general identical to the II-SA case with the same aggregate observables. Instead it says

that the solution of the agents’ signalling extraction problem for the aggregate economy

always takes the same form as the solution of a notional II-SA problem, but, crucially,

with amendments to the underlying structure of this notional economy. The original

definition of F in (16) for the II-SA economy is entirely independent of the saddlepath

matrix N; whereas (29) shows that, in the notional II−∞∞ problem solved in Theorem

2, it is shifted by saddlepath responses to idiosyncratic shocks and states in the PI-HA

case.21 Thus, the nature of the idiosyncratic economy impacts both on the solution to

the signal extraction problem but also, as a result, on aggregate dynamics.

4 The Econometrician’s Problem

We now show how the econometrician’s problem relates to the solution of the agents’

problem presented in Section 2 and hence (from Theorem 2) the limiting case of Section

21Although the general PI-HA solution has not been specified, the proof of this theorem in Appendix
B shows that Nεi and Nyi are unrelated to the filtering problem, and thus must be identical to the
solution in the PI-HA case. The additional HA saddlepath is precisely analogous to that in Rondina and
Walker (2021) âe“ see their condition (A.20)
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3.

4.1 Informational Assumptions

In our central case, we assume that, under imperfect information, the econometrician

always has the same information set for the aggregate economy as the aggregate infor-

mation set available to the agents under II, thus mE
t = mA

t . Having derived three key

results below (Theorems 3–4) under this assumption, in Corollary 5.2 of Section 4.7, we

consider the implications of the econometrician’s information set being a strict subset of

that of the agents.22 In Section 4.8, we then consider the case that, at least over the

course of time, the econometrician has, at some T , more information than agents at time

t << T .

4.2 A-invertibility: When II Replicates PI

It is evident that, for the general case, in both II-SA and II-HA(∞) cases, imperfect

information introduces non-trivial additional dynamics into the responses to structural

shocks - a contrast which is crucial to much of our later analysis. However, there is

a special case of the general problem under II, which asymptotically replicates PI, and

hence where PA = BB′.

Definition 1. A-invertibility: An information set is A-invertible if agents can infer

the true values of the structural shocks εt (and hence, in the II-HA case, εi,t) from the

history of their observables, or equivalently, PA = BB′ is a stable fixed point of the agents’

Ricatti equation, (23). Hence QA must be a stable matrix evaluated at this fixed point.

4.3 E-invertibility: The ABCD (and E) of VARs

Corresponding to A-invertibility we now define the corresponding concept from the view-

point of the econometrician:

Definition 2. E-invertibility: An aggregate information set is E-invertible if an econo-

metrician can infer the true values of the shocks εt from the history of the econometrician’s

observables,
{
mE
s : s ≤ t

}
.

To see how the two concepts of A- and E-invertibility relate to each other, consider an

econometrician’s state-space representations of the aggregate economy of the type that

arise naturally from our solution method in Section 2, of the general form

st = Ãst−1 + B̃εt mE
t = Ẽst (30)

22This includes the popular example non-invertibility arising from a “missing information problem”
where agents but not the econometrician observe “news shocks”.
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where the tildes over each of the matrices distinguish this state-space representation from

the particular form (without tildes) under perfect information. It is straightforward to

show that both the PI and II-SA (and hence, from Theorem 2, II-HA(∞)) representations

of the previous two sections are in the ABE form of (30).

For the PI case, given the informational assumptions set out above, we have, straight-

forwardly, st = zt, Ã = A, B̃ = B, Ẽ = E. As noted above, given our linearity assumption,

this is also the solution for the aggregate economy in the PI-HA case.

For the II-SA case, we have

st =

[
zt,t−1

z̃t

]
(31)

Ã ≡

[
A AKJ
0 QA

]
(32)

B̃ ≡

[
0

B

]
(33)

Ẽ ≡
[
E EKJ

]
(34)

where A, K, J, QA and E are as defined after (B.69) to (20).

Given Theorem 2, there is also an equivalent representation of the aggregate economy

in the II-HA(∞) case.

This “ABE” representation form is the form usually found in the statistics literature.

In contrast, the following “ABCD” form is often but not exclusively used in the economics

literature, e.g., Fernandez-Villaverde et al. (2007)

st = Ãst−1 + B̃εt mE
t = C̃st−1 + D̃εt (35)

It is straightforward to show that any ABE form implies an ABCD form, with C̃ = ẼÃ

and D̃ = ẼB̃. Appendix A.1 shows that (less obviously) the reverse also applies; it also

shows that all of the state-space models that are used in the statistics, control theory

and econometrics literature can be rewritten in terms of one another.

The condition for the system (30) to be E-invertible, which we exploit below in Theo-

rem 3, is then a generalization of the PMIC of Fernandez-Villaverde et al. (2007),23 which

is obtained by some algebraic manipulation of (30):

Lemma 2. PMIC: For a general “ABE” system of the form in (30), necessary and

sufficient conditions for E-invertibility are: (a) A ‘square system’ with m = k; (b) ẼB̃

(now a square matrix) is non-singular; (c) Ã(I − B̃(ẼB̃)−1Ẽ) has stable eigenvalues.

23This result appears to date back at least to the work of Brockett and Mesarovic (1965).
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Proof. See Appendix A.2.24

A final observation is that invertibility does not require the ABE representation to

be in minimal (i.e., controllable and observable) form; we mention this since the ABE

representation of the II solution below might not be minimal.25

The advantages of using the ABE state-space form in what follows are (i) the Riccati

equation is simpler than for any of the other formulations, (ii) the solution under II is

much simpler to express and, most usefully, (iii) the representation of the model using

the innovations process (see Appendix A.5) has the same structure as the original model.

4.4 E-invertibility: When Agents Have PI

The conditions for E-invertibility under PI are straightforward, and merely mimic the

PMIC requirements of the previous section, but with Ã = A, B̃ = B, Ẽ = E, st = zt.

Hence we immediately have:

Lemma 3. If agents have PI, the conditions for E-invertibility (as in Definition 2) are:

the square matrix EB is of full rank and A(I −B(EB)−1E) is a stable matrix.

It is straightforward to show that this is identical to the original PMIC, derived from

the ABCD representation, in Fernandez-Villaverde et al. (2007). Since, as noted above,

the aggregate solution under PI in a heterogeneous agent economy (PI-HA) is the same

as in a standard single agent economy (PI), the same condition implies in both PI cases.

4.5 E-invertibility: When Agents Have II

Now consider the equilibrium where agents do not have PI and the more general case

of E-invertibility under II (which, from Theorem 2, subsumes both II-SA and II-HA(∞)

cases). The result is straightforward, but powerful:

Theorem 3. Assume that the number of observables equals the number of shocks (m = k) .

Assume further that the PMIC conditions in Lemma 3 hold (so the RE solution would be

E-invertible under PI) but agents do not have PI . Then E-invertibility under II holds

if and only if A-invertibility holds, and this requires that the square matrix JB is of full

rank, and QA = F (I −B(JB)−1J) is a stable matrix.

24A slightly weaker condition than invertibility is fundamentalness which allows some eigenvalues to
be on the unit circle. However, we use the two terms interchangeably and, in fact, if we restrict our
models to have only stationary variables, then the two concepts are equivalent.

25To show this, suppose that (Ã, B̃) is not controllable; then there exists an eigenvalue-eigenvector
pair (λ, x) such that x′Ã = λx′, x′B̃ = 0. It is then trivial to show that x′Ã(I − B̃(ẼB̃)−1Ẽ) = λx′.
But we have assumed that Ã is a stable matrix, so an uncontrollable mode cannot be the source of
non-invertibility. The same conclusion can be drawn for non-observability, for which there exists an
eigenvalue-eigenvector pair (µ, y) such that Ãy = µy, Ẽy = 0.
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Proof. See Appendix B.4.

The following corollary follows from Theorem 3 involving a key matrix U2 in the proof

of Theorem 2:

Corollary 3.1. For the II-HA(∞) case, after making the substitutions for J and F from

Theorem 2, the conditions for E-invertibility in Theorem 3 reduce to the condition that

U2 ≡ (A21−A23Nεi)S− (A22−A23Nyi) is a stable matrix which then in turn becomes the

condition for PI, II-SA and II-HA(∞) solutions to be equivalent in the case where agents

do not have PI.

4.6 If A-invertibility Fails

The conditions for A- (and hence E-) invertibility to be satisfied are stringent. The

following result forms the basis for our remaining analysis of cases where these conditions

are not satisfied.

Theorem 4. Under the assumptions of Theorem 3, if A- (and hence E-) invertibility

fail, then the solution for aggregate variables can never be identical to the PI case, and

will incorporate Blaschke factors in the impulse response functions.

Proof. See Appendix B.6.

The first element of this theorem is unsurprising: if agents cannot correctly identify

the true structural shocks then their responses are bound to differ from those under PI.

But the key feature that the aggregate solution that results from these responses must

incorporate Blaschke factors is crucial for what follows.

Note also that, given the equivalence of II-SA and II-HA(∞) representations estab-

lished in Theorem 2, this result, applies in both cases, as do the later results that follow

from it.

4.7 The Innovations Process for II When A-invertibility Fails

In the absence of A- and hence E-invertibility, there is still an “innovations representa-

tion” (see Fernandez-Villaverde et al., 2007) under mild conditions.26 The counterpart

to the innovations representation is, in population, a finite order fundamental27 VARMA

(or VAR(∞)) in the observables, mE
t , with innovations et. This can either be directly

estimated via its state-space representation (using Dynare, for example), or, more com-

monly, it may be approximated by a finite-order VAR(p) approximation. When the

26See Appendix A.5 for standard results for the innovations representation and Lemma 6 in particular.
27We deliberately use the term fundamental here, rather than invertible, to reflect the fact that esti-

mated VARs may contain stationary transformations of unit root processes.
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conditions stated in Theorem 3 do not hold, the VARMA or VAR approximation will

generate a series of reduced-form residuals that are a linear transformation of innovations

et ≡ mE
t − Et−1m

E
t but not of the structural shocks εt.

We now examine the properties of the innovations representation under general con-

ditions when a failure of A-invertibility leads to a failure of E-invertibility.

Theorem 5. Consider the case where there is a failure of A-invertibility under II, and

hence (from Theorem 3) of E-invertibility. The innovations representation of the RE

saddle-path solution is of the same dimension as under PI and is given by

ξt+1 = Aξt + ZE ′(EZE ′−1et+1 et ∼ N(0, EZE ′) (36)

where ξt is a vector process of precisely half the dimension of the state-space process that

generates the impulse response functions (henceforth IRFs) of the structural shocks of the

form (B.69)–(20) and et ≡ mE
t − Et−1m

E
t

Z = AZA′ − AZE ′(EZE ′)−1EZA′ + PAJ ′(JPAJ ′)−1JPA (37)

Proof. See Appendix B.7.

Notably, this result tells us that, even though the dynamics of the RE saddle-path

solution under II are considerably more complex and add more inertia than under PI

(and hence have a state-space representation of twice the dimension), the innovations

process et is generated by equations that are of the same dimension as under PI.28

The implication of this result is of major significance for empirical work:

Corollary 5.1. Since the spectrum of (36) must be identical to that of (B.69)–(20), it

follows that in the absence of A-invertibility, the latter is a non-minimal spectral fac-

torization. It therefore incorporates a set of Blaschke factors whose presence cannot be

detected by an estimated a-theoretical representation. Hence the statistical properties of

data as generated by the model under II and represented by a fundamental VARMA or

VAR approximation cannot, in general, generate the true IRFs.

In empirical work, a common approach (in the tradition of, for example, Christiano

et al., 2005) is to compare impulse responses by applying a structural identification scheme

to the estimated VAR(p) with the impulse responses implied by their structural DSGE

model. In contrast, Kehoe (2006) advocates the approach of Sims (1989) and Cogley and

Nason (1995) which compares impulse responses of a finite order, finite sample structural

VAR estimated on the data with a VAR with the same structure, run on artificially

generated data from the model.

28This result is a generalization of BGW, Corollary 1, p302, but without relying on their assumption
that all forward-looking variables are observable.
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However, for both approaches in the absence of A-invertibility (and therefore E-

invertibility), the reduced-form residuals in the data VAR are not a linear transformation

of the structural shocks εt (even with correct choices of identification matrix), but are

instead a finite-order, finite-sample estimate of the innovations, et. Then the innovations

et are not a linear transformation of εt and it follows that comparisons of IRFs may be

seriously misleading.

Up to now we have deliberately avoided the “missing information” problem highlighted

in the original fundamentalness literature by assuming that the econometrician and the

agents have the same II set. Now consider the following corollary where agents have more

information about the variables of the model (such as news shocks), although this does

not imply that agents have PI.

Corollary 5.2. If the econometrician’s information set is a subset of that of the agents

and the system is not A-invertible, then the innovations process as estimated by the econo-

metrician will again be of the same dimension as under PI, and thus will be of lower

dimension than the true system in (B.69)–(20).

The implication therefore is that, with any failure of A-invertibility, then provided

the econometrician is no better informed than the agents, one should be wary of using

an unrestricted VAR to generate the IRFs of the structural shocks.

4.8 Are the Structural Shocks Recoverable When E-invertibility

Fails?

As we have seen, in the absence of A-invertibility, the best the econometrician can do,

given the history of the observations, is to estimate the innovations representation (see

below) of the true model. However, a recent literature, initiated by Chahrour and Jurado

(2022), has raised the possibility that non-invertible structural shocks may be recover-

able, in a finite sample of length T, from the full sample history
{
mE
i : i = 1, ..., T

}
for

t ∈ (τ, T − τ) for τ sufficiently large. Analogously to invertibility, recoverability is an

asymptotic concept: the shock εt is recoverable if it can be written as a convergent sum

of both past and future observables, in which case the impact of both initial and terminal

conditions on any observation in the interior of the sample becomes vanishingly small as

T → ∞.

In Lemma 4 in Appendix A.4, we show that the innovations process for a non-invertible

VARMA model is represented by one of the minimal spectral factorizations of the spec-

trum of the observables. All other spectral factorizations can then be generated via other

symmetric solutions of the associated Riccati matrix, and one of these will be equivalent

to the original VARMA model to within a simple linear transformation provided that

the latter is also a minimal spectral factorization. However, we have shown that, when
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A-invertibilty fails for our II setup, the true DGP implies a non-minimal spectral factor-

ization29 due to the presence of Blaschke factors that map the true structural shocks, εt,

to et, the innovations to the observables. Thus we have the following further result:

Theorem 6. If the model has the BK-type representation of (10) and (11), with xt of

non-zero dimension (i.e., has saddlepath dynamics), and is not A-invertible, then the true

DGP is a non-minimal spectral factorization of the spectrum of the agents’ information

set. Hence the parameters required to render the structural shocks recoverable cannot

be identified from an a-theoretical time series representation of the observables (or VAR

approximation thereof)

Proof. The result follows immediately from the previous paragraph and Appendix A.4.

The VAR assumes a minimal spectral factorization of the data, and this is why it

cannot be a true representation of the model even after applying the Forni et al. (2017)

transformation. Thus in the absence of A-invertibility, and where there are saddle-path

dynamics, when converting the innovations process representation of the former into any

non-invertible representation, such alternative representations will always retain the di-

mension of the innovations process. Since the latter, as we have seen, is of dimension lower

than that of the state-space describing the effect of individual shocks under II, it follows

that the two representations can never be equivalent. Hence the non-A-invertible struc-

tural shocks are not recoverable from any stochastically minimal representation, whether

fundamental or non-fundamental.30 Thus recoverability cannot, in general, provide an

alternative means of using VARs for deriving IRFs of structural shocks under II in the

absence of E-invertibility.31

Does this mean that recoverability has no applicability at all to such models? On the

contrary, Theorem 5 and Corollary 5.1 showed that the true model has a non-minimal

stochastic representation, incorporating a set of Blaschke factors. From an a-theoretical

perspective, while any such factors may exist in principle, they can be of arbitrary form.

29Or equivalently, in Lippi and Reichlin (1994)’s terminology, the implied non-fundamental VARMA
representation is also non-basic (i.e., is of higher order).

30Note that Forni et al. (2017) have an example where recoverability does hold but their very sim-
ple model (See Appendix I) incorporates recursive expectations that automatically render the system
backward-looking, and therefore is not of the BK-type referred to in Theorem 6.

31Exceptions to this general result arise only in tightly restricted cases. Thus we showed in the
discussion of our illustrative example that in the special case that agents are endowed with PI, the
structural shock is recoverable even when E-invertibility fails. But this arises only as a result of the
combination of PI, a single structural shock, and a resulting non-fundamental ARMA representation
of the observable that is, in Lippi and Reichlin (1994)’s terms, “basic”: i.e., of the same order as the
fundamental representation - hence the econometrician simply has to flip the single MA root, and solve
backwards. It might appear that this result would generalize to any solution that generates a basic
non-fundamental representation (for which PI for agents is a necessary, but not sufficient condition).
However, this is not the case, since with multiple MA roots the econometrician will not know a priori
which roots to flip.
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In the context of a structural model with II, these Blaschke factors are not arbitrary,

since they can be related back to the underlying structure of the model. However in

the non-basic higher order non-fundamental representation, their estimation is subject

to the identification problem (highlighted in the illustrative example) of parameters that

generate Blaschke factors, so the VAR (a-theoretical) econometrician is unable to recover

structural shocks even using data from −∞ to +∞.

4.9 Can the Econometrician Bypass Non-invertibility?

Our central results have been derived under the assumption that, at time t, the econo-

metrician either has the same information set as the agent or a strict subset thereof.

Both assumptions are commonly made in the literature. However, it is worth considering

the possibility that, at least after the passage of time, the econometrician may in some

cases have a bigger t-dated information set. The illustrative example of Section 1.1 is a

potential case in point. It is straightforward to show that the agents’ information prob-

lem arises because they do not have any information on the aggregate wage or aggregate

output: if they did, the system would be A-invertible.32 Yet, at least over the passage

of time, econometricians will acquire estimates of aggregate output and wages at time t,

albeit possibly measured with error. While this takes us outside the framework of our key

results, it is straightforward to show that failures of A-invertibility still have important

implications for time series properties.

In the light of our results, we now return to the econometrics literature briefly reviewed

in Section 1.6 that bypasses the intervening step of a SVAR using external or internal

instruments and the method of local projections of Jorda (2005). This method does not

require invertibility.

Plagborg-Moller and Wolf (2021), building on Stock and Watson (2018), show that the

addition of an instrumental variable whether external or internal, to the econometrician’s

information set may enable estimation of at least a scaling of the true IRF even when

structural shocks are non-invertible. Their Corollary 1 shows that this is equivalent to a

Cholesky ordering of the VAR provided that the instrumental variable is the first variable

of the VAR.

To focus our analysis, we take a very simple example of a reduced form observation

vector mt whose impulse response is given by a Blaschke factor that multiplies the struc-

tural shock εt. We then assume that the instrumental variable, xt, is a noisy observation

32See BGW Section 6, which shows that, if the wage or output is observable, the rental rate of capital
becomes informationally redundant.
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of the structural shock,33 so the system is given by

xt = svt + εt mt =
b− L

1− bL
εt var(εt) = var(vt) = 1 (38)

where vt is iid and independent of εt at all leads and lags. Our illustrative example again

provides motivation: mt can be interpreted as a scaling of the observable fundamental

innovation
(

1−γ−1L
1−γL

)
αεa,t ≡

(
1−µL
1−ψL

)
vt in (6) and (7), the time series representation of

the single observable, vt, the rental rate on capital. In population, at least, observing the

history ofmt is equivalent to observing the history of vt. Conditional upon this information

set alone, mt is clearly white noise. However, an estimated truncated VAR(∞) in xt and

mt with xt ordered first in a Cholesky decomposition will yield the following innovations

representation for mt

mt =
b− L

1− bL

1√
1 + s2

e1t +
s√

1 + s2
e2t (39)

where e1t, e2t are orthogonal white noise processes with unit variance.34 Since e1t is simply

a scaling of xt, by substitution this can be rewritten as

mt =
b− L

1− bL

1

1 + s2
xt +

s√
1 + s2

e2t =
b− L

1− bL

1

1 + s2
(svt + εt) +

s√
1 + s2

e2t (40)

where
√
1 + s2e1t is the prediction error for xt (given by xt − Et−1xt) and be1t+se2t√

1+s2
is

the prediction error for mt. Thus, as pointed out by Plagborg-Moller and Wolf (2021),

the structural VAR produces a scaling of the true impulse response to the shock, with

attentuation bias driven by s. This is another no free lunch result as in Stock and

Watson (2018). Indeed, by inspection of (40), only in the limit as s goes to zero is the

IRF correctly estimated, and the system becomes invertible, and, by substitution back

into the fundamental representation, the IRF for the underlying observable vt can also

be derived.

But even in the extreme limiting case of s = 0, in which the econometrician’s superior

information set allows them to bypass non-invertibility entirely, a key feature of our results

is still central: the nature of this IRF is driven by the failure of A-invertibility. As noted

in our earlier discussion, while under the assumption of PI, vt is a (non-fundamental)

ARMA(1,1), the failure of A-invertibility, and the resulting Blaschke factor, means that

the true DGP for vt is a non-fundamental (and, in Lippi and Reichlin (1994)’s terms,

“non-basic”) ARMA(2,2). So even in this most favourable case, the agent’s informational

33This is effectively Plagborg-Moller and Wolf (2021)’s Assumption 4, which requires that the observ-
able error from a linear projection of the instrumental variable on lagged observables is equal to the
structural shock plus iid noise.

