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Abstract

We develop an endogenous growth model driven by externalities of

both private capital and pu

blic infrastructure. The government levies

distortionary taxation to finance a publicly provided consumption
good and public infrastructure. Firms face adjustment costs. We first
study the steady state, focusing in detail on the non-Ricardian as-
pects of the model. We then examine the optimal and time-consistent
policies in a linear-quadratic approximation of the model. Although
the time consistent equilibrium is also sub-optimal in terms of steady-
state welfare, it does yield higher growth, through an accumulation of
assets by the state and a cut of government consumption.

1 Introduction

This paper studies a dynamic model of fiscal policy with endogenous growth.
The model is dynamic in three ways. First it models both private and public
capital as stocks. Second it is non-Ricardian with distortionary taxes, finite
lives and population growth. The choice between debt or taxation financing
of a given path of government spending matters for GDP growth and we
do not impose a balanced budget. These first two features imply that the
model has transitory dynamics, a characteristic that is absent from many
papers in the fiscal policy literature. Third the model allows for dynamic
fiscal policy. In particular we allow governments to choose a different tax
rate and spending at any time.

The model incorporates a private sector and a government. The gov-
ernment may spend on a publicly provided consumption good and on a flow
that enters into the production function of firms. In the steady state the gov-
ernment maintains this input in production as a constant fraction of GDP.
Therefore the productivity of capital is bounded away from zero and perpet-
ual growth is possible. This type of model was pioneered by Barro (1990).
He models a single-good world where production is a function of labour in
inelastic supply, a capital stock that does not depreciate, and the flow of
public services. There are three key results to his paper. The first is that
the maximization of welfare is equivalent to the maximization of the growth
rate. Second, the constant optimal tax rate for spending on investment is
equal to the share of public investment in national output. And third, when
public consumption (exogenous) is taken into account, it is optimal to levy
an additional tax to pay for these services and the optimum investment in
infrastructure will be unaffected.

These strong conclusions have invited further examination and qualifica-
tion. Most of these additions have involved changing some of the mechanics
of the Barro model. Futagami, Morita, and Shibata (1993) modify a single
aspect of the Barro model by modelling government capital as a stock rather
than a flow. This considerably improves the realism of the model at the ex-
pense of analytical simplicity. The result that growth is maximized when
taxation is equal to public investment carries over from Barro to their model;
they abstract from government consumption. However welfare maximization
is no longer equal to growth maximization because we have transitory dy-
namics. The authors show that if the tax rate is constant, the steady state
is unique and that there is a unique stable path that converges to the equi-
librium. In addition they demonstrate that the optimum tax rate is smaller
than the one that maximizes growth, because growth maximization implies
that future consumption streams are discounted at a rate 0 vis-a-vis current

1



consumption. The analytical solutions of the maximization problem are not
addressed because they are to complicated.

Glomm and Ravikumar (1994) present analytical results in the case where
both private and public depreciate fully during the period and preferences are
logarithmic. Government consumption is absent, but infrastructure spend-
ing may exhibit varying degree of non-rivalry. Each individual firm produces
with constant returns to scale capital and labour, but production is premul-
tiplied by a term that depends on government spending divided by a Cobb-
Douglas type index of private factor usage. Thus government consumption
is a shift parameter in private production but the intensity of private factor
usage will limit its impact i.e. public services are subject to a congestion ef-
fect. The authors then solve for the dynamic programme of the private sector
and then study the optimization problem the government. Unfortunately,
the quite elegant formulation of congestion has no impact on the optimal
growth rate, which is constant and differs from Barro (1990)’s by being pre-
multiplied with the discount factor. The presence of the discount factor can
be explained as follows. Barro restricts his policy to time-invariant taxation.
In the initial period, capital is predetermined, but infrastructure is not since
it is a flow. It is current infrastructure that will affect current production. In
that case, government spending is allocated to the sole objective of maximiz-
ing both current and future output. Glomm and Ravikumar however assume
that current production depends on past investment. Therefore output in
the first period is predetermined. Increasing taxes today therefore involves
a sacrifice in current consumption and the solution becomes dependent on
the discount factor. Maximizing welfare, in that scenario, is not equivalent
to maximizing growth.

Lau (1995) extends Glomm and Ravikumar (1994) to include government
consumption. Like theirs his model is in a permanent steady-growth state.
Assuming that preferences are logarithmic, he can compute the optimal—
from households’ preferences view—share of government spending on con-
sumption and investment in GDP. It turns out that the government con-
sumption is lower under welfare than under growth maximization, and that
government, consumption is higher. Therefore, assuming that governments
are close to the welfare maximizing policy, an increase in government con-
sumption should decrease growth, but an increase in government investment
should increase growth, which is what Barro (1991) found in an empirical
study. (See Hsieh and Lai (1994) and Lin (1994) for further references to
the empirical literature)

A paper in a similar vein is Lee (1992). His production per capita is a
Cobb-Douglas in the private capital stock per head and the aggregate public

capital stock. Both stocks do not depreciate. He simultaneously studies
government consumption, government investment and lump-sum transfers to
private agents. He manages to solve the optimum policy of the government
when it acts as a leader over the private sector. He finds that there are two
local optima, one with a slow growth rate, high government consumption and
high transfers and distortionary taxes, and the other with low taxes, high
government investment and low transfers. The fact that the government
should finance positive lump-sum transfers in the first equilibrium using
distionary taxation appears odd. His results should be taken with caution.
There appear computational mistakes in the displayed equation after #10
and after #13.

The effect of fiscal policy in an endogenous growth model has also been
examined by Turnovski and Fisher (1995). The basic production frame-
work is the same as Glomm and Ravikumar’s, but no specific functional
form is assumed for the production function. An additional level of gener-
ality is added