34For derivation, see Appendix A.3.
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problem fundamentally changes the time series properties of the economy.35

This example has allowed the econometrician to at least mitigate the non-invertibility

problem by adding more information, in this case, xt. This is also the approach of factor-

augmented VAR models which extract common factors from large cross section of time

series data.36 However, in the context of our paper, this then begs the question why

agents are not able to observe the additional information provided by (38) as well. What

are the consequences of agents having this additional source of information?

Trivially, if agents can observe the same information as the econometrician at time

t, then all our results still go through, since this is the baseline case for all our results.

However, while the additional information is indeed likely to become common knowledge,

in most cases, this will only occur with at least some lag. If A-invertibility fails in the

absence of the additional information, while the additional lagged information must at

least somewhat reduce agents’ filtering errors, it will not change the key feature of our

results, namely, that the solution will include Blaschke factors, in both II-SA and II-

HA(∞) cases.37

5 Approximate Invertibility-Fundamentalness

This section examines, for possibly non-square systems, measures of approximate funda-

mentalness when A-invertibility fails.38

Two methods are notable in this regard: the first measure from Beaudry et al. (2016)

recommends using the difference in variances between the innovations process and the

structural shocks, motivated by the PI case (A.17) which can be written as

et = mt − Ezt,t−1 = E(zt − zt,t−1) = EA(zt−1 − zt−1.t−1) + EBεt (41)

Under invertibility, zt−1 − zt−1.t−1 has a value of 0, so that regressing the innovations

process et on this latter term yields (in the scalar case) a perfect lack of fit R2 = 0. For

35It must be an open question how the econometrician would interpret this IRF in this case. If
estimation is predicated on the assumption of PI, then the additional dynamics would not be easy to
interpret in a structural framework.

36A general form of the factor model adds a measurement

xt = ∆(L)ft + vt, Γ(L)ft = ηt, A(L)vt = ut

where the vector ft contains unobserved common factors, vt is a vector of idiosyncratic components and
(ηt, ut) are white noise vectors such that E(utη

′
t) = 0. Then principle component estimation is used to

obtain estimates of the factor loadings f̂t. Chapter 16 of Kilian and Lutkepohl (2017) provides a very
comprehensive treatment of this “data-rich environment” approach and the relevant recent literature.

37GW show that, in an extended version of our illustrative example, the inclusion of lagged noisy
information on GDP mitigates, but does not eliminate, the agents’ informational problem.

38See also Canova and Ferroni (2022) for a treatment of (what we call) E-invertibility and the inter-
pretation of SVAR where the number of structural shocks exceeds the number of observables.
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the univariate case, in general, we have R2 = 1 − var(εt)/var(et). In the multivariate

case, cov(et) = EPEE ′, so that the departure of this from cov(EBεt) yields a measure

of how similar the innovations process is to the structural shocks.

However, in the empirical literature using VARs, it is common to focus on just one

shock such as in the examination of the hours-technology question in Gali (1999). To

address fundamentalness on a shock-by-shock basis, one requires the Cholesky decompo-

sition of EPEE ′ = Ṽ Ṽ ′, or else a decomposition that depends for example on long run

effects of each shock, i.e., an SVAR decomposition. The corresponding R2
i for each shock

is then given by

R2
i = 1− uii U = Ṽ −1EBB′E ′(Ṽ ′)−1 = uij (42)

The further is R2
i from 0, the worse is the fit.

5.1 A Multivariate Measure with Perfect Information

An obvious multivariate version of this is R = I− Ṽ −1EBB′E ′(Ṽ ′)−1, and the maximum

eigenvalue of R would then be a measure of the overall fit of the innovations to the

fundamentals. In addition, one can check whether any fundamentals can be perfectly

identified by examining the eigenvalues of the difference between the variances of the

innovations and and the fundamentals

BPI = EPEE ′ − EBB′E ′ (43)

Any zero eigenvalues coupled with the corresponding eigenvector will provide a means

of decomposing the covariance matrix of the innovations EPEE ′.

Turning to our second measure, Forni et al. (2019) suggest that one can use VARs as

well for ‘short systems’, where the number of observables is smaller than the number of

shocks.39 Utilizing the underlying VARMA model, they suggest regressing the structural

shocks against the innovations process, i.e., for the structural shock i, choose the least-

squares vector mi by minimizing the sum of squares of εi,t−m′
iet. Clearly, the theoretical

value of this is

m̂i = cov(et)
−1cov(et, εi,t) = (EPEE ′−1(EB)i (44)

where (EB)i denotes the ith column of EB. A measure of goodness of fit is then

FPIi = cov(εi,t)− cov(εi,t, et)cov(et)
−1cov(et, εi,t) = 1− (EB)′i(EP

EE ′−1(EB)i (45)

Thus one can as usual define a linear transformation of Met (where M is made up of

39Miranda-Agrippino and Ricco (2019) propose a related concept of “partial invertibility” when only
a subset of structural shocks is of interest and needs to be recovered for impulse response functions.
Approximate fundamentalness can then be viewed as a generalization to a continuous measure of the
degree of invertibility-fundamentalness.
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the rows m′
i) as representing the structural shocks, but only take serious note of those

shocks where the goodness of fit is close to 0. Once again, one can use the multivariate

measure of goodness of fit40

FPI = I −B′E ′(EPEE ′)−1EB (46)

where the diagonal terms then correspond to the terms Fi of (45). In (46), we note that

EPEE ′ = cov(et) from the steady state of (B.27), and (EB)i = cov(et, εi,t).

If the number of measurements is equal to the number of shocks, and if Fi = 0 for all i,

then since FPI is by definition a positive definite matrix, it must be identically equal to 0.

Of course, it may be the case that none of the Fi are zero, but that a linear combination

of the structural shocks are exactly equal to a linear combination of the residuals. In

addition, we might specify a particular value of the R2 (e.g., R2
s = 0.9) fit of residuals to

fundamentals such that we are happy to approximate the fundamental by the best fit of

residuals.41

The maximum eigenvalue of FPI then provides a measure of overall non-fundamentalness.

It must of course be emphasized that none of these measures can be obtained directly

from the data. The papers cited above all provide details of how simulations on the under-

lying VARMA models can indicate how to make appropriate inferences on the structural

shocks using just the data and a VAR estimation.

5.2 A Multivariate Measure with Imperfect Information

Collard and Dellas (2010) provide examples where there are large differences in the IRFs

under II and PI, and indeed Theorem 3 appears to indicate that this may be a major

issue. In addition, Levine et al. (2012), for an estimated DSGE model, find that such

differences are quite large as well.

As we have seen for the PI case above, it is quite straightforward to obtain goodness of

fit measures for the individual shocks from the multivariate measures, so for convenience,

we only list the latter. Firstly, the Beaudry et al. (2016) measure, which can be abbrevi-

ated to the difference between the variances of the innovations and the fundamentals, is

given by

BII = EZE ′ − EBB′E ′ (47)

where from the Theorem 5 Z satisfies

Z = AZA′ − AZE ′(EZE ′)−1EZA′ + PAJ ′(JPAJ ′)−1JPA (48)

40If the theoretical model is estimated with constraints on B and with direct estimates of the shock
variances σ2

1 , σ
2
2 , ..., then the last term in (46) must be pre- and post-multiplied by the matrix S =

diag(1/σ1, 1/σ2, ....).
41A perfect fit in the Forni et al. (2019) case is Fi = 0, R2

i = 1.
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Likewise, the multivariate Forni et al. (2019) measure can, after some effort, be writ-

ten42

FII = I −B′J ′(JPAJ ′)−1JPAE ′(EZE ′)−1EPAJ ′(JPAJ ′)−1JB (49)

Analogously to the PI case, EZE ′ = cov(et), with EP
AJ ′(JPAJ ′)−1JB = cov(et, εt).

The latter follows firstly because, from (20) and the innovations representation, we can

write et = E(zt,t−1− s̄1t)+EPAJ ′(JPAJ ′)−1Jz̃t. The first term is clearly independent of

εt, while the covariance of the second term with εt is obtained by calculating E[z̃t+1ε
′
t+1]

in (B.69).

Analogously to the PI case, EZE ′ = cov(et), with EP
AJ ′(JPAJ ′)−1JB = cov(et, εt).

The latter follows firstly because, from (20) and the innovations representation we can

write et = E(zt,t−1− s̄1t)+EPAJ ′(JPAJ ′)−1Jz̃t. The first term is clearly independent of

εt, while the covariance of the second term with εt is obtained by calculating E[z̃t+1ε
′
t+1]

in (B.69).

For the remainder of this section, we only discuss the Forni measure, because (1) the

Beaudry measure is only suitable for the square case when numbers of measurements and

shocks are the same; (2) given our main results on the role of Blaschke factors under II,

if y = (L− a)/(1− aL)ε, then it is easy to show that the B measure for y is 0, whereas

the F measure is 1− a2.

We can bring together (46) and (49) in the following final theorem of the paper.

Theorem 7. Consider the more general case with the number of structural shocks possibly

greater than the number of measurements. (a) All zero eigenvalues of FPI or FII , for the
PI or II cases respectively, correspond to a perfect fit between a linear combination of

fundamentals and a best regression fit of residuals; (b) The number of eigenvalues of FPI

or FII that are less than 1− R2
s, where R

2
s is the chosen threshold for R2, correspond to

the number of linear combinations of fundamentals that can be obtained approximately

from the residuals.

Proof. See Appendix B.10.

In addition, diagonal terms FIIi correspond to a measure of goodness of fit of the

innovations residuals to the ith structural shock and provide information for each shock

individually. Note however that these measures correspond to the case when all ob-

servables are of current variables. While it is not difficult to perform the appropriate

calculations in the case when some variables are current and others are lagged, it is not

straightforward to write down a mathematical expression in such a case. Nevertheless,

42The same comment applies as in the footnote to (46). This follows because PA depends on
Bcov(εt)B

′, so is invariant to whether the variances of the shocks are normalized to 1 or not.

33



we can apply the ideas above when all variables are lagged. In particular, the theoretical

value of FII,lagged can now be defined as

FII,lagged = cov(εt)− cov(εt, et−1)cov(et−1)
−1cov(et−1, εt) (50)

where cov(et−1) is of course equal to cov(et) = EZE ′, so the only change is to cov(et−1, εt),

which after a little effort can be derived as

cov(et−1, εt) = EAPAJ ′AJ ′−1JB − EAZE ′(EZE ′−1EPAJ ′AJ ′−1JB

+EPAJ ′AJ ′−1JFB − EPAJ ′AJ ′−1JFPAJ ′AJ ′−1JB (51)

Then the fit FII,laggedi to the ith shock is just given by the ith main diagonal term of

FII,lagged.
In the next section, we compare numerically these PI and II multivariate measures of

the fit of the innovations to the fundamentals for a DSGE model.

6 Numerical Application to a Richer RBC Model

This section further illustrates our theoretical results using numerical solutions of a more

general RBC model than that used in Section C. The model has investment adjustment

costs, variable hours and two shock processes. This first feature introduces more forward-

looking behaviour into the model and two more non-predetermined variables, investment

and the cost of capital. These provide an extra source of divergence between the PI and II

solutions43 and therefore an additional source of non-invertibility as well. See Appendix

E for full details.

We implement the invertibility conditions of Theorem 3 and the multivariate measure

of goodness of fit set out in Section 5. For the latter, our focus is on (46) and (49), the

corresponding measures of correlation between et and εt, for the PI and II cases, respec-

tively, where cov(et) = EPEE ′ and cov(et) = EZE ′ are the covariance matrices of the

innovation processes for the two cases, and cov(εt) of the structural shocks in the model.

As noted, the maximum eigenvalue provides a measure of overall non-fundamentalness. In

addition, any eigenvalues close to zero provide information as to which structural shocks

can be satisfactorily recovered even though the RE solution as a whole is not invertible.

The model is solved and simulated through Theorem 1 and the conversion procedure

set out in Appendix B.1. Table 1 below summarizes a complete set of combinations of

two observables for this model, i.e., c = 8!
(8−2)!2!

= 28, based on the rank and stability

conditions of Theorem 3. Table 1 also checks the difference between PI and II in terms

of identifying the fundamental (structural) shocks from the perspective of VARs via the

43In these computations, II refers to the II-SA equilibrium.
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eigenvalues of FPI and FII , assuming that the RBC Model is the true DGP. We consider

two parameter settings for the risk parameter in the a Cobb-Douglas households utility

function: σ = 0.3, 2.

Information Set E-invertibility A-invertibility Notes Eigenvalues Diagonal Values
c = 8!

(8−2)!2!
= 28 under PI? of FPI and FII of FPI and FII

RBC Case 1: σ = 2 and α = 0.67

(Ct, It), (Ht, Rt) E, EB, J ,JB are of full rank
(It, Rt), (It,Wt) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0, 0] FPIi = FIIi = [0, 0]

(It, RK,t), (It, Ht), (It, Vt) F (I −B(JB)−1J) is stable
(Yt, Ct), (Ct, Ht), (Yt, Rt) E, EB are of full rank
(Yt, Ht), (Ct,Wt), (Ct, Rt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]
(Yt, It), (Ht,Wt), (Wt, Rt) J ,JB are of full rank eig(FII) > 0 FIIi = [0.011, 0.781]

(Yt,Wt), (Ct, Vt), (Rt, Vt), (Wt, Vt) F (I −B(JB)−1J) is not stable
E, EB are of full rank

(Yt, RK,t), (Ct, RK,t), (Ht, Vt) NO NO A(I −B(EB)−1E) is not stable eig(FPI) > 0 FPIi = [0.000, 0.086]
(Ht, RK,t), (Wt, RK,t), (RK,t, Vt) J ,JB are of full rank eig(FII) > 0 FIIi = [0.014, 0.336]

F (I −B(JB)−1J) is not stable
E, EB are of full rank

(Rt, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]
J ,JB are rank deficient eig(FII) > 0 FIIi = [0.096, 0.983]

(Yt, Vt) NO NO EB, JB are rank deficient eig(FPI) > 0 FPIi = [0.032, 0.968]
eig(FII) > 0 FIIi = [0.049, 0.953]

RBC Case 2: σ = 0.3 and α = 0.67

(Ct, It), (Ct, Rt), (Ct, RK,t) E, EB, J ,JB are of full rank
(It, Rt), (It, Ht), (It, RK,t) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0, 0] FPIi = FIIi = [0, 0]
(Ht, Rt), (Wt, Rt), (It,Wt) F (I −B(JB)−1J) is stable
(Yt, Ct), (Ct, Ht), (Ct, Vt) E, EB are of full rank
(Yt, Ht), (Ct,Wt), (It, Vt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]
(Yt, It), (Ht,Wt), (Ht, Vt) J ,JB are of full rank eig(FII) > 0 FIIi = [0.014, 0.748]

(Yt,Wt), (Yt, Rt), (Rt, Vt), (Wt, Vt) F (I −B(JB)−1J) is not stable
E, EB are of full rank

(Yt, RK,t), (RK,t, Vt) NO NO A(I −B(EB)−1E) is not stable eig(FPI) > 0 FPIi = [0.001, 0.089]
J ,JB are of full rank eig(FII) > 0 FIIi = [0.014, 0.320]

F (I −B(JB)−1J) is not stable
E, EB are of full rank

(Ht, RK,t), (Wt, RK,t) NO NO A(I −B(EB)−1E) is not stable eig(FPI) > 0 FPIi = [0.004, 0.686]
J ,JB are of full rank eig(FII) > 0 FIIi = [0.004, 0.686]

F (I −B(JB)−1J) is stable
E, EB are of full rank

(Rt, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]
J ,JB are rank deficient eig(FII) > 0 FIIi = [0.039, 0.995]

(Yt, Vt) NO NO EB, JB are rank deficient eig(FPI) > 0 FPIi = [0.039, 0.961]
eig(FII) > 0 FIIi = [0.048, 0.953]

Notes: We check Conditions in Lemma 3 and Theorem 2 for the full RBC model with investment adjustment costs and

variable hours. We consider two cases for (σ, α) = (2, 0.67) and (σ, α) = (0.3, 0.67). Note that diagonal values of FPI and

FII differ for different choices of information sets in each category; the values reported are for the first entry and are only

indicative.

Table 1: Exact and Approximate Invertibility Checks for Full RBC Model

With two shock processes, At and Gt (normalized such that cov(εt) = I), for the

case σ = 2, the following 7 combinations of two observables (from a set of 8 possible ob-

servables: (Yt, Ht, Ct, It,Wt, Rt, RK,t, Vt)) result in A-invertibility: mE
t = mA

t = (Ct, It),

(Ht, Rt), (It, Rt), (It,Wt), (It, RK,t), (It, Ht) and (It, Vt). Since mE
t = mA

t , these com-

binations also imply E-invertibility. On the other hand, for the remaining 21 combina-

tions, A-invertibility fails. Only 7 combinations, (Yt, RK,t), (Ct, RK,t), (Ht, Vt), (Ht, RK,t),

(Wt, RK,t), (Vt, RK,t) and (Yt, Vt), fail the PMIC under the assumption of PI and would

not be picked up by a standard RE solution of the DGP (the model) that imposes PI as

an endowment. For the case σ = 0.3, the set of A-invertible combinations is increased for

the analytical model and 4 combinations, (Yt, RK,t), (RK,t, Vt), (Ht, RK,t), (Wt, RK,t) and

(Yt, Vt), would fail the PMIC in the absence of informational considerations (i.e., under
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PI as an endowment).

Recall Theorem 3 that establishes an extra condition, given that models PI are E-

invertible, that the matrices J and JB are of full rank, and F (I−B(JB)−1J) is a stable

matrix (has all eigenvalues inside the unit circle), for the model to be A-invertible too.

In Table 1, for both values of σ, we find only two cases, (Rt, RK,t) and (Yt, Vt), when this

rank condition is not satisfied.

The last column of Table 1 reports the diagonal values of the FPI and FII matrices

for the first entry in the first column. Any value close to zero reported in the diagonal

matrices indicates an exact fit of the innovations to the structural shocks in the models.

Then these shocks can be described as approximately fundamental. The reported values

are indicative of those for all the combinations in each of the cells in the first column.

We find that, in all cases the technology shock, At, is in fact approximately fundamental,

but the government spending shock Gt is not. This is illustrated in Figures 3 and 4 for

the case of σ = 2 with observables (Yt, Ct). By contrast Figures 5 and 6 examine the case

with observables (Yt, Vt) which results in the technology shock a poor approximation to

being fundamental.44

7 Concluding Comments

This paper brings together in a unifying framework for studying the invertibility (funda-

mentalness) of possible SVAR representations of DSGE RE solutions to heterogeneous

agent models with imperfect dispersed or common information. Imperfect information

(dispersed or otherwise) introduces significant changes into the dynamics of an economy

compared to the still-common assumption of perfect information. The hidden dynamics

in the title of this paper not only imply different impulse responses to structural shocks;

they imply that, due to the presence of Blaschke Factors, these dynamics and the as-

sociated shocks are inherently unobservable, even in long samples of data. Our general

results illustrated by a simple analytically tractable illustrative model shows how the hid-

den dynamics significantly effects the PMIC, recoverability and measures of approximate

fundamentalness.

There are a number of possible avenues for future research. First, as Angeletos and

Lian (2016) have pointed out, the solution of dynamic heterogeneous agent models with

time-varying shock processes and dispersed information in a HA setting remains a major

challenge. We have provided a general solution only for the limiting case where idiosyn-

cratic shocks dominate aggregate shocks. We show both existence and uniqueness of

the solution subject to the standard saddlepath stability conditions. One direction for

research which we are pursuing is to investigate in the time domain how a variation

44Appendix F carries out a further illustrative exercise on a RBC model with fiscal policy and a tax
news shock.
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Figure 3: Full RBC Model with σ = 2: Impulse Responses to a Technology Shock, At.
Observables Yt, Ct. An Example of an Approximately Fundamental Shock
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Figure 4: Full RBC Model with σ = 2: Impulse Responses to a Government Spending
Shock, Gt. Observables Yt, Ct. An Example of a Non-fundamental Shock
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Figure 5: Full RBC Model with σ = 2: Impulse Responses to a Technology Shock, At.
Observables Yt, Vt. An Example of an Non-Fundamental Shock
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Figure 6: Full RBC Model with σ = 2: Impulse Responses to a Government Spending
Shock, Gt. Observables Yt, Vt. An Example of a Non-fundamental Shock
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of this in Theorem 2 can be implemented that will generalize to the time domain, the

finite-space results in the frequency domain in Rondina and Walker (2021) using the

Wiener-Kolmogorov prediction formulae. Such a solution would also generalize the II-

HA(Σ) case for our motivating example in Section 1.3 and results in Huo and Takayama

(2021) and Angeletos and Huo (2021).45 Our analysis of II is also restrictive in another

sense that all agents have the same aggregate data in their information sets (although

Corollary 5.2 allows it to differ from that of the econometrician). It would be of interest

to relax this assumption to allow for agents with different II observables mA
t as studied

in Lubik et al. (2023).

Second, as is usual in the related literature, a Gaussian framework is adopted through-

out our paper. Gouriéroux et al. (2020)46 relax this assumption in their examination of

both identification and fundamentalness issues. Although technically challenging a gen-

eralization of our results in this direction focusing on the information assumptions in the

DGP would be of interest.

Finally as discussed in Section 4.9, much of the recent applied macroeconometrics

has moved away from SVARS towards a direct measurements of shocks and their irfs.

That section indicates, in an example, that the agents’ informational problem still funda-

mentally changes the nature of the econometrician’s problem to correctly estimate IRFs.

However we provide no general results comparable to those related to SVARs in the rest

of the paper. This remains a major challenge for future research.
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Online Appendix

A Background Results

First, we justify our form of state-space representation used in the paper and prove the

Poor Man’s Invertibility Condition (PMIC). Next, we set out several fairly standard

results on the solution to Riccati equation, spectral analysis and recoverability and the

econometrician’s innovations representation that are essential to understand the theorems

in the paper, and we here we cover these briefly.

A.1 Equivalence of Various State-Space Models

We show that all of the state-space models that are used in the statistics, control theory

and econometrics literature can be represented by that used in the main text.

The usual model used in the statistics literature, Model 1, includes measurement error

η1t

st+1 = A1st +B1ε1,t+1 mt = C1st +D1η1t (A.1)

In the control theory literature, with possible correlation between ε2t and measurement

error η2t, Model 2 is given by

wt+1 = A2wt +B2ε2t mt = C2wt +D2η2t (A.2)

In Fernandez-Villaverde et al. (2007) and much of the econometrics literature, Model 3

is given by

xt+1 = A3xt +B3ε3,t+1 (i.e., xt = A3xt−1 +B3ε3,t) mt = C3xt−1 +D3ε3t (A.3)

For Model 1, add η1t to the state-space, so that it can be rewritten as[
η1,t+1

vt+1

]
=

[
0 0

0 A1

][
η1,t

vt

]
+

[
I 0

0 B1

][
η1,t+1

ε1,t+1

]
mt =

[
D1 C1

] [ η1,t

vt

]
(A.4)

For Model 2, if D2 = 0, then the statistical properties of wt are identical whether we

date the shock as ε2t or ε2,t+1; thus Model 2 is equivalent to the main text model when

D2 = 0. Otherwise, include ε2t and η2t into the state-space ε2,t+1

η2,t+1

wt+1

 =

 0 0 0

0 0 0

B2 0 A2


 ε2,t

η2,t

wt

+
 0 I

I 0

0 0

[ η2,t+1

ε2,t+1

]
mt =

[
0 D2 C2

] ε2,t

η2,t

wt


(A.5)
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Model 3 can be written in the form of the main text model by appending both ε3t and

xt−1 to the state-space ε3,t+1

xt

xt+1

 =

 0 0 0

0 0 I

0 0 A3


 ε3,t

xt−1

xt

+

 I

0

B3

 ε3,t+1 mt =
[
D3 C3 0

] ε3,t

xt−1

wt


(A.6)

A.2 Proof of the PMIC

From (35) we have εt = D̃−1(mE
t − C̃Lst) where L is the lag operator. Hence from (35)

we have

(I − ÃL)st = B̃εt = B̃D̃−1(mE
t − C̃Lst)

from which we obtain st = [I − (Ã− B̃D̃−1C̃)L]−1B̃D̃−1mE
t and hence

εt = D̃−1(mE
t − C̃st−1) = D̃−1(mE

t − C̃[I − (Ã− B̃D̃−1C̃)L]−1B̃D̃−1mE
t−1) (A.7)

Expanding (I −X)−1 = I +X +X2 + · · · we then have

εt = D̃−1

(
mE
t − C̃

∞∑
j=1

(Ã− B̃D̃−1C̃)jB̃D̃−1mE
t−j

)
(A.8)

A necessary and sufficient condition for the summation to converge is that Ã− B̃D̃−1C̃

has stable eigenvalues (eigenvalues within the unit circle in the complex plane).

The PMIC transforms into ABE notation as follows: we note that the following term

in (A.8) can be written in two equivalent ways

C̃(Ã− B̃D̃−1C̃)j = ẼÃ(Ã− B̃(ẼB̃)−1ẼÃ)j = Ẽ(Ã(I − B̃(ẼB̃)−1Ẽ))jÃ (A.9)

so that the PMIC requirements are that ẼB̃ is invertible and that Ã(I − B̃(ẼB̃)−1Ẽ)

has stable eigenvalues.

A.3 The Spectrum of a Stochastic Process, Blaschke Factors

The spectrum of a stochastic process is a representation of all its second moments - auto,

cross and auto-cross covariances, so that a VAR with sufficient lags will pick up all of

these moments to a high degree of accuracy.

The spectrum (or spectral density) Φy(L) of a stochastic process yt of dimension r is

defined to be Φy(L) =
∑∞

k=−∞ cov(yt, yt−k)L
k, and this is a rational function of L if yt

can be expressed as a state-space system with finite dimension. It is a standard result
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that the spectrum of the ABE system above is given by Ẽ(I − ÃL)−1B̃B̃′(I − Ã′L)−1Ẽ ′.

Definition 3. A rational spectral density Φy(L) admits a spectral factorization of the

form Φy(L) = Z(L)Z ′(L−1). A minimal spectral factorization (Baggio and Ferrante,

2016) is one where the McMillan degree of Z(L) is a minimum.47

Of importance for our main results below is the Blaschke factor b(L) = (1−aL)/(L−
a), which has the easily verifiable property that b(L)b(L−1) = 1. This implies that

if y1t = εt is a scalar white noise process, with spectrum given by Φy1(L) = var(εt),

then y2t = b(L)εt has the same spectrum. The second-moment properties of y1t and

y2t are therefore identical; however, although there is a minimal realization of y2t in

ABCD form (xt = 1
a
xt−1 + (a − 1

a
)εt, yt = xt−1 − aεt), it is not a minimal spectral

factorization of the process, which is given by the fundamental representation y2t = ηt,

where var(ηt) = var(εt). Crucially the IRFs of y1t and y2t in response to a shock to εt are

completely different, with the latter being non-zero at all lags.

More generally, for the scalar case, suppose Z(L) = n(L)/d(L). Now use a Blaschke

factor to define Z1(L) = (1 − aL)/(L − a)Z(L), so that Z1(L)Z1(L
−1) = Z(L)Z(L−1).

This changes n(L) to n(L)(1− aL) and d(L) to d(L)(L− a). The degree of the latter is

obviously greater than that of d(L), so that Z1(L) is a non-minimal spectral factorization.

To reiterate the point raised earlier, if yt = Z1(L)εt represents the true response to the

structural shock, then a VAR econometrician will estimate a very good approximation to

Z(L) but would have no way of inferring the correct impulse response.

We can now draw on these general results to prove (A.12) in Section 4.9 of the main

text. The joint spectrum of (xt,mt) is given by[
σ 1

0 b−L
1−bL

][
σ 0

1 b−L−1

1−bL−1

]
=

[
1 + σ2 b−L−1

1−bL−1

b−L
1−bL 1

]
(A.10)

Factorizing this in invertible form yields[ √
1 + σ2 0

b−L
1−bL

1√
1+σ2

σ√
1+σ2

][ √
1 + σ2 b−L−1

1−bL−1
1√

1+σ2

0 σ√
1+σ2

]
(A.11)

It follows that

xt =
√
1 + σ2e1t mt =

b− L

1− bL

1√
1 + σ2

e1t +
σ√

1 + σ2
e2t (A.12)

where e1t, e2t are orthogonal white noise processes with unit variance. The expression for

47The Smith-McMillan representation (Youla, 1961) of a rational matrix function Z(L) is given by

Z(L) = Γ(L)diag(n1(L)
d1(L) , ...,

nr(L)
dr(L) )Θ(L), where Γ(L),Θ(L) have determinants equal to a constant, dk(L)

divides dk+1(L) and nk(L) divides nk−1(L). The McMillan degree of Z(L) is the highest power of L in
d1(L)d2(L)...dr(L).

48



mt can be rewritten as

mt =
b√

1 + σ2
e1t −

(1− b2)L

1− bL

1√
1 + σ2

e1t +
σ√

1 + σ2
e2t (A.13)

It follows that
√
1 + σ2e1t is the prediction error for xt and

be1t+σe2t√
1+σ2 is the prediction error

for mt.

A.4 Recoverability and Agents’ Information Sets

Recoverability, reviewed more didactically in Appendix H, makes the assumption that a

vector process can be represented as a finite order VARMA: whether by direct estima-

tion, or as an approximation, based on a finite order VAR.48 A fundamental VARMA

representation is a minimal spectral factorization; but there is a finite set of alternative

non-fundamental representations of the same order that have an identical autocovariance

(Lippi and Reichlin, 1994: each of these is also a minimal spectral factorization of the

same process.

Thus a VAR econometrician who is well enough informed can reconstruct an al-

ternative minimal spectral factorization that can approximate a true minimal spectral

factorization, and the shocks to any such representation are recoverable. However, the

VAR econometrician cannot reconstruct a non-minimal spectral factorization; we show

below that this arises under II , in the absence of A-invertibility. Key to this is the

following lesser-known result due to Lindquist and Picci (2015) in their Corollary 16.5.7

and Lemma 16.5.8:

Lemma 4. Let (30) be a minimal representation of the spectral factor of a stationary

stochastic process. There is a one-to-one correspondence between symmetric solutions

of the Riccati equation P = ÃP Ã′ − ÃP Ẽ ′(ẼP Ẽ ′)−1ẼP Ã′ + B̃B̃′ and minimal spectral

factors that retain stationarity; this correspondence is defined via the state-space repre-

sentation

wt = Ãwt−1 + PẼ ′(ẼP Ẽ ′)−1ηt mE
t = Ẽwt ηt ∼ N(0, ẼP Ẽ ′) (A.14)

Thus, for a square system, these alternative solutions for P lead to transfer functions

from shocks to observables that differ by one or more Blaschke factors. However, what

we need subsequently is a result that we can deduce from this lemma, which derives from

the PMIC matrices associated with (A.14) that arise from the general solution for P and

the particular solution P = B̃B̃′, namely Ã− ÃP Ẽ ′(ẼP Ẽ ′)−1Ẽ and Ã− ÃB̃(ẼB̃)−1Ẽ:

48See Appendix H.
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Corollary A.4. If P is a symmetric solution of the Riccati equation of Lemma 3, then

the eigenvalues of Ã − ÃP Ẽ ′(ẼP Ẽ ′)−1Ẽ and Ã − ÃB̃(ẼB̃)−1Ẽ are either identical or

reciprocals of one another.

A.5 The Econometrician’s Innovations Process and the Riccati

Equation

We now consider the general nature of the time series representation of the system that

the econometrician can extract from the history of the observables. At this stage, we do

need to make any assumptions about the number of observables vs shocks, other than to

assume that m ≤ k.

For any given set of observables, mE
t , the econometrician’s updating equation for state

estimates, assuming convergence of the Kalman filtering matrices, is

Etst+1 = ÃEt−1st + ÃPEẼ ′(ẼPEẼ ′)−1et, et = mE
t − ẼEt−1st et ∼ N(0, ẼPEẼ ′)

(A.15)

where Es denotes expectations conditioned on the econometrician’s information set at

time s, and et ≡ mE
t −Et−1m

E
t , the innovations to the observables in period t, conditional

upon information in period t− 1.

The Riccati matrix PE = cov(st − Et−1st) for this Kalman filter is given in the limit

by

PE = QEPEQE′
+ B̃B̃′ where QE = Ã− ÃPEẼ ′(ẼPEẼ ′)−1Ẽ (A.16)

To ensure stability of the solution PE, it must satisfy the convergence condition that QE

is a stable matrix, analogous to the requirement for QA above; a sufficient condition is

either that Ã is a stable matrix, or else the controllability of (Ã, B̃) and observability49

of (Ẽ, Ã). We also have the following result that ensures uniqueness of the solution

algorithm for II:

Lemma 5. There is a unique positive semi-definite Riccati matrix PE that has the prop-

erty that QE is a stable matrix.

Proof. Clearly Ã must be stable, and the other PMIC condition discussed after (A.9) is

that Ã − ÃPEẼ ′(ẼPEẼ ′)−1Ẽ is stable. But if this latter condition does not hold then

we have seen from (B.27) and the discussion following that PE is not the appropriate

solution of the Riccati equation.

Note that if we subtract the first equation of (A.15) from the first equation of (30), we

are able to evaluate cov(st+1−Etst+1, εt+1) = B̃, from which it follows that the covariance

between the innovations process and the shocks is given by cov(et, εt) = cov(E(st −
49Reduction to minimal form with these properties is fairly straightforward.
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Et−1st), εt) = ẼB̃. We shall use this property later to evaluate how correlated are the

residuals from a VAR to the structural shocks.

The Kalman Filter updated expectation of the state st given the extra information at

time t is given by Etst = Et−1st+P
EẼ ′(ẼPEẼ ′)−1et, and a little manipulation of (A.15)

enables us to obtain the alternative steady state innovations representation as

Etst = ÃEt−1st−1 + PEẼ ′(ẼPEẼ ′)−1et mE
t = ẼEtst (A.17)

This representation will be our main focus, but the representation of the innovations pro-

cess in (A.15) is important in proving some of our theoretical results because it provides a

means of evaluating the innovations process, and is essential for addressing approximate

fundamentalness.

The innovations et to this representation have a dimension m equal to the number of

observables, and the representation is valid given our general assumption as stated above

that m ≤ k.

The discussion up to now then leads to the following Lemma which applies for any

general information set:

Lemma 6. The innovations representation (A.17) applies for m ≤ k iff Ã and QE

has stable eigenvalues. Sufficient conditions for this to hold are the observability and

controllability of (Ã, B̃, Ẽ).

A.6 The Innovations Representation Under E-invertibility

When the structural shock system (30) is E-invertible, this means that PE = B̃B̃′ is a

stable solution to the Riccati equation, which in turn requires QE = Ã − ÃB̃(ẼB̃)−1Ẽ

to be a stable matrix. This is identical to the PMIC requirement and implies that the

innovations process et from the filtering problem converges to ẼB̃εt as t → ∞. As a

result, the state vector st is observable asymptotically by the econometrician.

B Proofs of Theorems, Lemmas and Corollaries

B.1 Proof of Theorem 1: Transformation of System to PCL

Form

B.1.1 The Problem Stated

An important feature of the RE solution procedure of the seminal paper Blanchard and

Kahn (1980) is that it provided necessary and sufficient conditions for the existence and

uniqueness of a solution for linearized model. The only general results on II solutions to
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rational expectations models date back to PCL, who utilize the Blanchard-Kahn set-up,

and generalize this result.

Theorem 1 states that Equation (9), re-expressed here

A0Yt+1,t + A1Yt = A2Yt−1 +Ψεt (B.1)

with agents’ measurements

mA
t = LYt (B.2)

can be written in the form (10) and (11) originally used by PCL, re-stated here as[
zt+1

xt+1,t

]
=

[
G11 G12

G21 G22

][
zt

xt

]
+

[
H11 H12

H21 H22

][
zt,t

xt,t

]
+

[
B

0

]
εt+1 (B.3)

with agents’ measurements given by

mA
t =

[
M1 M2

] [ zt

xt

]
+
[
M3 M4

] [ zt,t

xt,t

]
(B.4)

To prove Theorem 1, the next section describes a completely novel algorithm for convert-

ing the state space (B.1), (B.2) under II to the form in (B.3) and (B.4). We assume that

the system is ‘proper’, by which we mean the matrix A1 is invertible; this precludes the

possibility of a system that includes equations of the form hTYt+1 = 0, but it is fairly

easy to take account of these as well.

B.1.2 An Iterative Algorithm

Although complicated, the basic stages for the conversion are fairly simple:

1. We first (Stages 1 to 3) find the singular value decomposition for the n× n matrix

A0 (which is typically of reduced rank m < n) which allows us to define a vector of

m forward-looking variables that are linear combinations of the original Yt.

2. We then introduce a novel iterative stage (Stage 4) which replaces any forward-

looking expectations that use model-consistent updating equations. This reduces

the number of equations with forward-looking expectations, while increasing the

number of backward-looking equations one-for-one. But at the same time it in-

troduces a dependence of the additional backward-looking equations on both state

estimates zt,t
(
≡ Etzt|IAt

)
and estimates of forward-looking variables, xt,t. This in

turn implies that both (B.3) and (B.4) in general contain such terms.

3. A simple example may help to provide intuition for this iterative stage: suppose

two of the equations in the system are of the form: zt = ρzt+ εt, yt = zt+1,t (where

52



both yt and zt are scalars) i.e., we have one backward-looking (BL) equation and

one forward-looking (FL) equation. However, using the first equation we can write

zt+1,t = Etzt+1 = ρzt,t, hence substituting into the second equation, yt = ρzt,t:

i.e., we can use a model-consistent updating equation. Note, however, a crucial

feature: since under II we cannot assume that zt is directly observable, this updating

equation is expressed in terms of the filtered state estimate zt,t rather than directly

in terms of xt. We thus now have two BL equations, but one of these is expressed

in term of a state estimate.

4. The iterative Stage 4 may need to be repeated a finite number of times. In the case

of PI, this is all that is needed, apart from defining what are the t+ 1 variables.

5. For II, we retain the same backward and forward looking variables as in the PI case,

but the solution process is a little more intricate.

The detailed procedure for conversion of (B.1) and (B.2) to the form in (B.3) and

(B.4) is as follows:

Stage 1: SVD and partitions of A0. Obtain the singular value decomposition for the n×n
matrix A0: A0 = U0S0V

T
0 , where U0, V0 are unitary matrices. Assuming that only the

first m values of the diagonal matrix S0 are non-zero (rank(A0) = m < n), we can rewrite

this as A0 = U1S1V
T
1 , where U1 are the first m columns of U0, S1 is the first m × m

block of S0 and V T
1 are the first m rows of V T

0 . In addition, U2 are the remaining n−m

columns of U0, and V
T
2 are the remaining n−m rows of V T

0 .

Stage 2: Extract FL subsystem from (B.3) using S1 and U1. Multiply (B.3) by S−1
1 UT

1 ,

which yields

V T
1 Yt+1,t + S−1

1 UT
1 A1Yt = S−1

1 UT
1 A2Yt−1 + S−1

1 UT
1 Ψεt (B.5)

We can now define an initial subdivision of Yt into an (initially) m-vector of forward-

looking variables xt = V T
1 Yt, and and an (n − m)-vector of backward-looking variables

st = V T
2 Yt (noting that Yt = V1xt+V2st), and use the fact that I = V V T = V1V

T
1 +V2V

T
2

to rewrite (B.3) as

xt+1,t + S−1
1 UT

1 A1(V1xt + V2st) = S−1
1 UT

1 A2(V1xt−1 + V2st−1) + S−1
1 UT

1 Ψεt (B.6)

or simply

xt+1,t + F1xt + F2st = F3xt−1 + F4st−1 + F5εt (B.7)

where F1 = S−1
1 UT

1 A1V1, F2 = S−1
1 UT

1 A1V2, F3 = S−1
1 UT

1 A2V1, F4 = S−1
1 UT

1 A2V2 and

F5 = S−1
1 UT

1 Ψ. This is a set of m forward-looking equations. Note that in the iterative

Stage 4, the definition of xt will usually change further, and thus at this stage xt is not

usually equal to its final form in (B.3).
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Stage 3: Extract BL subsystem from (B.3) using U2. Multiply B.3 by UT
2 which yields

UT
2 A1Yt = UT

2 A2Yt−1 + UT
2 Ψεt (B.8)

which can be rewritten as

UT
2 A1(V1xt + V2st) = UT

2 A2(V1xt−1 + V2st−1) + UT
2 Ψεt (B.9)

or more simply

C1xt + C2st = C3xt−1 + C4st−1 + C5εt (B.10)

where C1 = UT
2 A1V1, C2 = UT

2 A1V2, C3 = UT
2 A2V1, C4 = UT

2 A2V2 and C5 = UT
2 Ψ. This

is a set of n−m backward-looking equations.

If C2 is invertible then it is straightforward to multiply (B.3) by C−1
2 , and go straight

to Stage 5. However if C2 is not invertible we need to proceed to the next (iterative)

stage.

Stage 4: Iterative transformation of FL equations using model-consistent updating. In this

iterative stage we write (B.7) and (B.10) in the more general form

xt+1,t + F1xt + F2st = F3xt−1 + F4st−1 + F5εt (B.11)

C1xt + C2st +G1xt,t +G2st,t = C3xt−1 + C4st−1 + C5εt (B.12)

where by comparison of (B.12) with (B.10) we have introduced two new matrices, G1

and G2 that must be zero in the first stage of iteration. However, at the end of the first

iteration of this stage we shall increase the dimension of st, and reduce the dimension of

xt one-for-one, which will require us to re-define all the matrices in (B.11) and (B.12),

such that, from the second iteration onwards, G1 and G2 will be non-zero. The whole of

Stage 4 may then need to be iterated a finite number of times.

First find, a matrix J2 such that JT2 (C2+G2)=0, by using the SVD of C2+G2 (noting

that in the first iterative stage, G2 = 0) Then take forward expectations of (B.12) and

pre-multiply by JT2 to yield

JT2 (C1 +G1)xt+1,t = JT2 C3xt,t + JT2 C4st,t (B.13)

Then reduce the number of forward-looking variables by substituting for xt+1,t from

(B.11). In addition find a matrix Q that has the same number of columns as JT2 (C1+G1)

and is made up of rows that are orthogonal to it. Then we define the following subdivision

of xt [
x̄t

x̂t

]
=

[
Q

JT2 (C1 +G1)

]
xt xt =M1x̄t +Q2x̂t (B.14)

54



where [Q1 Q2] =

[
Q

JT2 (C1 +G1)

]−1

From the substitution of xt+1,t into (B.13), we can

then rewrite the system in terms of a new m-vector of forward-looking variables x̄t, where

m =rank(C2 +G2) ≤ m, and n−m backward-looking variables (st, x̂t)

x̄t+1,t +QF1Q1x̄t + [QF2 QF1Q2]

[
st

x̂t

]
(B.15)

= QF3Q1x̄t−1 + [QF4 QF3Q2]

[
st−1

x̂t−1

]
+QF5εt

[
C1Q1

JT2 (C1 +G1)F1Q1

]
x̄t +

[
C2 C1Q2

JT2 (C1 +G1)F2 JT2 (C1 +G1)F1Q2

][
st

x̂t

]
(B.16)

+

[
G1Q1

JT2 C3Q1

]
x̄t,t +

[
G2 G1Q2

JT2 C4 JT2 C3Q2

][
st,t

x̂t,t

]

=

[
C3Q1

JT2 (C1 +G1)F3Q1

]
x̄t−1 +

[
C4 C3Q2

JT2 (C1 +G1)F4 JT2 (C1 +G1)F3Q2

][
st−1

x̂t−1

]

+

[
C5

JT2 (C1 +G1)F5

]
εt

The number of forward-looking states has now usually decreased from m to m ≤ m; while

the number of backward-looking states s̄t =

[
st

x̂t

]
has increased by the same amount.

In addition the relationship Yt = V1xt + V2st has changed to

Yt = V1Q1x̄t +
[
V2 V1Q2

]
s̄t (B.17)

Finally, we redefine xt = xt, st = st. Having done so, the system in (B.15) and (B.16) is

now of the form of (B.11) and (B.12), subject to an appropriate redefinition of matrices.

Thus, from (B.16), for G1, and G2, for example, we have an iterative scheme whereby, in

the (i+ 1)th iteration,

Gi+1
1 =

[
Gi

1Q
i
1

(J i2)
T
Ci

3Q
i
1

]
; Gi+1

2 =

[
Gi

2 Gi
1Q

i
2

(J i2)
T
Ci

4 (J i2)
T
Ci

3Q
i
2

]

where, e.g., Gi
1 is the value of G1 in the ith iteration, and G1

1 = 0, G1
2 = 0.

Repeat this stage until C2 +G2 is of full rank.

Proof of Theorem 1 for Perfect Information. In the PI case, the form (B.11), (B.12)

with st = st,t, xt = xt,t is generated after a finite number of iterations of Stage 3, where
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the number of iterations cannot exceed the number of variables. The forward looking

variables are now xt and the backward looking variables are st and xt−1, and the system

can be set up in Blanchard-Kahn form by defining zt+1 =

[
st

xt

]
. The only additional

calculation is to invert C2+G2 to obtain the equation for st, and to substitute into (B.11).

Proof of Theorem 1 for Imperfect Information. From this point, we eschew the

details of matrix manipulations, as these are much more straightforward to understand

conceptually compared with those above.

Stage 5: C2 non-singular after Stage 4. First form expectations of (B.12), and invert

C2 + G2 to obtain st,t in terms of xt,t, xt−1,t, st−1,t, εt,t. Then substitute this back into

(B.12), and invert C2 to yield an expression for st in terms of the above expected values

and also xt, xt−1, st−1, εt. This can be further substituted into (B.11) to yield an expression

for xt+1,t in terms of these variables and their expectations. Similarly the measurement

equations mt = LYt can now be expressed in terms of all these variables. It follows that

if we define zt+1 =

 εt+1

st

xt

, then the system can now be described by (B.3). Note that,

since dim (st) + dim (xt) = n, in this final form, dim (zt) = n+ rank (BB′).

Stage 6: C2 singular after Stage 4. We again start from (B.11) and (B.12), and regard

xt as the forward looking variable and (st, xt−1) as the backward looking variables. Now

advance these equations by changing t to t+k : k = 1, 2, 3, ... and take expectations using

information at time t, implying that Etst+k = Etst+k,t+k. Because C2 + G2 is invertible,

we can rewrite these equations with just xt+k+1,t and st+k,t on the LHS. Then the usual

Blanchard-Kahn conditions for stable and unstable roots imply a saddlepath relationship

of the form

xt+k+1,t +N1st+k,t +N2xt+k,t = 0 (B.18)

where [I N1 N2] represents the eigenvectors of the unstable eigenvalues. In particular,

this holds for k = 0, so if we substitute for xt+1,t = −N1st,t − N2xt,t into (B.11), then

together with (B.12) we obtain solutions for xt, st in terms of xt,t, st,t, xt−1, st−1, εt. This

is possible, because we have assumed the system is proper i.e., A1 is invertible
50, and any

manipulations of A1 in the previous stages have been simple linear transformations of

it to yield the matrices F1, F2, C1, C2. In addition, when we take expectations of (B.12)

at time t, given that C2 + G2 is invertible, we obtain an equation for st,t in terms of

xt,t, st−1,t, xt−1,t, εt,t. It therefore follows that we can write st is terms of these latter

variables as well as the variables above (excluding st,t). The same will be true of the

50The algorithm can be reworked without too much much difficulty if for example some of the forward
looking equations in (B.1) are of the form S0EtYt+1 = 0.
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measurements mt = LYt.

At this point, we have expressions for xt and st, without any effect from xt+1,t, so in

principle we could solve the signal processing problem from this point onwards. However

for consistency with the case of C2 nonsingular, we can retrieve the representation of

xt+1,t by substituting for st back into (B.11), and then the system has the same structure

as that for the case C2 nonsingular.

Finally, by defining zt+1 =

 εt+1

st

xt

, the converted form (B.3) becomes


εt+1

st

xt

xt+1,t

 =


0 0 0 0

P1 G11 G12 G13

0 0 0 I

P3 G31 G32 G33




εt

st−1

xt−1

xt



+


0 0 0 0

FF4 FF3 FF2 FF1

0 0 0 0

FF8 FF7 FF6 FF5




εt,t

st−1,t

xt−1,t

xt,t

+


I

0

0

0

 εt+1 (B.19)

where G13 = −C−1
2 C1, G12 = C−1

2 C3, G11 = C−1
2 C4, P1 = C−1

2 C5, G33 = −F2G13 − F1,

G32 = −F2G12+F3, G31 = −F2G11+F4, P3 = −F2P1+F5, FF1 = −C−1
2 G1+C

−1
2 G2(C2+

G2)
−1(C1 + G1), FF2 = −C−1

2 G2(C2 + G2)
−1C3, FF3 = −C−1

2 G2(C2 + G2)
−1C4, FF4 =

−C−1
2 G2(C2 + G2)

−1C5, FF5 = −F2FF1, FF6 = −F2FF2, FF7 = −F2FF3 and FF8 =

−F2FF4. The C and F matrices are the reduction system matrices in (B.15) and (B.16)

in the form of (B.11) and (B.12) (i.e., the iterative procedure that ensures invertibility

to be achieved).

The measurements mA
t = LYt can be written in terms of the states as mA

t = L(V1xt+

V2st), where V1, V2 have been updated by (B.17) through the same reduction procedure

as above. Using (B.19), we show that mA
t can be rewritten as

mA
t =

[
LV2P1 LV2G11 LV2G12 LV1 + LV2G13

]


εt

st−1

xt−1

xt



+
[
LV2FF4 LV2FF3 LV2FF2 LV2FF1

]


εt,t

st−1,t

xt−1,t

xt,t

 (B.20)
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So the observations (B.20) can now be cast into the form in (B.4)

mA
t =

[
M1 M2

] [ zt

xt

]
+
[
M3 M4

] [ zt,t

xt,t

]

where M1 = [LV2P1 LV2G11 LV2G12] and M2 = LV1 + LV2G13. Similarly, M3 =

[LV2FF4 LV2FF3 LV2FF2] and M4 = LV2FF1. Thus the set-up is as required, with

the vector of predetermined variables given by [ε′t s
′
t−1 x

′
t−1]

′, and the vector of jump

variables given by xt.

This completes the proof by construction for II.

Example B.1 (Example of Stage 6 Being Needed for Imperfect Information). Suppose

that at the end of Stage 4, there is a system in scalar processes xt and st,

xt+1,t + αxt + st = βst−1 + εt xt − xt,t + st,t = γst−1 (B.21)

It is clear from examining these equations that they cannot be manipulated into BK form

directly. However, if we now advance these equations by k periods and take expectations

subject to It, one obtains two equations relating xt+k+1,t, st+k,t to xt+k,t, st+k−1,t. Since this

is true for all k ≥ 1, and provided there is exactly one unstable eigenvalue corresponding

to these dynamic relationships, it follows that there must be an expectational saddlepath

relationship xt+1,t = −nst,t. Substituting this into the first of the above equations allows

us to solve in particular for st in terms of xt, st,t, st−1, εt; from the second equation we can

solve for st,t in terms of st−1,t, so that we can replace the second equation by an equation

for st in terms of xt, st−1,t, st−1, εt. Redefining zt+1 = st, it is now straightforward to

obtain the BK form for the first equation and the new second equation.

B.2 Proof of Lemma 1

The first step is to subtract the aggregate equations from the agent i equations, noting

that under PI, Ei,tyt = yt,Ei,txt = xt. In addition, since observation of the idiosyn-

cratic shocks has no effect on one period ahead expectations, it follows that Ei,tyt+1 =

Etyt+1,Ei,txt+1 = Etxt+1. Thus the RE system in yit − yt, xit − xt is driven solely by the

shock εit, and standard saddlepath conditions apply.

B.3 Proof of Theorem 2

We conjecture that if a finite state solution to the aggregate variables zt exists, then it

will take the same structural form as that of the II-SA solution, with one difference: that

a representation needs to be found for the matrix F or to be more precise, for the matrix
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Q = F − FPAE ′(EPAE ′)−1E. The representation of Q for the II-HA case provides the

proof of the theorem.

In order to distinguish the II-HA solution from the II-SA solution we replace the

prediction error z̃t and forecast zt,t−1 by z1t, z2t respectively.
51 Initially for simplicity we

assume that there are no measurements directly dependent on aggregate jump variables

xt. This means that in the notation of (16) and (22) we have J = E = M1, which we

refer to as E. It follows that observations mA
t of the aggregate variables can be rewritten

as

mA
t = EPAJ ′(JPAJ ′)−1Jz1t + Ez2t = EPAE ′(EPAE ′)−1Ez1t + Ez2t = E(z1t + z2t)

(B.22)

Since we assume that current aggregate shocks affect aggregate observations with their

input/output relationship being full rank, it follows that we can re-normalize the obser-

vations as mA
t = ϖt + Syt, so that E = [I S].

We also introduce the saddle path relationship corresponding to (B.23):

[
Na Ny I

] R 0 0

A21 + I1a A22 + I1y A23

A31 +HaR +Hy(A21 + I1a) + I2a A32 +Hy(A22 + I1y) + I2y A33 +HyA23


= Λ

[
Na Ny I

]
(B.23)

where H = [Ha Hy], I1 = [I1a I1y], I2 = [I2a I2y], and denote N = [Na Ny]. From now

on, in order to reduce notation, we drop all terms in I1, I2; it is straightforward to show

that the final representation of the HA solution at the end of the proof takes an identical

form to that which includes these terms (and all that is needed to modify it is to use the

saddle path relationship from (B.23) above that involves I1, I2).

We define the stable matrix A, which represents the dynamics of the saddle path

solution in the PI case, as

A =

[
R 0

A21 − A23Na A22 − A23Ny

]
(B.24)

From the perspective of agent i, it follows after assuming that Ei,txt+1 = −NEi,tzt+1

(to be verified later), and substituting for Ei,tzt+1 that the system can be written in the

51Although they play precisely the same role, in the proof, we need to calculate prediction errors and
forcasts of each, meaning that the use of a double˜could be confusing.
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form below, with zt = z1t + z2t
52:

εi,t+1

z1,t+1

z2,t+1

yi,t+1

Ei,txi,t+1

 =


0 0 0 0 0

0 Q 0 0 0

0 APAE ′(EPAE ′)−1E A 0 0

A21 [A21 0] [A21 0] A22 A23

W−1A31 W−1([A31 0] +Q1) W−1([A31 0] +Q2) W−1A32 W−1A33




εi,t

z1t

z2t

yi,t

xi,t



+


0

B

0

0

0

 εt+1 +


I

0

0

0

0

 εi,t+1 (B.25)

where

Q1 = (H + (I −W )N)APAE ′(EPAE ′)−1E Q2 = (H + (I −W )N)A (B.26)

and PA satisfies the Riccati equation

PA = QPAQ′ +BB′ B′ = [I 0] (B.27)

Since Q now corresponds to F − FPAE ′(EPAE ′)−1E, an additional constraint on Q is

that QPAE ′ = 0. For the moment, we impose this condition, but later we verify that our

representation below of Q satisfies this.

Note that we can now write the measurements of agent i as

[
mA
t

mA
i,t

]
=

[
0 E E 0 0

I
[
I 0

] [
I 0

]
0 0

]

εi,t

z1t

z2t

yi,t

xi,t

 (B.28)

The saddlepath relationship for this system corresponds to the row eigenvectors

[Nεi N1 N2 Nyi I] of the unstable eigenvalues of the square matrix in (B.25). Af-

ter some effort we can show that

N1P
AE ′ = N2P

AE ′ N2 = [Na Ny −Nyi ] (B.29)

52The states zi,t, z2t play the same role as zt,t−1, z̃t in the earlier II solution, because in this limiting
case the observation mit provides no information about zt.
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where Nyi is obtained from two of these eigenvector equations:

NyiA22 +W−1A32 = ΘNyi NyiA23 +W−1A33 = Θ (B.30)

where Θ is a square matrix whose eigenvalues are the unstable ones of the saddlepath.

Thus for the HA problem, there are two saddle path conditions required for existence of

a solution: the standard one, and this additional one. These precisely mirror the two

Rondina and Walker (2021) saddle path conditions. In addition, we have

ΘNεi = NyiA21 +W−1A31 (B.31)

Since equations (B.29) to (B.31) are independent of the filtering problem, the solution

for N that results must, as stated in Theorem 2, be identical to the solution under PI,

i.e., as in the PI-HA case.

B.3.1 Solving for yi,t

(B.25) and (B.28) are now in the form of (10) and (11), so we can now invoke the II

results (B.69)–(18) in order to solve for yi,t.

Since mA
i,t = εi,t + [I 0](z1t + z2t) is observed by agent i, and by assumption yi,t and

xi,t are known to agent i, it follows that there is no prediction error in any of these. In

addition, since we are in the limiting case Σ → ∞, which means that mA
i,t can provide

no information on z1t or z2t, it is easy to show that the Riccati matrix for the agent’s

information problem is given by P̄A = limΣ→∞diag(Σ, P
A, 0, 0), and therefore the F -

matrix for this problem is given by

F̄ =


0 0 0 0

0 Q 0 0

0 APAE ′(EPAE ′)−1E A 0

X [X 0]− A23A
−1
33 Q1 [X 0]− A23A

−1
33 Q2 A22 − A23A

−1
33 A32

 (B.32)

where X = A21 − A23A
−1
33 A31. Similarly we obtain

Ā =


0 0 0 0

0 Q 0 0

0 APAE ′(EPAE ′)−1E A 0

A21 − A23Nεi [A21 0]− A23N1 [A21 0]− A23N2 A22 − A23Nyi


(B.33)

Defining Ē =

[
0 E E 0

I
[
I 0

] [
I 0

]
0

]
, we can show after some effort that as Σ →
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∞

P̄AĒ ′(ĒP̄AĒ ′)−1Ē =


I [I 0] (I − PAE ′(EPAE ′)−1E) [I 0] (I − PAE ′(EPAE ′)−1E) 0

0 PAE ′(EPAE ′)−1E PAE ′(EPAE ′)−1E 0

0 0 0 0

0 0 0 0


(B.34)

Hence

F̄ P̄AĒ ′(ĒP̄AĒ ′)−1Ē =


0 0 0 0

0 0 0 0

0 APAE ′(EPAE ′)−1E APAE ′(EPAE ′)−1E 0

X Z Z 0

 (B.35)

where Z = [X 0]−A23A
−1
33HAP

AE ′(EPAE ′)−1E. Once one has calculated F̄−F̄ P̄AĒ ′(ĒP̄AĒ ′)−1Ē,

it becomes clear that z̃1t = z1t, z̃2t = 0, ỹi,t = 0 (where, in general, w̃t denotes wt−wt,t−1).

ĀP̄AĒ ′(ĒP̄AĒ ′)−1Ē =


0 0 0 0

0 0 0 0

0 APAE ′(EPAE ′)−1E APAE ′(EPAE ′)−1E 0

A21 − A23Nεi Y Y 0


(B.36)

where Y = [A21 0] − [A23Nεi 0] (I − PAE ′(EPAE ′)−1E) − A23N2P
AE ′(EPAE ′)−1E.53

Following on from our remark about z̃1t, z̃2t, ỹi,t, it is clear that z1t,t−1 = 0, z2t,t−1 =

z2t, yit,t−1 = yi,t.

Noting that
∫
εi,tdi = 0, we can therefore summarize the system as follows:

z1,t+1 = Qz1t +Bεt+1

z2t+1 = APAE ′(EPAE ′)−1Ez1t + Az2t

yi,t+1 = Y z1t + ([A21 0]− A23N2)z2t + (A22 − A23Nyi)yi,t + (A21 − A23Nεi)εi,t

yt+1 = Y z1t + ([A21 0]− A23N2)z2t + (A22 − A23Nyi)yt

B.3.2 Requirements for Initial Conjecture to be Valid

The objective now is to show that we can pick a representation of the matrix Q such that

ȳt = [0 I](z̃t + z̄t) (B.37)

We first note that Q cannot be a full rank matrix since QPAE ′ = 0. Since the number

of measurements is equal to the number of shocks by assumption, it follows that the

53We have utilized the earlier result that N1P
AE′ = N2P

AE′.

62



maximum rank of Q is the number of states in z1t other than the shocks, nzm. We can

therefore write

Q = UV ′ =

[
U1

U2

]
[V ′

1 V ′
2 ] (B.38)

where the number of columns of U and number of rows of V are equal to nzm. We now

address whether [0 I](z1,t+1 + z2,t+1) − yt+1 is solely dependent on its previous value,

and if this is the case, it follows that [0 I](z1t + z2t) = yt in equilibrium.

[0 I](z1,t+1 + z2,t+1) − yt+1

= U2[V
′
1 V ′

2 ]z1t + [0 I]APAE ′(EPAE ′)−1Ez1t + [0 I]Az2t

− ([A21 0]− [A23Nεi 0] (I − PAE ′(EPAE ′)−1E)− A23N2P
AE ′(EPAE ′)−1E)z1t

− (A22 − A23Nyi)yt − ([A21 0]− A23N2)z2t

= U2[V
′
1 V ′

2 ]z̃t + [A21 − A23Na A22 − A23Ny](P
AE ′(EPAE ′)−1Ez1t + z2t)

− ([A21 0]− [A23Nεi 0] (I − PAE ′(EPAE ′)−1E))z1t

+ [A23Na A23(Ny −Nyi)]P
AE ′(EPAE ′)−1Ez1t

− [A21 0]z2t − (A22 − A23Nyi)yt + [A23Na A23(Ny −Nyi)]z2t

+ [A21 − A23Na A22 − A23Ny]z2t

= (A22 − A23Nyi)([0 I](z1t + z2t)− yt)

+ U2[V
′
1 V ′

2 ]z1t − [A21 − A23Nεi A22 − A23Nyi ](I − PAE ′(EPAE ′)−1E)z1t(B.39)

Since (A22 − A23Nyi) is a stable matrix by assumption, the theorem is proven if

U2[V
′
1 V ′

2 ] = [A21 + A23Nεi A22 − A23Nyi ](I − PAE ′(EPAE ′)−1E).

If SA-II is invertible, it is straightforward to show that this is equivalent to A −
APAE ′(EPAE ′)−1E being a stable matrix where PA = diag(I, 0). In addition, this

solution must correspond to UV ′ = 0, which implies from (B25) that z1t =

[
εt

0

]
. In

addition, with PA = diag(I, 0), it follows that

U2[V
′
1 V ′

2 ]z1t − [A21 − A23Nεi A22 − A23Nyi ](I − PAE ′(EPAE ′)−1E)z1t

= 0− [A21 − A23Nεi A22 − A23Nyi ]

[
0 −S
0 I

][
εt

0

]
= 0

implying that this is indeed the SA-PI solution.

B.3.3 Expressions for Q,U2[V
′
1 V ′

2 ] and [0 A22 − A23Nyi ](I − PAE ′(EPAE ′)−1E

To find a representation of Q, we exploit the following:
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1. The Riccati matrix PA also satisfies the Lyapunov equation PA = QPAQ′ +BB′;

2. QPAE ′ = 0 (as we noted earlier);

3. Denoting the first subvector of each of the states z1t, z2t by a1t, a2t, so that a1t+a2t =

at, represents the shocks, it must follow that a1,t+1 + a2,t+1 must exactly equal

R(a1t + a2t) + εt+1;

4. Under PI, we assumed that the system from the perspective of the econometrician is

invertible. Given that the first subvectors above represent the shocks, it follows that

the first m columns E1 of the observation matrix E = [E1 E2] must be full rank.

Since any linear combination of the observables will produce the same solution of the

Riccati matrix, for ease of exposition we normalize to E = [I S] where S = E−1
1 E2.

An additional useful constraint on this setup is to note that the eigenvalues of Q are

given by a number of zeros equal to the number of shocks, and in addition the eigenvalues

of the matrix Λ = V ′U = V ′
1U1 + V ′

2U2, and it is this matrix that will give us all the

values U1, U2, V
′
1 , V

′
2 . These eigenvalues will be associated with Blaschke factors that are

at the heart of the solution.

We first note that the Riccati matrix satisfies PA = UV ′PAV U ′ + BB′; multiplying

this through by V ′ on the left and V on the right yields V ′PAV = V ′U(V ′PAV )U ′V +

V ′BB′V , so defining Z = V ′PAV and recalling that B′ = [I 0], we can write this as

Z = ΛZΛ′ + V ′
1V1 (B.40)

This eventually leads to the following:

U1 = RS (B.41)

Z = ΛZΛ′ + (ΛZS ′R′ − ZS ′)(RSZΛ′ − SZ) (B.42)

U2ZΛ
′ = −Z (B.43)

V ′
1 = −ΛZS ′R′ + ZS ′ (B.44)

V ′
2 = V ′

1S − I (B.45)

In addition, we note that the Riccati matrix PA is given by

PA = UV ′PAV U ′ +BB′ = UZU ′ +BB′ =

[
U1

U2

]
Z[U ′

1 U ′
2] +

[
I 0

0 0

]
(B.46)

Hence, as required

QPAE ′ = UV ′PAE ′ = U(ΛZ(U ′
1 + U ′

2S
′) + V ′

1) = U(ΛZS ′R′ − ZS ′ + V ′
1) = 0 (B.47)
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A crucial point to note is that a potential solution of (B.42) is Z = 0 and PA =

[
I 0

0 0

]
;

this is relevant for the PMIC for agents, and at the final stage of the proof.

We can see from the above that the matrices U2, V
′
1 , V

′
2 all depend on Z, with the

latter dependent on the choice of matrix Λ. From this, it is easy to show that

EPAE ′ = I + V1Λ
−TZ−1Λ−1V ′

1 (B.48)

and using (B.40), we can further show that

(EPAE ′)−1 = I − V1Z
−1V ′

1 (B.49)

Further calculation gives

PAE ′ =

[
I

0

]
+

[
−RS

ZΛ−TZ−1

]
Λ−1V ′

1 (B.50)

and hence

I − PAE ′(EPAE ′)−1E =

[
SV ′

1 −S(I − V ′
1S)

−V ′
1 I − V ′

1S

]
=

[
S

−I

]
[V ′

1 − I + V ′
1S] (B.51)

and

[A21 − A23Nεi A22 − A23Nyi ](I − PAE ′(EPAE ′)−1E

= ((A21 + A23Nεi)S − (A22 − A23Nyi)) [V
′
1 − I + V ′

1S] (B.52)

Noting that U2[V
′
1 V ′

2 ] = U2[V
′
1 −I+V ′

1S], it immediately follows that [0 I](z̃t+z̄t) = ȳt

if

U2 = (A21 − A23Nεi)S − (A22 − A23Nyi) (B.53)

This analytic expression for U2 then generates all the elements of Q that provide the

equilibrium dynamics of the aggregate variables.

To actually obtain V1 and V2, we can rewrite (B.42) by pre and postmultiplying it by

Z, and noting that U2 = −ZΛ−TZ−1:

Z−1 = U−T
2 Z−1U−1

2 + (U−T
2 S ′R′ + S ′)(RSU−1

2 + S) (B.54)

This Lyapunov equation for Z−1 yields Λ via U2, and hence V1 and V2. Clearly this is

not a general solution as it is only valid when U−1
2 is a stable matrix, so we need some

further steps.

If all the eigenvalues of U2 are unstable then it is straightforward to check that UV ′is
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indeed equal to F (I−PAE ′(EPAE ′)−1E), where F is as given in the theorem statement.

B.3.4 PMIC for Agent i

We can now calculate the PMIC defining

Â =


0 0 0 0

0 Q 0 0

0 APAE ′(EPAE ′)−1E A 0

A21 − A23Nεi Y [A21 0]− A23N2 A22 − A23Nyi


(B.55)

B̂ =


I 0

0

[
I

0

]
0 0

0 0

 Ê =

 I
[
I 0

] [
I 0

]
0

0
[
I S

] [
I S

]
0

 (B.56)

After some tedious algebra we can show that the PMIC matrix Â− ÂB̂(ÊB̂)−1Ê is block

triangular, with diagonal blocks given by

Q

[
0 −S
0 I

]
, A− APAE ′(EPAE ′)−1E, A22 − A23Nyi (B.57)

The last matrix is stable if, as we assumed above, there is saddle path stability for agent

i. Consider now the first matrix

Q

[
0 −S
0 I

]
= UV ′

[
0 −S
0 I

]
=

[
U1

U2

] [
0 −I

]
=

[
0 −U1

0 −U2

]
(B.58)

So the PMIC for the agent requires U2 = (A21−A23Nεi)S− (A22−A23Nyi) to be a stable

matrix. It is easy to see that this is consistent with Z = 0, PA = BB′, meaning that the

second matrix of (B.57) is equal to A − AB(EB)−1E, which is the earlier form of the

PMIC in the SA case.

B.3.5 Solution When U2 Has Both Stable and Unstable Eigenvalues

An obvious conjecture is that once U2 is diagonalized into stable and unstable blocks,

then the stable block will be associated with a transformation of Z equal to 0, while the

unstable block will generate a solution for some transformation of Z similar to (B.54);

we show that this is indeed the case.
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Assume therefore that we diagonalize U2 as

U2 = T−1

[
U1
2 0

0 U2
2

]
T (B.59)

where U2
1 has all eigenvalues greater than 1 in modulus, and U2

2 all less than 1. Then

(B.43) can be rewritten as

−TZT T =

[
U1
2 0

0 U2
2

]
TZT TT−TΛTT T (B.60)

Assume that TZT T = diag(Z1, 0). For (B.60) to be consistent with this, we require

T−TΛTT T =

[
ΛT11 0

ΛT21 ΛT22

]
and − Z1 = U1

2Z1Λ
T
11 (B.61)

A simple calculation then shows that (B.42) reduces to

Z1 = Λ11Z1Λ
T
11 + (Λ11Z1X

′
1 − Z1Y

′
1)(X1Z1Λ11 − Y1Z1) (B.62)

where X1, Y1 are defined conformably via (RST−1)T = [X ′
1 X ′

2], (ST
−1)T = [Y ′

1 Y ′
2 ].

Multiplying through on both sides by Z−1
1 , we obtain an equation analogous to (B.54):

Z−1
1 = (U1

2 )
−TZ−1

1 (U1
2 )

−1 + ((U1
2 )

−TXT
1 + Y T

1 )(X1(U
1
2 )

−1 + Y1) (B.63)

Finally, compute Z = T−1diag(Z1, 0)T
−T , and PA = UZU ′+BB′. Note that the linearity

of the solution for Z1 (given T ) implies that its solution is unique. Furthermore, although

the choice of matrix T is non-unique, it is trivial to demonstrate that the matrices UV ′

and PA are independent of which of the T matrices are used to diagonalize U2, so that

they in turn are unique. It follows that in this case the HA-II(∞) solution is the same

as SA-PI.

B.3.6 Summary of Proof

To summarize, the solution is obtained as follows:

1. Find the eigenvectors [Nεi N1 N2 Nyi I] of the unstable eigenvalues of the square

matrix in (B.25);

2. Compute U2 as in (B.53);

3. If U2 is a stable matrix then PA = BB′, and the solution is equivalent to that under

PI and to II-SA (PI ≡ II-SA ≡ II-HA(∞) RE solutions) ;

67



4. Otherwise:

(a) If all eigenvalues of U2 are unstable, compute the solution Z−1 to the Lyapunov

equation (B.54);

(b) If there are stable and unstable eigenvalues, diagonalize U2, and generate the

solution as in the previous subsection;

5. Compute PA = UZU ′ +BB′;

6. Compute Q via (B.38), noting that in the case of U2 having mixed stable and

unstable eigenvalues that V1 = [(X1(U
1
2 )

−1 + Y1)Z1 0]T−T .

We finally note that all of this analysis leads to a saddle path that represents a linear

relationship between xi,t and εi,t, z1t, z2t, yi,t, which in turn implies a linear relationship

between xt and z1t, z2t. But consistency with the saddle path under PI implies that

Ei,txt+1 = −NEi,tzt+1 = −NEi,t(z1,t+1 + z2,t+1) = 0 − Nz2,t+1, which was our initial

assumption.

B.3.7 Connection Between II-SA and II-HA (Limiting Case) Solutions

We know from (B.51) that

I − PAE ′(EPAE ′)−1E =

[
S

−I

]
[V ′

1 V ′
1S − I] (B.64)

To show that

F =

[
R 0

A21 − A23Nεi A22 − A23Nyi

]
(B.65)

turns the solution into one that corresponds to SA-II, we note from (B.64) that

F (I − PAE ′(EPAE ′)−1E) =

[
R 0

A21 − A23Nεi A22 − A23Nyi

][
S

−I

]
[V ′

1 V ′
1S − I]

=

[
RS

U2

]
[V ′

1 V ′
1S − I] = UV ′ (B.66)

as in the initial assumption of the theorem.

B.3.8 Application to the GW Model of (1)–(5)

For this example we have S = κ1
κ1+κ2

− 1, A21 = κ1 + κ2, A22 = κ1, A23 = 1 − A21, A31 =

A32 = 0, A33 = 1. It follows that Θ = κ1, Nyi = κ1−1
1−κ1−κ2 , Nεi =

1− 1
κ1

1
κ1+κ2

−1
. Hence
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U2 = −κ1+κ2
κ1

, and therefore Λ = κ1
κ1+κ2

. The latter leads to the Blaschke factor in

(C.114). In addition, recalling that κ1 = 1
β
, κ2 = 1−α

αβ
(1 − β(1 − δ)). For the Rondina

and Walker (2021) case

B.3.9 Proof with Observations dependent on Aggregate Jump Variables

We now assume that measurements are given by mA
t =M1zt +M2xt, which leads to the

conjecture that mA
t = EPAJ ′(JPAJ ′)−1Jz1t + Ez2t, where

J =M1 −M2A
−1
33 A32 E =M1 −M2N (B.67)

The dynamic equations for z1t, z2t are given as in (B.25), but with E replaced by J , from

which it follows that in lag operator form we can derive the expression

mA
t = E(I − AL)−1PAJ ′(JPAJ ′)−1J(I −QL)−1Bεt (B.68)

The full rank input/output requirement for contemporaneous shocks then implies that

JB is of full rank; since JB is square and B′ = [I 0], it follows that if we write J = [J1 J2]

conformably with B′ then J1 is full rank. After some effort we can then show that the

only change to the proof above is in the definition of the matrix S, which is now given

as S = J−1
1 J2 with the expression for Y in (B.36) having E replaced by J throughout.

B.3.10 Solution of the Illustrative Model in the Non-Limiting Case

Assume that the solution for the backward looking aggregate variables zt = z1t + z2t

takes the form

Predictions : z2,t+1 = Az2t + APJ ′(JPJ ′)−1Jz1t (B.69)

Prediction Errors : z1,t+1 = F [I − PJ ′(JPJ ′)−1J ]z1t +Bεt+1 (B.70)

The matrix A is the dynamic system matrix for the perfect information solution, while the

matrix F is a matrix for which we have to find a fixed point solution. The measurements

are given by

mt = Jzt = J(z1t + z2t) mit = at + vit vit ∼ N(0, V ) (B.71)

Each agent i takes the aggregate variables z1t, z2t as given, and any expectations of these

will take into account the measurements mt,mit. Note that because z2t directly depends

on Jzt, there will be no Kalman filtering necessary for this part of the aggregate variable.

Kalman filtering is only used for z1t, and this is the advantage of the PCL formulation of

the II solution.
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In order to ensure that the structure of the shock processes is always preserved, the

matrices, the vectors z1t, z2t are ordered so that the shock processes are first, so that F,A

is the lower block traingular. In particular, for the R&W model we have F =

[
ρ 0

µ ϕ

]
where ϕ, µ are to be determined.

For the special case ρ = 0, we need to solve the Riccati equation

P = FPF ′ − FPJ ′(JPJ ′)−1JPF ′ +BB′ εt ∼ N(0, 1) (B.72)

where

F =

[
0 0

µ ϕ

]
B =

[
1

0

]
J = [1 α− 1] (B.73)

It is easy to verify that P = diag(1, p), where p = (ϕ−(1−α)µ)2−1
(α−1)2

. It then follows that

F [I − PJ ′(JPJ ′)−1J ] =

[
0 0

− (ϕ−(1−α)µ)2−1
(1−α)(ϕ−(1−α)µ)

1
(ϕ−(1−α)µ)

]
(B.74)

C;early this matrix does not not depend on ϕ and µ individually, but only on (ϕ−(1−α)µ),
which we define as λ. Hence

P =

[
1 0

0 1/λ2−1
(α−1)2

]
F [I − PJ ′(JPJ ′)−1J ] =

[
0 0

λ−1/λ
α−1

λ

]
(B.75)

In addition, define the unstable eigenvalue of the system as 1/ζ and therefore the stable

eigenvalue of the system is ζ/β, which implies that we can write η = (ζ−1)(1−ζ/β)
ζ(1−α)(1− 1

αβ
)
. It

follows that

A =

[
0 0
ζ
αβ

ζ
β

]
APJ ′(JPJ ′)−1J =

[
0 0

ζ(α−λ2)
αβ(α−1)

ζ(α−λ2)
αβ

]
(B.76)

Because of the position of the 0s in these last two matrices, it follows that the third

element of the system vector is 0 for all time. We can therefore write the system as

εt+1 = εt+1 (B.77)

k1,t+1 = λk1t +
1

α− 1
(λ− 1

λ
)(1− α)εt (B.78)

k2,t+1 =
ζ

β
k2t +

ζ(α− λ2)

αβ
k1t +

ζ(α− λ2)

αβ(α− 1)
(1− α)εt (B.79)

vt = mt = (1− α)(εt − (k1t + k2t)) (B.80)
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This implies that

vt =
(1− 1

λ
L)(1− λ2ζ

αβ
L)

(1− ζ
β
L)(1− λL)

(1− α)εt (B.81)

Agent i needs to calculate Eitrt+1 = Eit[(1− α)kt+1 + εt+1] = Eit[(1− α)(k1,t+1 + k2,t+1)],

using observations of rt and εt + vit. It is easy to verify that the Riccati matrix P1 for

this problem is given by P1 = diag(1, p1, 0) where

p1 =
v( 1

λ2
− 1)

(1 + v)(1− α)2
(B.82)

Defining k̂1,t+1 as the best prediction by agent i of k1,t+1, and k̃1,t+1 as its prediction error,

we can now rewrite the system as

vi,t+1 = vi,t+1 (B.83)

εt+1 = εt+1 (B.84)

k̃1,t+1 = λk̃1t +
v

(1 + v)(α− 1)
(λ− 1

λ
)(1− α)εt −

1

(1 + v)(α− 1)
(λ− 1

λ
)vit(B.85)

k̂1,t+1 = λk̂1t +
1

(1 + v)(α− 1)
(λ− 1

λ
)(1− α)εt +

1

(1 + v)(α− 1)
(λ− 1

λ
)vit(B.86)

k2,t+1 =
ζ

β
k2t +

ζ(α− λ2)

αβ
(k̃1t + k̂1t) +

ζ(α− λ2)

αβ(α− 1)
(1− α)εt (B.87)

vt = mt = (1− α)(εt − (k̃1t + k̂1t + k2t)) (B.88)

Note that we should strictly denote that both k̃1t and k̂1t are particular to agent i, but

have dropped this for convenience. However we will need average values for each of these
¯̃k1t and

¯̂
k1t across all agents. Scrutiny of the relevant equations shows that ¯̃k1t = v

¯̂
k1t.

We now have to solve the system for agent i who is making decisions as in (D.2)-

(D.3),which we rewrite as :

ki,t+1 =
1

β
kit + (1− 1

αβ
)cit +

1

αβ
((1− α)εt + vit) (B.89)

Eitci,t+1 = cit −
(ζ − 1)(1− ζ/β)

ζ(1− 1
αβ
)

[k̂1,t+1 + k2,t+1] (B.90)

= cit −
(ζ − 1)(1− ζ/β)

ζ(1− 1
αβ
)

[(λ+
ζ

β
− λ2ζ

αβ
)k̂1t +

ζ

β
k2t + (

ζ

β
− λ2ζ

αβ
)k̃1t

+
λ− 1

λ

(α− 1)(1 + v)
vit + (

λ− 1
λ

(α− 1)(1 + v)
+

ζ
β
− λ2ζ

αβ

α− 1
)(1− α)εt] (B.91)

It is straightforward to see that (i) the unstable eigenvalue of the system is 1
β
, (ii) the

best predictor of ki,t+1 is ki,t+1 itself. This is because both (εt + vit) and [k̂1,t+1 + k2,t+1]

are observable by agent i. Now apply the results of PCL to obtain kit; for space reasons,
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we just write down the average value of this, denoted k̄it, by merely omitting the response

to vit:

k̄i,t+1 = k̄it + (
ζ

β
− 1)k2t −

β − ζ

1− βλ
(
α− λ2

αβ
+
λ(1− ζ

ζ
)k̂1t −

(α− λ2)(β − ζ)

αβ
k̃1t

+

(
1

α
− (α− λ2)(β − ζ)

αβ(α− 1)
−

(λ− 1
λ
)(β − ζ)(1− λ2ζ

α
)

(α− 1)(1− βλ)(1 + v)ζ

)
(1− α)εt (B.92)

We now need to ascertain that k̄i,t+1 − k2,t+1 − ¯̂
k1,t+1 − ¯̃k1,t+1 = 0. After a great deal of

algebra, the condition for this is

(1 + v)(λ− α) =
(β − ζ)(α− ζλ2)

ζ(1− βλ)
(B.93)

For the limiting case, as v → ∞, we have λ = α. For other values of v, we can rearrange

this as

v(λ− α)(1− βλ) = (1− λζ)(λ− αβ/ζ) (B.94)

and it is fairly straightforward to show that a solution for 0 < λ < 1 always exists.

B.4 Proof of Theorem 3

Proof. Using the expressions (32)–(31) for II, and the invertibility requirement that

Ã− ÃB̃(ẼB̃)−1Ẽ has stable eigenvalues, we calculate the latter as the matrix[
A− APAJ ′(EPAJ ′)−1E 0

−F (I − PAJ ′(JPAJ ′)−1J)(JB)−1JPAJ ′(EPAJ ′)−1E F (I −B(JB)−1J)

]
(B.95)

If F (I − B(JB)−1J) has eigenvalues outside the unit circle, it immediately follows that

II is not E-invertible. If its the eigenvalues are inside the unit circle, it follows that the

solution to (23) is PA = BB′; this is because the Convergence Condition for PA is that

F − FPAJ ′(JPAJ ′)−1J = F (I − B(JB)−1J) is a stable matrix. Furthermore it follows

that A− APAJ ′(EPAJ ′)−1E = A(I − B(EB)−1E), so that (B.95) is a stable matrix as

required for invertibility.

To show that invertibility implies that II and PI are equivalent, we note that (18) now

implies that z̃t = Bεt + (F (I − B(JB)−1J))tz̃0, which in dynamic equilibrium implies

z̃t = Bεt. This implies that zt+1,t = Azt,t−1 + ABεt, and hence that zt+1 = z̃t+1 +

zt+1,t = Azt,t−1 + ABεt + Bεt+1 = Azt + Bεt+1 as in the PI case. In addition, from

(20), mA
t = Ezt,t−1 + Ez̃t = Ezt, also as in the PI case. If F (I − B(JB)−1J) is not a

stable matrix, then PA ̸= BB′, and the overall dynamics of (B.69)-(20) are of a higher

dimension than under PI.

Finally, for the HA(∞) case, we have JB = EB = I, so clearly invertible, and given
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the representation of F the proof of Theorem 2 it follows that

F − FB(EB)−1E =

[
0 −RS
0 (A21 − A23Nεi)S − (A22 − A23Nyi)

]
(B.96)

This is evidently a stable matrix provided that the A-invertibility condition holds for

HA(∞)

B.5 Proof of Corollary 3.1

Proof. Writing (20) in terms of lagged state variables and shocks yields a coefficient

matrix on the latter given by EPAJ ′(JPAJ ′)−1JB, and the rank of this is ≤ rank(JB) ≤
rank(J). This immediately implies that the system is E-non-invertible.

B.6 Proof of Theorem 4

In order to show the existence of Blaschke factors, we need to show that a subset of the

eigenvalues of the matrix for the PMIC condition are the inverses of the eigenvalues of

those of the system dynamics.

Recall from the proof of Theorem 2 that the matrices defining the aggregate system

under II-HA are given by

Ê = [E E] Â =

[
UV ′ 0

APE ′(EPE ′)−1E A

]
B̂ =

[
B

0

]
(B.97)

We first note that the eigenvalues of Â are precisely 0, those of V ′U = Λ and those of

A. In addition, inverting the system to describe shocks in terms of observables yields the

PMIC matrix

Â− ÂB̂(ÊB̂)−1Ê =

[
UV ′ 0

APE ′(EPE ′)−1E A

]
−

[
UV ′B

APE ′(EPE ′)−1EB

]
(EB)−1[E E]

=

[
UV ′ − UV ′B(EB)−1E −UV ′B(EB)−1E

0 A− APE ′(EPE ′)−1E

]
(B.98)

Again, from the proof of Theorem 2, we have E = [I S], B′ = [I 0] (so EB = I) and

V ′
2 − V ′

1S = −I. It therefore follows that

UV ′ − UV ′B(EB)−1E =

[
0 −U1

0 −U2

]
(B.99)

Finally, from the proof of Theorem 2, we also know that −U2 = ZΛ−TZ−1, which means

that the eigenvalues of −U2 are the inverses of those of Λ. Hence the aggregate system
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has Blaschke factors.

B.7 Proof of Theorem 5

Proof. We first solve the steady state Riccati equation (B.27) corresponding to the

matrices (32)–(34). It is easy to verify that P̃E = diag(M,PA) where M = Z −
PAJ ′(JPAJ ′)−1JPA and Z satisfies

Z = AZA′ − AZE ′(EZE ′)−1EZA′ + PAJ ′(JPAJ ′)−1JPA (B.100)

For the innovations representation, we use the notation st = [s′1t s
′
2t]

′, rather than st =

[z′t,t−1 z̃
′
t]
′ as the notation for one-step ahead predictors of the latter will lead to confusion.

We can then show that the steady state innovations representation corresponding to

(A.15) is given by

Etst+1 =

[
A APAJ ′(JPAJ ′)−1J

0 F − FPAJ ′(JPAJ ′)−1J

]
Et−1st+

[
AZE ′(EZE ′)−1

0

]
et et = mE

t −ẼEt−1st

(B.101)

or more succinctly

Ets1,t+1 = AEt−1s1,t + AZE ′(EZE ′)−1et et = mE
t − EEt−1s1t (B.102)

The corresponding VARMA representation arises from defining ξt = Et−1s1t+ZE
′(EZE ′)−1et

which yields

ξt+1 = Aξt + ZE ′(EZE ′)−1et+1 mE
t = Eξt et ∼ N(0, EZE ′) (B.103)

The final step follows from comparing (B.103) with (B.69)–(20); clearly the dynamics

of the RE saddle-path solution explained by the innovations process et are of smaller

dimension that the dynamics yielding the impulse responses.

B.8 Proof of Corollary 5.1

Proof. From the proof of Theorem 2 we have seen that the MA roots of the VARMA

process include the eigenvalues of F (I − B(JB)−1J), while from (B.69)–(20), the AR

roots include the eigenvalues of F (I − PAJ ′(JPAJ ′)−1J). By Corollary A.4, it follows

that one or more of these are reciprocals of one another. Hence the transfer function

from shocks to observables incorporates at least one Blaschke factor. It follows that IRFs

of structural shocks from the latter cannot be linear combinations of IRFs from VAR

residuals, which will only mimic the IRFs from the innovations process.
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B.9 Proof of Corollary 5.2

Proof. The state-space equations describing the system, (B.69)–(20), will be unchanged,

as these depend on the measurements made by the agents. However, if the infor-

mation set of the econometrician is a subset of that of the agents, this means that

in the notation of (9), we have LE = WLA for some matrix W . It then follows

that the measurement equation of the econometrician, following from (20), is given by

mt = W (Ezt,t−1 + EPD′(DPD′)−1Dz̃t). Thus the innovations process and the VARMA

as shown in the proof of Theorem 4 are changed merely by replacing E by WE, with the

Riccati matrix Z also obtained with the same replacement of E.

B.10 Proof of Theorem 7

Proof. Both of these results follow from finding the best fit of a linear combination of

structural shocks and residuals, which can be expressed as

mina,bE(a′ε− b′e)2 s.t. a′a = 1 (B.104)

Given a, one obtains b via standard OLS techniques, and the problem reduces to min-

imizing a′FPIa s.t. a′a = 1, with solution a equal to the eigenvector of the minimum

eigenvalue of FPI .

C More on the Illustrative Analytical Example

In this section, we provide more detail on the illustrative model first discussed in the

Introduction. In Appendix E.4, we show that the illustrative model is a special case of

the full RBC model considered in Section 6 below.

We first show the derivations of each of the reduced form representations of the single

observable, the rental rate of capital, and then provide more detail on the responses of

the economy to a aggregate technology shock. For this model, given that there is only

a single shock, we are also able to compare the solution for the limiting case of extreme

heterogeneity with intermediate cases, using a solution technique that matches the solu-

tion of Rondina & Walker (2021). We show that the limiting case is both quantitatively

similar to intermediate cases for empirically plausible degrees of heterogeneity, but also

provides qualitative insights for a much wider range of values, even for cases close to

heterogeneity.
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C.1 The Single Agent Framework

We can derive a single agent version of the model the model as set out in equations (1)

to (5) in the Introduction by setting idiosyncratic shocks to zero. The system then has a

state-space form εa,t+1

kt+1

ct+1,t

 =

 0 0 0

κ2 κ1 1− κ1 − κ2

0 0 1 + κ4(κ1 + κ2 − 1)


 εa,t

kt

ct



+

 0 0 0

0 0 0

−κ4κ2 −κ4κ1 0


 εa,t,t

kt,t

ct,t

+

 1

0

0

 εa,t+1 (C.105)

For the II-SA case, we simply assume (without justification) the censored information set

which is the history of the single observable, the rental rate on capital

mA
t = mE

t = [1 − 1 0]

 εa,t

kt

ct

 εa,t ∼ N(0, σ2
a) (C.106)

where κ4 ≡ (1−β(1−δ)(1−α). Note that observing the rental rate vt = (1−α)(εa,t−kt)
is equivalent to the measurement assumption mA

t = mE
t = εa,t − kt.

Using our earlier notation from the general solution, we obtain (after a little effort for

matrix A)

F =

[
0 0

κ2 κ1

]
J = E = [1 − 1] A =

[
0 0
κ2
κ1
µ µ

]
(C.107)

where µ is the stable eigenvalue of the system.

C.2 The PI Solution

If agents have PI it is straightforward to show that the L-operator representation of the

single observable is an ARMA(1,1) process given by

mE
t = mA

t = E(I − AL)−1Bεt =

(
1− (κ1+κ2)µL

κ1

1− µL

)
εa,t (C.108)

By exploiting the properties of the linearization constants and the stable eigenvalue, µ in

Appendix E.6) it can be show that the MA parameter (κ1+κ2)µ
κ1

is non-negative, but, for

different values of the risk aversion parameter σ, it may lie either below or above unity.
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After substituting for κ1 and κ2 the condition for fundamentalness is

κ1
(κ1 + κ2)µ

=
1

(1 + (1−α)
α

(1− β(1− δ)))µ
≥ 1

⇒ µ ≤ 1

(1 + (1−α)
α

(1− β(1− δ)))
(C.109)

The RHS of (C.109) lies in the interval (0, 1) for all δ ∈ [0, 1] so in principle, the PI

solution for both the Rondina and Walker (2021) and GW models can be either funda-

mental or non-fundamental. However, it can be shown that µ = µ(σ) where µ′(σ) > 0

for σ > 0 so there exists a threshold for σ > 0 below which condition (C.109) holds.

Figure 8 illustrates this result. It shows that the condition only holds for σ < 0.5 ap-

proximately. For empirically plausible values of σ, therefore the representation (C.108)

will be non-fundamental. This is the basis for the representation given by (6) and (7) in

the Introduction.

C.3 The II-SA Solution

Under II, the stable solution to the Ricatti equation is given by PA = σ2
adiag(1, (κ1 +

κ2)
2 − 1) and the Kalman gain is given by

PAJ ′(JPAJ ′)−1J =

[
1

(κ1+κ2)2

1
(κ1+κ2)2

− 1

]
[1 − 1] (C.110)

Stability of the solution to the Ricatti equation is given by the stability of

QA = F (I − PAJ ′(JPAJ ′)−1J) =

[
0 0

κ1 + κ2 − 1
κ1+κ2

1
κ1+κ2

]
(C.111)

which is a stable matrix since 1 < (κ1 + κ2).
54

Thus, despite the fact that the PMIC may at least in principle sometimes be satisfied

under PI, the system can never be A-invertible: II does not replicate PI. Hence, from

Theorem 3, the system is not E-invertible.

It is easy to show that the L-operator representation of the interest rate under II is

then given by

mE
t = mA

t = E(I − AL)−1PAJ ′(JPAJ ′)−1J(I −QAL)−1Bεt

=

(
1− µL

(κ1+κ2)κ1

1− µL

)(
1− (κ1 + κ2)L

1− L
(κ1+λ2)

)
εa,t (C.112)

54The alternative solution of the Riccati equation is PA = diag(1, 0) but this is not a stable solution
since it implies that QA = diag(0, κ1), which is an unstable matrix.
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=

(
1− µL

(κ1+λ2)κ1

1− µL

)
et (C.113)

which implies a representation as in (6) and (7) in the Introduction.

C.4 The PI-HA Solution

For the full heterogeneous agent version of the model as set out in equations (1) to

(5) in the introduction, it is straightforward to show that if PI is simply provided as an

endowment, the solution for the aggregate economy is identical to the PI case. At the level

of each heterogeneous agent the solution is supplemented by the saddlepath responses to

both the idiosyncratic component in technology, and to each agent’s idiosyncratic capital;

but these responses cancel out in the aggregate.

C.5 The II-HA(∞) Solution

When agents have imperfect, market-consistent information sets, for the general case

they exploit information from the markets they trade in, hence the histories of both

the aggregate observable, the rental rate on capital, and of the local wage. But as

heterogeneity becomes extreme, we apply Theorem 2, so that the solution to any agent’s

filtering problem for the aggregate economy takes the same form as for the II-SA case,

but with a different F matrix, where κ1 and κ2 are replaced with values shifted by the

saddlepath responses to pure idiosyncratic shocks. In Appendix B.3.8, we show that this

implies that the reduced form ARMA process for the single observable takes the form

II-HA(∞) : mA
t = mE

t =

(
1− µ1κ1L

(κ1+κ2)

)
(1− µ1L)

(
1− (κ1+κ2)

κ1
L
)

(
1− κ1L

(κ1+κ2)

) εa,t

=

(
1− µ1κ1L

(κ1+κ2)

)
(1− µ1L)

et (C.114)

which again matches the representation in (6) and (7) of the Introduction.

D Time Versus Frequency Domain Finite-Space So-

lution

An important development in the recent literature on diffuse information are finite-space

solutions that avoid the high-order beliefs in the famous “beauty contest” models empha-

sized by Keynes (1936). Our solution has the same structure as the single agent solution

(see Theorem 2) a feature Huo and Pedroni (2020) refer to as a ‘single-judge’ outcome
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of the beauty contest. It holds for the limiting case of a very general set-up set out in

Section 3. Here we show that for the analytical RBC example our time domain approach

yields the same solution as the frequency domain approach of Rondina and Walker (2021)

(henceforth RW) once we have corrected the minor errors in the RW theorems. Moreover

we would emphasize that our solution method is simpler.

In their notation, the RW model is given by

at+1 = ρat + ϵt+1 (D.1)

ki,t+1 =
1

β
kit + (1− 1

αβ
)cit +

1

αβ
(at + vit) (D.2)

Eitci,t+1 = ci,t +
1

σ
Eitrt+1 (D.3)

rt = (α− 1)kt + at (D.4)

where kt =
∫
µikitdi. Measurements are given by

mt = rt mit = at + vit vit ∼ N(0, v) (D.5)

The model differs from our illustrative example (1)-(5) in two respects: RW assume 100%

depreciation so δ = 1 which implies that the real rate of interest rt equals the rental rate

vt. The other difference is that the technology shock in RW is total factor productivity

(TFP) as oppose to labour productivity in our example.55 In what follows we stick to

the simpler case of ρ = 0 as in the text.

RW assume that the solution to the problem in lag operator form is given by

rt = (L− λ)G(L)εt ≡ Y (L)εt xit = K(L)εt + V (L)vit (D.6)

where xit is lagged capital stock of the ith firm. In addition aggregate TFP is given by

at = A(L)εt. In the very simple case of TFP being equal to white noise, it follows that

A(L) = 1 and

rt = (1− (1− α)LK(L))εt (D.7)

To obtain the solution to xit, RW subtract (D.2) from its forward-looking version, and

then replace Eitci,t+1 − ci,t by 1
σ
Eitrt+1. This leads to an equation solely in terms of

kit and its forward leads, or equivalently an equation in xit, its lag and its forward

expectation. RW then apply the Wiener-Kolmogorov formula to this expectation, based

on the assumed representation of the measurements and the representations in (D.6), and

substitute into the equation for xit.

As RW point out, A(λ)V (λ) = K(λ), so that in our case we have V (λ) = K(λ). In

addition for our limiting case, as the variance of the idiosyncratic shock → ∞, it follows

55It follows that at in RW becomes (1− α)at and vit becomes (1− α)ϵit in our example, (1)-(5).
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that τ(λ) = 0 in their equation (A.69), τ(λ) being a signal to noise measure.

The equation involving xit can now be expressed as lag operator expressions multi-

plying each of εt and vit, as in their (A.69), respectively as follows:56

αβ[K(L)−K(0)]− αβ (1−λ2)L
λ(1−λL) [V (0)−K(0)]− α(1−ζ)(β−ζ)

ζ
LK(L)

+α(1−ζ)(β−ζ)
ζ(1−α)

(1−λ2)L
λ(1−λL) = αL(1 + β − L)K(L)− L (D.8)

αβ[V (L)− V (0)] = αL(1 + β − L)V (L)− L (D.9)

(D.9) can be rewritten as α(L−1)(L−β)V (L) = αβV (0)−L; potentially this means that

V(L) is represented by an unstable ARMA process unless the term on the RHS also has a

factor (L−β). Thus to avoid this unstable autoregressive root for V (L), αβV (0)−L = 0

at L = β. This implies that V (0) = 1/α. With this value in place, we can rewrite (D.8)

as

α(L− ζ)(L− β

ζ
)K(L) = αβK(0)

[
1− (1−λ2)L

λ(1−λL)

]
− L+ β(1−λ2)L

λ(1−λL)

−α(1−ζ)(β−ζ)
ζ(1−α)

(1−λ2)L
λ(1−λL) (D.10)

Here too K(L) potentially contains an unstable autoregressive root unless the RHS of

this equation also contains a factor (L − ζ); so the RHS must equal zero when L = ζ.

This in turn implies that

K(0) =
λζ(1− λζ)

αβ(λ− ζ)
− (1− λ2)(βζ − αβ + αζ − αζ2)

αβ(1− α)(λ− ζ)
(D.11)

and hence

K(L) =
1

α(L− β/ζ)(1− λL)(λ− ζ)

[
λ(λ(ζ + L)− 1− ζL) +

(1− λ2)(βζ − αβ + αζ − αζ2)

(1− α)ζ

]
(D.12)

The final step is to calculate the expression for rt, namely Y (L)εt = (1−(1−α)LK(L))εt.

Since we require the numerator of Y (L) to have a factor (L−λ) (as in (D.6)), this implies

Y (λ) = 0 = 1− (1− α)λK(λ) = 1− λ(−λζ(1− α) + βζ − αβ + αζ − αζ2)

ζα(λ− β/ζ)(λ− ζ)
(D.13)

The RW II-HA solution is then characterized by the value of λ that satisfies this equation.

It is easy to show by direct substitution that Y (λ) = 0 when λ = α. This is exactly the

value of Λ that we obtain when addressing this example at the end of our proof of Theorem

2 in Subsection B.3.8.

56(A.69) has an error, that the term (1− αβ) should be multiplied by η. We replace that product in

(D.8) by α(1−ζ)(β−ζ)
ζ(1−α) .
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This is not the solution that would be obtained using by utilizing (A.70) in RW

Theorem 1. This is because of an elementary error in RW, where it is easy to see that

(A.38) does not follow from (A.36) because the function Φ(L) is incorrectly defined.

D.1 The Non-Limiting Case:

When the ratio Σ of the variance of the idiosyncratic shock to the aggregate shock is

finite, then equations (D.8) and (D.9) become

αβ[K(L)−K(0)]− αβ(1− τ) (1−λ
2)L

λ(1−λL) [V (0)−K(0)]− α(1−ζ)(β−ζ)
ζ

LK(L)

+(1− τ)α(1−ζ)(β−ζ)
ζ(1−α)

(1−λ2)L
λ(1−λL) = αL(1 + β − L)K(L)− L (D.14)

αβ[V (L)−V (0)] = αL(1+β−L)V (L)−L−αβτ (1− λ2)L

λ(1− λL)
[V (0)−K(0)]+

τα(1− ζ)(β − ζ)

ζ(1− α)

(1− λ2)L

λ(1− λL)
(D.15)

where τ = 1
1+Σ

, As above, all terms in (D.14) not involving K(L) must have a factor

L− ζ, and all terms in (D.15) not involving V (L) must have a factor L−β. This implies

αβK(0)− ζ + αβ(1− τ)
(1− λ2)ζ

λ(1− λζ)
[V (0)−K(0)]− (1− τ)

α(1− ζ)(β − ζ)

ζ(1− α)

(1− λ2)ζ

λ(1− λζ)
= 0

(D.16)

αβV (0)− β − αβτ
(1− λ2)β

λ(1− λβ)
[V (0)−K(0)] + τ

α(1− ζ)(β − ζ)

ζ(1− α)

(1− λ2)β

λ(1− λβ)
= 0 (D.17)

If we now subtract (D.16) from (D.14), then we can directly remove the factor L−ζ from
the whole expression to yield

α(L−β
ζ
)K(L) = −1+

αβ(1− τ)(1− λ2)

λ(1− λL)(1− λζ)
[V (0)−K(0)]−(1−τ)α(1− ζ)(β − ζ)

ζ(1− α)

(1− λ2)

λ(1− λL)(1− λζ)
(D.18)

Then, incorporating the assumption that the interest rate rt = (1− (1−α)LK(L))εt has

a factor L− λ, it follows that

λ− αβ

ζ
− (1− α)λ[

αβ(1− τ)

λ(1− λζ)
[V (0)−K(0)]− (1− τ)

α(1− ζ)(β − ζ)

ζ(1− α)λ(1− λζ)
] (D.19)

Eliminating V (0) and K(0) from equations (D.16), (D.17) and (D.18) yields an equation

for λ57:

Σ(1− λβ)(λ− α) = (
αβ

ζ
− λ)(1− λζ) (D.20)

The paths of the roots λ of this equation as Σ changes are shown on the root-locus

diagram, Figure 7. Given that αβ
ζ
< 1, there is a unique value of λ < 1 for each Σ, with

57This equation is derived much more simply within a state space setting, and is part of a currently
uncompleted follow-up paper to this one.
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Figure 7: Values of λ as Σ changes. The unit circle is depicted as is usual in root-locus
diagrams.

the limiting value λ = α as Σ → ∞.

Since the structure of this model is identical to that of GW, even though the underlying

assumptions slightly differ, the solution of this Section provides the basis for the impulse

responses in Figure 2.

E The RBC Model

We first consider the standard RBC model with a zero-growth steady state. We dis-

tinguish supply of capital and hours by households from demand for these factors of

production by firms. Then we consider a simplified special case without investment ad-

justment costs suitable for an analytical solution.

E.1 The Full Aggregate Model

The household has a budget constraint in period t

Bt+1 = Rt−1Bt + VtKt +WtHt − Ct − It − Tt (E.1)

where Bt is the given net stock of financial assets at the beginning of period t, Vt is

the gross rental rate, Wt is the wage rate and Rt is the gross real interest rate paid on

bonds held at the beginning of period t, Ct is consumption, It is investment and Tt are

lump-sum taxes. Beginning of period capital stock Kt accumulates according to

Kt+1 = (1− δ)Kt + It (E.2)

The household at time t maximizes a value function
∑∞

τ=0 β
τU(Ct+τ , Lt+τ ) where β ∈

(0, 1) is a discount factor, Ct is real consumption, Lt = 1 − Ht is leisure and Ht is the

proportion of available hours worked.
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First-order conditions are

Euler Consumption : 1 = RtEt [Λt,t+1] (E.3)

Euler Capital Supply : 1 = Et
[
RK
t+1Λt,t+1

]
(E.4)

Stochastic Discount Factor : Λt,t+1 ≡ β
UC,t+1

UC,t
(E.5)

Labour Supply :
UH,t
UC,t

= −UL,t
UC,t

= −Wt (E.6)

Leisure and Hours : Lt ≡ 1−Ht (E.7)

Gross Return on Capital : RK
t = Vt + 1− δ (E.8)

The Euler consumption equation, (E.3), where UC,t ≡ ∂Ut

∂Ct
is the marginal utility of

consumption and Et[·] denotes rational expectations based on the agents’ information

set, describes the optimal consumption-savings decisions of the household. It equates

the marginal utility from consuming one unit of income in period t with the discounted

marginal utility from consuming the gross income acquired, Rt, by saving the income.

(E.4) is essentially an arbitrage condition for bond and capital investment. (E.6) equates

the real wage with the marginal rate of substitution between consumption and leisure.

Equations (E.15)–(E.6) determine consumption, the supply by households of capital, Ks
t

and hours Hs
t , and aggregate demand Ct + It + Gt where Gt are exogenous government

services in a balanced government budget constraint with Gt = Tt.

Output and the firm behaviour is summarized by:

Output : Y s
t = F (At, H

d
t , K

d
t ) (E.9)

Labour Demand : FH,t = Wt (E.10)

Capital Demand : FK,t = Vt (E.11)

where (E.9) is a production function. Equation (E.10), where FH,t ≡ ∂Ft

∂Ht
, equates the

marginal product of labour with the real wage. (E.11), where FK,t ≡ ∂Ft

∂Kt
, equates the

marginal product of capital with the cost of capital. The model is completed with an

output, capital and labour market equilibrium conditions:

Y s
t = Y d

t = Ct +Gt + It = Yt (E.12)

Hs
t = Hd

t = Ht (E.13)

Ks
t = Kd

t = Kt (E.14)

For our quantitative analysis using a numerical solution, we now generalize the model

by adding the Smets and Wouters (2007) form of investment adjustment costs to the
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RBC model. The law of motion for the household supply of capital becomes

Ks
t+1 = (1− δ)Ks

t + (1− S(Xt))It ; S ′, S ′′ ≥ 0 ; S(1) = S ′(1) = 0

Xt ≡ It
It−1

Households at time t convert It of output into (1 − S(Xt))It of new capital sold at a

real price Qt and then maximize with respect to {It} expected discounted profits. The

first-order condition for investment

Qt(1− S(Xt)−XtS
′(Xt)) + Et

[
Λt,t+1Qt+1S

′(Xt+1)X
2
t+1

]
= 1

and the net return on capital becomes

RK
t ≡ Vt + (1− δ)Qt

Qt−1

(E.15)

Note that without investment costs, S = 0, Qt = 1 (E.15) reduces (E.8). We complete

this set-up with the functional form for investment adjustment, S(X) = ϕX(Xt − 1)2,

which completes the RBC model with investment adjustment costs.

We now specify functional forms for production and utility and AR(1) processes for

exogenous variables At and Gt. For production we assume a Cobb-Douglas function. The

consumers’ utility function is non-separable and consistent with a balanced growth path

when the inter-temporal elasticity of substitution, 1/σ is not unitary. These functional

forms, the associated marginal utilities and marginal products, and exogenous processes

are given (in equilibrium) by

F (At, Ht, Kt) = (AtHt)
1−αKα

t (E.16)

FH(At, Ht, Kt) =
(1− α)Yt

Ht

(E.17)

FK(At, Ht, Kt) =
αYt
Kt

(E.18)

logAt − log Āt = ρA(logAt−1 − log Āt−1) + εA,t (E.19)

logGt − log Ḡt = ρG(logGt−1 − log Ḡt−1) + εG,t (E.20)

Ut =
(C

(1−ϱ)
t Lϱt )

1−σ − 1

1− σ
(E.21)

UC,t = (1− ϱ)C
(1−ϱ)(1−σ)−1
t (1−Ht)

ϱ(1−σ) (E.22)

UH,t = −ϱC(1−ϱ)(1−σ)
t (1−Ht)

ϱ(1−σ)−1 (E.23)

(E.15)–(E.23) describe an equilibrium in aggregates Ct, Wt, Vt, Yt, Ht, Kt, It, Qt, Rt, R
K
t

and Tt, given At and Gt where for the latter we assume AR(1) processes about steady
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states Ā, Ḡ driven by zero mean iid shocks εA,t and εG,t.

E.2 The Zero-Growth Steady State

We assume a zero-growth steady state with Āt = Āt−1 = A say and Ḡt = Ḡt−1 = G.

Kt = Kt−1 = K, etc. Then the full steady state of the standard RBC model is given by:

Q = 1

X = 1

S = 0

R =
1

β

RK = R = V + 1− δ

V =
αY

K
Y = (AH)1−αKα

ϱC

(1− ϱ)(1−H)
= W

αY

H
= W

K

Y
=

α

R− 1 + δ
I = δK

Y = C + I +G

G = T

U =
(C(1−ϱ)(1−H)ϱ)1−σ − 1

1− σ
→ (1− ϱ) logCt + ϱ log(1−Ht) as σ → 1

UC = (1− ϱ)C(1−ϱ)(1−σ)−1((1−H)ϱ(1−σ))

UH = −ϱC(1−ϱ)(1−σ)(1−H)ϱ(1−σ)−1

Given A and G, the steady state above gives 8 equations in 8 stationary variables R, C,

Y, W, H, I, K , T . This describes the zero-growth steady-state equilibrium.

In recursive form this steady state can be written

R =
1

β

RK = R

V = RK − 1 + δ
K

Y
=

α

V
=

α

R− 1 + δ
I

Y
=

δK

Y
=

αδ

R− 1 + δ
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C

Y
= 1− I

Y
− G

Y
= 1− I

Y
− gy

Hϱ

(1−H)(1− ϱ)
=

WH

C
=
WH/Y

C/Y
=

1− α

C/Y

⇒ H =
(1− α)(1− ϱ)

ϱC/Y + (1− α)(1− ϱ)

Y = (AH)1−αKα = (AH)1−α
(
K

Y

)α
(Y )α ⇒ Y = AH(K/Y )

α
1−α

G = gyY

W = (1− α)
Y

H

I =
I

Y
Y

C =
C

Y
Y

K =
K

Y
Y

E.3 Linearization of the Aggregate Model

The linearized form of this RBC model with investment adjustment costs about a bal-

anced zero-growth steady state with R = RK = 1
β
and cy =

C
Y
, iy =

I
Y

and gy =
G
Y

then

takes the state-space form

at = ρAat−1 + εA,t

gt = ρGgt−1 + εG,t

kst = (1− δ)kst−1 + δit

Et[uC,t+1] = uC,t − rt

EtrKt+1 = rt

rKt =
(R− 1 + δ)vt + (1− δ)qt

R
− qt−1(

1 +
1

R

)
it =

1

R
Etit+1 + it−1 +

1

S ′′(1)
qt

with further outputs defined in terms of the dynamic state variables by

uC,t = −(1 + (σ − 1)(1− ϱ))ct + (σ − 1)ϱ
H

1−H
hst

uL,t = uC,t + ct +
H

1−H
hst

wt = uL,t − uC,t

yst = (1− α)(at + hdt ) + αkdt

ydt = cyct + iyit + gy gt = yst = yt

86



kst = kdt = kt

hst = hdt = ht

gt = tt

wt = yst − hdt

vt = yst − kdt

E.4 A Special Case of the Aggregate Model in Linearized Form

The analytical example in Section C, taken from GW , is a linearized form of a special

case of the full RBC model for which hours Ht are constant and normalized at unity,

ϱ = 0, Gt = 0 leaving only one technology shock process and there are no investment

adjustment costs so St(Xt) = S ′
t(Xt) = 0 and Qt = 1. Hence qt = ht = gt = 0 and

uC,t = −ct.
Then the linearized aggregate model above becomes:

kt+1 = (1− δ)kt + δit (E.24)

yt = (1− α)at + αkt = cyct + iyit (E.25)

Etct+1 = ct +
1

σ
rt (E.26)

wt = yt (E.27)

vt = yt − kt (E.28)

rt = EtrKt+1 (E.29)

rKt =
(R− 1 + δ)vt

R
= (1− β(1− δ))vt (E.30)

vt = (1− α)(at − kt) (E.31)

where the steady state ratios are given in E.2. Combining (E.24)–(E.25) gives

kt+1 = κ1kt + κ2at + (1− κ1 − κ2)ct (E.32)

Etct+1 = ct +
1

σ
rt = ct + κ3Etvt+1 (E.33)

where

κ1 =
1

β
; κ2 =

(1− α)

αβ
(1− β(1− δ)); κ3 =

(1− β(1− δ))

σ

This now gives us the aggregate form of the model used for the illustrative model in the

introduction of the main text.

A further specialization of the RBC model is provided by Rondina and Walker (2021)

who assume 100% capital depreciation. Then δ = 1 and (E.30) gives rKt = vt. Also tech-
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nical change in their production function is Hicks-neutral rather than labour-augmenting

so that At becomes total factor productivity and (1 − α)at above is then replaced with

at.

E.5 The Heterogeneous Agent Model

Following GW, we consider a standard islands model with a large number of households

and firms in each island i. The heterogeneous agent island-specific counterpart of the

aggregate model above is

ksi,t+1 = κ1k
s
i,t + κ2(at + εi,t) +

(
1− 1

αβ

)
(1− κ1 − κ2)ci,t (E.34)

Ei,tci,t+1 = ci,t + κ3Ei,tvt+1 (E.35)

yi,t = (1− α)(at + εi,t) + αkdi,t (E.36)

wi,t = yi,t (E.37)

vt = yi,t − kdi,t (E.38)

Combining (E.36) - (E.38) we arrive at

wi,t = at + εi,t −
α

1− α
vt (E.39)

According to the principle of market-consistent information both the rental rate vt and

the island-specific wage wi,t are assumed to be observed by households. It follows from

(E.39) that the composite shock at + εi,t is also observed as assumed in the information

set (5) in the main text. Note that ksi,t ̸= kdi,t since capital is free to flow from less to more

productive islands.

As in GW we set up the same RBC model without the restriction δ = 1. As in

Rondina and Walker (2021) households and firms are located in I islands each of which

there are a large number of both types of agents and firms on island i only employ labour

from households on the same island in which case the wage Wi,t is island-specific. There

are aggregate and island-specific shocks. In island i for the model these are a composite

productivity shock process At exp(εA,it). As in our more general model we can add a

government spending shock process Gt exp(εG,it where the aggregate components At and

Gt are AR1 processes as before and εA,it and εG,it are i.i.d mean zero shocks.58

We solve this heterogeneous agent (HA) model under imperfect information with

these informational assumptions and refer to the solution as II-HA. We also solve for

the single-agent (SA) aggregate model under II assuming only vt is observed and refer

to the solution as II-SA. In all these cases agents are individually rational in arriving at

decision rules (E.34) and (E.35). What distinguishes the II-SA and II-HA(∞) solutions

58This is more restrictive than GW who have AR1 idiosyncratic processes as well.
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is a general equilibrium effect, namely in the former agents do not use the fact they are

single; i.e., do not use ai,t = at.

E.6 Stability Analysis

The dynamic properties of the aggregate model under PI with kt,t = kt, ct,t = ct and

at,t = at are driven by[
kt+1

Etct+1

]
=

[
a11 a12

a21 a22

][
kt

ct

]
+ terms in at (E.40)

where

a11 = κ1 = R > 0 (E.41)

a12 = 1− κ1 − κ2 = − 1

α
(R− 1 + (1− α)δ)) < 0 (E.42)

a21 = − 1

σ
(R− 1 + δ) (1− α) < 0 (E.43)

a22 = 1− a12
σR

(R− 1 + δ)(1− α) > 0 (E.44)

and R = 1
β
.

The eigenvalues of (E.40) are given by

µ2 − (a11 + a22)µ+ a11a22 − a12a21 = 0 (E.45)

which we write as

µ2 − tr(A)µ+ det(A) = 0 (E.46)

with solution

µ =
tr(A)±

√
tr(A)2 − 4det(A)

2
(E.47)

The necessary condition for real roots is therefore tr(A)2 ≥ det(A) which can be written

(a11 + a22)
2 − 4(a11a22 − a12a21) = (a11 − a22)

2 + 4a12a21 ≥ 0 (E.48)

Since a12a21 > 0 in our model we conclude that both roots are real.

Given real roots and following the approach of Woodford (2003), Appendix C, we can

show that a necessary and sufficient condition for one root to be greater than unity, and

one within the unit circle is that

−tr(A)− 1 < det(A) < tr(A)− 1 (E.49)
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From (E.41)–(E.44) a little algebra gives

det(A) = R =
1

β
> 1 (E.50)

tr(A) = R + 1 +
(R− 1 + (1− α)δ)(R− 1 + δ)(1− α)

σαR
> R + 1 (E.51)

Hence the condition (E.49) holds and the model is saddle-path stable for all permitted

parameter values.

E.7 The Fundamentalness of the PI Solution

The PI Solution for the observable rental rate mE
t = vt is

mE
t = vt =

(
1− (κ1+κ2)µ1L

κ1

1− µ1L

)
εa,t (E.52)

where κ1 = a11 and κ1 + κ2 = 1 − a12 and µ1 is the stable eigenvalue of (E.47). From

(E.41)-(E.44) we have

κ1 + κ2
κ1

=
1− a12
a11

=
R + 1−α

α
(R− 1 + δ)

R
(E.53)

where R = 1
β
. The special case of the model in Rondina and Walker (2021) with δ = 1

then gives

mE
t = vt =

(
1− µ1

α
L

1− µ1L

)
εa,t (E.54)

noting that with δ = 1, the stable eigenvalue µ1 =
1
βµ2

where µ2 is the unstable eigenvalue.

The condition for fundamentalness is therefore

κ1
(κ1 + κ2)µ1

=
R

(R + (1−α)
α

(R− 1 + δ))µ1

≥ 1

⇒ µ1 ≤
R

(R + (1−α)
α

(R− 1 + δ))
(E.55)

The RHS of (E.55) lies in the interval (0, 1) for all δ ∈ [0, 1] so, in principle, the PI so-

lution for both the Rondina and Walker (2021) and GW models can be non-fundamental.

In fact, it can be shown that µ1 = µ1(σ) where µ′
1(σ) < 0 for σ > 0 so there exists

a threshold for σ > 0 below which condition (E.55) holds. Figure 8 illustrates this re-

sult. Only for the risk aversion parameter σ < 0.5 approximately and for an empirically

plausible calibration of δ do we have a fundamental MA process for the rental rate vt.
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Figure 8: Simple RBC Model. Condition for the Fundamentalness of the MA process
for the Rental Rate vt. Parameter Values: α = 0.33, β = 0.985, δ = 0.025, 0.05, 0.1;
σ ∈ [0.2, 2]

F A RBC Model with News Shocks

We now introduce fiscal policy and news shocks into the model of Section E.

F.1 Households

To highlight the role of nominal interest rates and the interaction of monetary and fiscal

policy we now express this budget in nominal terms. In fact, as we show, it leads to the

same constraint in real terms as in Section E. The household budget constraint is then

PB
t B

n
t = Bn

t−1 + Pt(1− τk,t)r
K
t Kt−1 + Pt(1− τw,t)WtHt − PtCt − PtIt (F.1)

where Bn
t is the number of 1-period nominal bonds held by the household at the end of

period t with face value unity (i.e., each paying one unit of currency in the next period),

PB
t = 1

Rn,t
is the price of bonds where Rn,t is the nominal interest rate, rKt is the rental

rate on capital received from firms, Wt is the real wage rate It is real investment, τk,t and

τw,t are capital and labour distortionary tax rates.

The first-order conditions for the household optimization problem are

Euler Consumption : UC,t = βRtEt [UC,t+1]

Labour Supply :
UH,t
UC,t

= −UL,t
UC,t

= −Wt(1− τw,t) (F.2)

Leisure and Hours : Lt ≡ 1−Ht
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Investment FOC : Qt(1− S(Xt)−XtS
′(Xt))

+ Et
[
Λt,t+1Qt+1S

′(Xt+1)X
2
t+1

]
= 1

Capital Supply : Et
[
Λt,t+1R

K
t+1

]
= 1

where Λt,t+1 ≡ β
UC,t+1

UC,t
is the real stochastic discount factor over the interval [t, t + 1],

Xt = It/It−1 is the rate of change of investment and RK
t is the gross return on capital

net of tax is given by

RK
t =

[
rKt (1− τk,t) + (1− δ)Qt

]
Qt−1

(F.3)

The only change from Section E are (F.2) and (F.3) where the supply of labour and

capital by the household is lowered by the existence of distortionary taxes. The rest of

the model is as before: firms still face a pre-tax real wage and rental rate of capital since

it is the households who pay these taxes.

F.2 Government Budget Constraint

Following Leeper et al. (2013) we assume a government balanced budget constraint:

Bt = 0 = Gt − (τw,tWtHt + τk,tr
K
t Kt−1) (F.4)

This gives a zero-growth steady state

τw =
G− τkr

KK

WH
=
gy − τkr

KK/Y

(1− α)
(F.5)

F.3 Fiscal Policy and News Shocks

We now introduce tax news shocks along the lines of Leeper et al. (2013). We model

information flows about tax rates with the follow policy rules

τw,t = ρw

J∑
j=0

[σwε
w
τ,t−j + ξσkε

k
τ,t−j] (F.6)

τk,t = ρk

J∑
j=0

[σwε
w
τ,t−j + ξσkε

k
τ,t−j] (F.7)

where ξ allows labour and capital tax rates to be correlated. News shocks {εwτ,t−j, εkτ,t−j}
enter the information set of agents and

∑
j ϕj = 1 imposes information flows as moving

averages.

We report results for the labour tax news shocks only with J = 2, ρw = ξ = 0, ϕ1 = θ,
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Figure 9: Impulse Responses to the News Shock εw,t

ϕ2 = 1− θ, τk,t = τk, σw = 1. Then

τw,t = θεw,t + (1− θ)εw,t−1 (F.8)

where θ ∈ (0, 1). If θ = 0 then agents have perfect foresight because they observe τw,t+1

perfectly. If θ = 1 then agents have no foresight and receive news only about the current

tax rate. As θ goes from 1 to 0 agents receive more news about next period’s tax rate.

The model is solved with agents having PI in that they observe enough current values

of variables and the news shocks εw,t and εw,t−1 to achieve A-invertibility. Figure 9 shows

the impulse responses to the tax news shock τw,t as θ goes from 1 to 0 and receive more

news about the next period’s tax rate. Thus we see a corresponding increase in the

response of real variables such as output and investment.

Single agent models that include news shocks imply that there is a common news

shock that is observed by all agents and not by the econometrician. For this to be

consistent with our assumptions in the HA case, we extend this approach to news shocks

by assuming that agents all observe the news shock, but with idiosyncratic noise. In the

context of our paper, with signal to noise ratio tending to zero, agents react solely in the

current period to this noisy news shock. Thus our theoretical results can include this

form of news shocks.
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G Simple NK Partial Equilibrium Model

Consider a New Keynesian Phillips curve dependent on the real marginal cost mct and a

mark-up shock ε1,t assumed exogenous

πt = βπt+1,t + λmct + σ1ε1,t (G.1)

mct+1 = ρmct + σ2ε2,t+1 (G.2)

where λ = (1−θ)(1−βθ)
θ

and (1 − θ) is the constant per period probability that the Calvo

contract is reset and εi,t ∼ N(0, 1). This of the Blanchard-Kahn state-space form: ε1,t+1

mct+1

Et[πt+1]

 =

 0 0 0

0 ρ 0

−1/β −λ/β 1/β


 ε1,t

mct

πt

+

 σ1

σ2

0


 ε1,t+1

ε2,t+1

0


G.1 PI Solution

Consider first the solution under agents’ PI. To solve this, we need to first go back (B.23)

below from the paper and the saddle path satisfying

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(G.3)

where ΛU is a matrix with unstable eigenvalues. If the number of unstable eigenvalues of

(G+H) is the same as the dimension of xt, then the system will be determinate.

To find N , consider the matrix of eigenvectors W satisfying

W (G+H) = ΛUW (G.4)

Then, as for G and H, partitioning W conformably with zt and xt, from PCL we have

N = −W−1
22 W21 (G.5)

In our example

G+H =

 0 0 0

0 ρ 0

−1/β −λ/β 1/β

 (G.6)

which has eigenvalues 0, ρ both less than unity and 1
β
> 1. Now write the ij element of
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W as wij, i, j ∈ 1, 3. Then corresponding to the eigenvalue 1/β we have the eigenvector

[w31w32w33]

 0 0 0

0 ρ 0

−1/β −λβ 1/β

 =
1

β
[w31w32w33] (G.7)

leaving w31, w32, w33 to satisfy

−w33 = w31

ρw32 −
λ

β
w33 =

1

β
w32

w33
1

β
=

1

β
w33

Without loss of generality, we can put w33 = 1. Hence w31 = −1 and w32 =
λβ
βρ−1

giving

N =
[
β λ

1−βρ

]
.

From our general solution procedure above, the following matrices are defined

A = F =

[
0 0

0 ρ

]
; E = −N = −

[
β

β

1− βρ

]
; J = [β β] ; BB′ =

[
σ2
1 0

0 σ2
2

]

It follows that under PI that

πt = βε1,t +
λ

1− βρ
mct ≡ πPIt (G.8)

Along with (G.2) we then have a VAR(1) process in [πt mct]
′ and [ε1,t ε2,t]

′. In case of

Nimark (2008), where ε1,t = 0, this becomes

πt =
λ

1− βρ
mct (G.9)

which is Equation (11) in Nimark (2008).

G.2 Agents’ Imperfect Information

We consider agents’ information sets

1. Perfect Information (PI): [ε1,t mct πt]
′

2. Imperfect Information (II): πt

3. Imperfect Information (II): πt−1
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Case (1), PI solution is above. Next consider Case (2) where agents have II with πt

observed. Following our PI solution in the main text, we arrive at

mct = ρmct−1 + ε2,t

m̃ct ≡ mct −mct,t−1 =
ρ

σ2
1 + p

(σ2
1m̃ct−1 − pε1,t−1) + ε2,t (G.10)

πt = β

(
1 +

βρp

(1− βρ)(σ2
1 + p)

)
ε1,t +

λ

1− βρ
mct

− βρσ2
1

(1− βρ)(σ2
1 + p)

m̃ct (G.11)

where, from the main text, the agents’ steady-state Ricatti equation is given by

PA = FPAF ′ − FPAJ ′(JPAJ ′)−1JPAF ′ +BB′ = QAPA(QA)′ +BB′ (G.12)

This has a solution

PA =

[
σ2
1 0

0 p

]
where p =

ρ2pσ2
1

σ2
1 + p

+ σ2
2

noting that N −G−1
22 G21 =

[
0 βλρ

1−βρ

]
, This is an VARMA(1,1) process in [πt mct m̃ct]

′

and [ε1,t ε2,t]
′.

Figure 10 shows the impulse response function following a negative marginal cost

shock ε2,t. The greater is σ2
1, the greater is the difference between II and PI.
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Figure 10: Inflation Dynamics under PI and II

To obtain the innovations representation, we first solve for Z in (B.100); it is easy to
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verify that Z is given by

Z = PEJ ′(JPEJ ′)−1JPE =
1

σ2
1 + p

[
σ2
1

p

] [
σ2
1 p
]

(G.13)

The innovations process that provides the VARMA for πt, corresponding to (G.3) is then

s̃1,t =

[
0 0

0 ρ

]
s̃1,t−1 +

1

βσ2
1 +

β
1−βρp

[
σ2
1

p

]
ε̂t

πt =

[
β

λ

1− βρ

]
s̃1,t

from which it is readily seen that the system is back to a VAR(1) process as under

PI. This illustrates Theorem 4 of our paper: even though II adds more persistence than

under PI, the innovations process dynamics has the same dimensions in each case.

G.3 Nimark (2008)

Now consider the Nimark (2008) example of Section 3.2. Defining πt = pt−pt−1, it is easy

to see that πt = (1 − θ)(p∗t − pt−1). Correspondingly, defining πi,t = (1 − θ)(p∗i,t − pt−1),

it follows that one can derive the equation

πi,t = βθEi,tπi,t+1 + (1− θ)Ei,tπt + λθ(mct + εi,t) (G.14)

where λ = (1 − θ)(1 − βθ)/θ, with information set mA
1t = πt−1,m

A
2t = mct + εi,t. Does

Nimark’s solution (with higher order expectations), in the limit as the variance of id-

iosyncratic shocks dominates the aggregate component, tend to our solution which is an

II solution?

We first write a candidate representation for the aggregate solution in the limiting

case as the Phillips curve above, but without any idiosyncratic shocks

πt = βθEtπt+1 + (1− θ)Etπt + λθmct

The state-space form is now: mct+1

πt

Et[πt+1]

 =

 ρ 0 0

0 0 1

−λ
β

0 1
βθ


 mct

πt−1

πt

+
 0 0 0

0 0 0

0 0 θ−1
βθ


 mct,t

πt−1,t

πt,t

+
 σ1

0

0


 ε2,t+1

0

0


(G.15)

with observationmA
t = [0 1 0]

 mct

πt−1

πt

. The saddle path is associated with the unstable
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eigenvalue 1
β
> 1, and the associated eigenvector yields N = [ λ

ρβ−1
0].

The agent’s PI solution is therefore

πPIt =
λ

1− ρβ
mct (G.16)

For II, we need the matrices

F ≡ G11 −G12G
−1
22 G21 J ≡M1 −M2G

−1
22 G21 (G.17)

A = G11 +H11 − (G12 +H12)N E =M1 +M3 − (M2 +M4)N (G.18)

capturing intrinsic dynamics in the system:

F =

[
ρ 0

λθ 0

]
E = J = [0 1] A =

[
ρ 0
λ

1−βρ 0

]
(G.19)

It is easy to show that the solution to the Riccati equation (G.12) is PA =

[
1 + ρ2 ρλθ

ρλθ λ2θ2

]
and hence

QA =

[
ρ − ρ2

λθ

λθ −ρ

]
PAJ ′(JPAJ ′)−1J =

[
0 ρ

λθ

0 1

]
APAJ ′(JPAJ ′)−1J =

[
0 ρ2

λθ

0 ρ
θ(1−βρ)

]
(G.20)

In lag operator form, it then easy to verify that m̃ct = (1+ρL)vt, π̃t−1 = πt−1−πt−1,t−1 =

λθLvt, and therefore mct,t−1 =
ρ2L2

1−ρLvt−1, πt,t =
λ

1−βρ
ρL

1−ρLvt. Finally

πt = π̃ + πt,t = λ(θ +
1

1− βρ

ρL

1− ρL
vt) (G.21)

as in Nimark (2008).

A full check that this does represent the aggregate solution in the limiting case requires

the setting up of (G.14), which requires the calculation of Ei,tπt. If the variance of the

idiosyncratic shock tends to ∞, then the relevant information set by Lemma 2(a) is the

same as for case studied above, i.e., Ei,tπt = Etπt = πt,t. The system setup therefore

involves m̃ct, π̃t−1,mct,t−1, πt−1,t−1
m̃ct+1

π̃t

mct+1,t

πt,t

Ei,tπi,t+1

 =



ρ − ρ2

λθ
0 0 0

λθ −ρ 0 0 0

0 ρ2

λθ
ρ 0 0

0 ρ
θ(1−βρ)

λ
1−βρ 0 0

−λ
β

− (1−θ)ρ
βθ2(1−βρ) − (1−θ)λ

βθ(1−βρ) −
λ
β

0 1
βθ




m̃ct

π̃t−1

mct,t−1

πt−1,t−1

πi,t

+

vt+1

0

0

0

0

+


0

0

0

0

−λ
β
εi,t


(G.22)
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Although one can work through this to show that the aggregate of the πi,t is equal to πt,

it follows from the proof of the theorem.

H Recoverability

A recent innovation in the economics literature by Chahrour and Jurado (2022) is the

notion of recoverability, which they point out is a generalization of much earlier work by

Kolmogorov (see Shiryayev, 1992), and which relates to situations for which the shocks

are non-fundamental, so that the system of dynamic equations is non-invertible. We

shall be calling on this notion subsequently because when the II solution differs from

that of the PI solution, then the former will be characterized by non-invertibility (or non-

fundamentalness of the shocks). The main point that they make is that if the VARMA is

known, then it is possible (under mild conditions) to recover the values of all the shocks

to have affected the VARMA process using the data, assuming observations over all time,

as opposed to data only up to time t as available to economic agents in the model. In

particular what this means is that for a finite set of data, one can obtain an accurate

estimate of shocks that have taken place around the middle of the dataset.

To be more specific, suppose that the VARMA process is fully invertible, then the

residuals as calculated above will converge to the true values of the shocks, so that the

estimate of a shock at time t will be calculated using all past values of the observations.

We illustrate with an example.

H.1 Fundamental and Non-fundamental MA Processes

For example, if measurements {mE
t : t ≥ −∞} are generated by the MA(1) process

mE
t = εt − θεt−1 = (1− θL)εt, −1 < θ < 1, εt ∼ N(0, σ2) (H.1)

where L is the lag operator, then the root of (1− θL) lies outside the unit circle and the

process is fundamental.59 Then εt =
∑∞

s=0 θ
smE

t−s. For a finite number of observations

starting at t = 0, truncating this sum at s = t will achieve a very close approximation

(with probability 1) for values of t that are large enough to ensure that the variance of

the untruncated terms, which equals θ2tσ2/(1−θ2) is below a certain threshold. However

if θ > 1, then the above representation is non-fundamental and cannot converge. If

instead we write the lag operator representation of εt as εt = mE
t /(1 − θL) as εt =

59An MA process mE
t = Φ(L)εt is a fundamental representation if the roots of Φ(L) lie outside the

complex unit circle (see, for example, Lippi and Reichlin, 1994 and Kilian and Lutkepohl, 2017).
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−θ−1L−1mE
t /(1− θ−1L−1), then we can rewrite the representation of the shocks as

εt = −
∞∑
s=1

θ−smE
t+s (H.2)

Thus recovering the shocks requires summing over future values of the observations.

Clearly, for a finite sample of length T , one cannot obtain an accurate approximation to

the most recent shock εT , but one can obtain a good approximation to the earliest shocks

provided that T is large enough.

One can readily extend this to the MA(2) case mE
t = (1 − θ1L)(1 − θ2L)εt when

−1 < θ2 < θ1 < 1. Then the process is fundamental and we have

εt =
1

θ1 − θ2

(
θ1

1− θ1L
− θ2

1− θ2L

)
mE
t =

1

θ1 − θ2

(
∞∑
s=0

θs+1
1 mE

t−s −
∞∑
s=0

θs+1
2 mE

t−s

)
(H.3)

When however −1 < θ1 < 1 < θ2, we can rewrite the expression for the shock as

εt =
1

θ2 − θ1

(
− θ1
1− θ1L

+
L−1

1− θ−1
2 L−1

)
mE
t =

1

θ2 − θ1

(
∞∑
s=0

θs+1
1 mE

t−s −
∞∑
s=1

θ−s+1
2 mE

t+s

)
(H.4)

so that recovering the shocks requires summing over both past and future values of the

observations. For finite samples the approximating values of shocks at the beginning and

end of the sample will be a poor fit to the true values.

Similarly, when −1 < θ2 < 1 < θ1, we have

εt =
1

θ1 − θ2

(
−

∞∑
s=0

θs+1
2 mE

t−s −
∞∑
s=1

θ−s+1
1 mE

t+s

)
(H.5)

Then when θ2, θ1 lie outside [−1, 1], we can rewrite the expression for the shock as

εt =
1

θ1 − θ2

(
− L−1

1− θ−1
1 L−1

− L−1

1− θ−1
2 L−1

)
mE
t =

1

θ1 − θ2

(
−

∞∑
s=0

θ−s+1
1 mE

t+s −
∞∑
s=1

θ−s+1
2 mE

t+s

)
(H.6)

so that recovering the shocks requires summing over only future values of the observations.

Again for finite samples the approximating values of shocks at the end of the sample will

be a poor fit to the true values.

Finally, consider an ARMA(1,1) process mE
t = (1−θL)

(1−L
θ
)
εt for a Blaschke factor. If θ > 1

this is non-fundamental. But we can write

εt =
(1− L

θ
)

(1− θL)
mE
t =

(L−1 − 1
θ
)

(L−1 − θ)
mE
t
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=

(
1 +

θ − 1
θ

L−1 − θ

)
mE
t =

(
1 +

1
θ2

− θ

1− θ−1L−1

)
mE
t (H.7)

Hence solving forward from time t we can recover the structural shock from the convergent

summation

εt = mE
t +

(
1

θ2
− 1

) ∞∑
s=1

θ−smE
t+s (H.8)

H.2 Blaschke Factors and Spectral Factorization

If a square non-invertible system of n stationary measurements and n shocks in each

period is estimated, then although the parameters of the system can be consistently

estimated using maximum likelihood, the innovations process (i.e., the residuals) will

nevertheless correspond to those of the statistically equivalent invertible system. They

cannot therefore be matched to a linear transformation of the structural shocks, and the

same will automatically hold true when a VAR approximation to the system is estimated,

since by definition the latter is invertible. The literature, summarized by Kilian and

Lutkepohl (2017) suggests using Blaschke factors on the lag operator representation of

the VAR in order to ‘flip’ roots of the MA process from invertible to non-invertible.

To see how this works, first consider the general MA process mE
t = Φ(L)εt assumed

to be fundamental and write

mE
t = Φ(L)εt = Φ(L)B(L)B(L)−1εt ≡ Φ(L)∗ε∗t (H.9)

where ε∗t = B(L)−1εt and Φ(L)∗ = Φ(L)B(L). Then Lippi and Reichlin (1994) show that

Φ∗ has roots inside the complex unit circle (so that mE
t = Φ(L)∗ε∗t is non-fundamental)

if B(L) is chosen to be a ‘Blaschke matrix’ which has two properties (i) all roots in-

side the complex unit circle and (ii) B(L)−1 = B∗(L−1) where the asterik denotes the

conjugate transpose. Then corresponding to our MA(2) fundamental example Φ(L) =

(1− θ1L)(1− θ2L) above with −1 < θ1, θ2 < 1 we have three non-fundamental represen-

tations Φ(L)B(L) corresponding to the Blaschke factors:

−1 < θ1 < 1 < θ2 : B(L) =
L− θ1
1− θ1L

(H.10)

−1 < θ2 < 1 < θ1 : B(L) =
L− θ2
1− θ2L

(H.11)

−1 < θ1, θ2 < 1 : B(L) =

(
L− θ1
1− θ1L

)(
L− θ2
1− θ2L

)
(H.12)

For the four possible combinations of θ1 and θ2 one MA(2) representation will be funda-

mental and the other three non-fundamental. Only the fundamental one will be captured

by the data VAR estimation. If the econometricians are estimating θ1, θ2 they will be
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confronted with three non-fundamental and one fundamental processes with identical

statistical properties (i.e., the same first and second moments). It therefore follows that

one can only use recoverability to obtain the structural shock unambiguously if the four

cases (H.3)–(H.6) can be separated by the econometrician by prior information on the

location of θ1 and θ2.

H.3 A Further Test of Fundamentalness

Lippi and Reichlin (1994), Fernandez-Villaverde et al. (2007), Kilian and Lutkepohl

(2017) and others, have pointed out that non-invertibility is a missing information prob-

lem arising from econometricians not using the appropriate measurements. Choosing the

right measurements may then alleviate the problem. Closely related to this idea and also

to recoverability is a recent paper by Canova and Sahneh (2017), that shows how to test

the residuals of a VAR model for fundamentalness. Suppose that a VARMA process mE
t

in shocks εt is estimated in the VAR form Φ(L)mE
t = ut, where ut are the residuals; then

a linear transformation is applied to ut in order to attempt to recover an approximation et

to the structural shocks εt. However in principle there is no way that one can determine

whether et is a linear transformation of the structural shocks εt using the VAR alone.

But suppose that there is an additional measurement mE
2t available to the econome-

trician of the form mE
2t = Θ1(L)εt + Θ2(L)ε2t, which is dependent on the same shocks

εt as the main variables mE
t , and some additional shocks ε2t. If there is no invertibility

problem for mE
t estimated as a VAR, then mE

2t can be rewritten (as t→ ∞) as

mE
2t = Θ1(L)et +Θ2(L)ε2t (H.13)

If there is an invertibility problem then (H.13) no longer applies, because at least one

element of εt depends on future values of et via one or more Blaschke factors60. Thus

conducting a standard Granger causality test of whether mE
2t depends on future values

of the recorded residuals et is sufficient to deduce whether the latter are fundamental or

not.

I “Noisy News” Models

This section reviews two single agent models which explore the econometric implications

of information assumptions in DSGE models: Blanchard et al. (2013) and Forni et al.

(2017). The former model begins by writing productivity at as a sum of a permanent

60Suppose for example that yt = (1 − α−1L)εt, where α < 1, so that it is non-invertible. After this
is estimated as a finite VAR, it can then be approximately written as yt = (1 − αL)et. It follows that

εt =
(1−αL)

(1−α−1L)et =
−αL−1(1−αL)

(1−αL−1) et, so that it is dependent on future values of e.
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component xt following a root process and a AR1 transitory component zt as follows

at = xt + zt (I.1)

∆xt = ρx∆xt−1 + εt (I.2)

zt = ρyzt−1 + ηt (I.3)

Then with the assumptions that ρx = ρz ≡ ρ and ρσ2
ε = (1− ρ)2σ2

η it can be shown that

E[at+1|at, at−1, · · ·] = at; i.e., at follows a random walk.

The information assumptions for agents are that they observe at and receive a noisy

signal about the permanent component xt given by

st = xt + νt ; νt ∼ n.i.i.d(0, σ1
ν) (I.4)

Consumers are assumed to set ct equal to long-run productivity expectations

ct = lim
j→∞

E[at+j|It] = lim
j→∞

E[xt+j|It] (I.5)

(I.2) and (I.5) lead to

lim
j→∞

Et[xt+j − xt] =
ρ

1− ρ
Et[xt − xt−1]

= ct − Etxt
⇒ ct =

1

1− ρ
(Et[xt]− ρEt[xt−1]) (I.6)

The model in now in state-space form with a state vector [at, xt, zt, ct]
′, mA

t = [at, st]
′

and shock [εt, ηt, νt]
′. It is in the form given by our general procedure in Section (2.4) to

give a II-SA solution. Clearly with more shocks than observables it is not A-invertible.

For the econometrician, Blanchard et al. (2013) considermE
t = [ct, at]

′ ormE
t = [ct, at, st]

′

but from Theorem 3 neither can be E-invertible and have a VAR representation for the

RE solution.

Forni et al. (2017) replace the exogenous shock component of the model (I.1)-(I.3)

with simply

at = at−1 + εt−1 (I.7)

and (I.5) becomes

ct = E[at+1|It] (I.8)

The rest of the model is unchanged. This simpler set-up is more tractable. In fact from

(I.7) and (I.8) we have

ct = E[at] + E[εt] (I.9)
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so there are no intrinsic dynamics as defined in Theorem 6.

The state-space form of the RE solution then gives the II-SA solution: ∆at

∆ct

st

 =

 L 0

γ + (1− γ)L γ(1− L)

1 1

[ εt

vt

]
(I.10)

In the absence of noise, vt = σ2
v = 0, γ = 1 and agents observe the shock and we have

PI. Then the PI solution is

∆ct = εt (I.11)

and after a shock consumption jumps immediately to its new long-run level. But with

II consumption jumps to ct = γεt in the first period and reaches ct+1 = ct + (1− γ)εt =

ct−1 + εt.

Returning to II-SA, the spectrum of the two process ∆at, st is given by

E

[[
Lεt

εt + νt

]
[L−1εt εt + νt]

]
=

[
σ2
ε Lσ2

ε

L−1σ2
ε σ2

ε + σ2
ν

]

(See Appendix A.3.) It is easy to show that an alternative spectral factorization of this

joint process is [
1 Lσ2

ε

σ2
s

0 1

][
σ2
u 0

0 σ2
s

][
1 0

L−1 σ
2
ε

σ2
s

1

]
where σ2

u = σ2
εσ

2
ν/(σ

2
ε + σ2

ν).

So starting with [
∆at

st

]
=

[
L 0

1 1

][
εt

vt

]
(I.12)

we arrive at the representation[
∆at

st

]
=

[
1 Lσ2

ε

σ2
s

0 1

][
ut

st

]
(I.13)

where it is easy to show that[
ut

st

]
=

[
Lσ2

v

σ2
s

−Lσ2
ε

σ2
s

1 1

][
εt

vt

]
(I.14)

gets us back to (I.12).

(I.12) and (I.14) have a root r = 0 and are non-fundamental. But the MA represen-

tation (I.13) has a determinant equal to 1 and is therefore fundamental. In estimating a

VAR for ∆at and st the econometrician can generate IRFs for ut and the signal st but
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not the structural shocks εt and vt. However, these shocks are recoverable in the sense of

the term proposed by Chahrour and Jurado (2022) To see this use (I.14) to obtain[
εt

st

]
=

[
Lσ2

v

σ2
s

−Lσ2
ε

σ2
s

1 1

]−1 [
ut

st

]
=

[
L−1 σ2

ε

σ2
s

−L−1 σ2
v

σ2
s

]−1 [
ut

st

]
(I.15)

Thus the structural shocks at time t within the sample can be recovered by the econome-

trician using future data at times t + 1, t + 2 ... which is available to her within sample,

but not of course available to the agents in the model. Thus recoverability is possible

in this particular simple example, but as Theorem 5 shows, this results depends on the

absence of intrinsic dynamics.

A Blaschke factor features in this representation as follows. Consider a general spec-

ification ∆at = C(L)εt where C(L) is a rational function with C(0) = 0. In our model

above C(L) = L. Then (I.12) becomes[
∆at

st

]
=

[
C(L) 0

1 1

][
εt

vt

]
(I.16)

Let rj, j− 1, ..., n be those roots of C(L) within the unit circle and let r∗j be the complex

conjugate of rj. Then generalize (I.13) to[
∆at

st

]
=

[
C(L)
B(L)

C(L)σ
2
ε

σ2
s

0 1

][
ut

st

]
(I.17)

where [
ut

st

]
=

[
B(L)σ

2
v

σ2
s

−B(L)Lσ2
ε

σ2
s

1 1

][
εt

vt

]
(I.18)

where B(L) is a Blaschke factor

B(L) =
n∏
j=1

L− rj
1− r∗jL

(I.19)

Then (I.17) is fundamental because C(L)
B(L)

= 0 only for |L| ≥ 1. Note in our simple model

r1 = 0 and B(L) = L.

We can now estimate the shock processes in a DSGE model which is not E-invertible,

owing to the failure of A-invertibility. Maximum likelihood estimation of the parameters

will generate an innovations process, equal in the limit to the residuals from the estimation

of a VAR.61 The theoretical econometrician will, at least in our simple examples, be able to

61The a-theoretical econometrician will mistake VAR estimation for a VAR in the reduced-form struc-
tural shocks and make a misleading comparison with the IRFs of the assumed DSGE model, even if the
algorithm of Forni et al. (2017) is used.
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work out the Blaschke factors and convert the innovations process into structural shocks,

assuming data from −∞ to +∞. While the Blaschke factors cannot be directly estimated

because their second moments are the same as white noise, they can be calculated from

the estimated parameters.

For Blanchard et al. (2013), these conclusions demonstrate the limits of SVAR esti-

mation and the need for the estimation of the structural (DSGE) model. They estimate

a medium-sized NK model similar to Smets and Wouters (2007) by Bayesian-maximum-

likelihood methods. The estimation uses seven US time series (GDP, consumption, in-

vestment, employment, the federal funds rate, inflation and wages) and eight shocks. The

RE solution is of the form II-SA described in our paper and is not A-invertible. But since

SVARs are avoided altogether this is of no consequence. Validation in such an exercise

would compare second moments in the model with those in the data rather than the

impulse responses of the estimated model and an estimated SVAR.

J Dynare Based Toolkit

Levine et al. (2020) describes the working and use of the Imperfect Information (Partial

Information)62 software that solves, simulates and estimates DSGE RE models in Dynare

under II. The software is a MATLAB based toolbox and is integrated into Dynare version

4.6.1. The solution techniques adopted are based on the work by Pearlman et al. (1986).

In particular, the software

1. Transforms Dynare’s linearized model solutions into the Blanchard-Kahn form which

is solved to yield a reduced-form system. See Theorem 1 of the paper.

2. Provides the conditions for invertibility under which II is equivalent to PI. See

Theorem 3 of paper.

3. Implements multivariate measures of goodness of fit of the innovation residuals to

the fundamental shocks, and provides information as to how well VAR residuals

correspond to the fundamentals in DSGE models. See Theorem 7 of paper.

4. Simulates the model and uses the resulting reduced-form solution to obtain theo-

retical moments and IRFs

5. Evaluates the reduced-form system via the Kalman filter to obtain the likelihood

function for estimation purposes and results from an identified DSGE-VAR.

62Different terminologies are found in the literature (see the discussion in the Introduction). Most
DSGE models are solved on the assumption that agents have PI of the current state as an endowment.
This is the default option in Dynare. Under II, this assumption is relaxed.
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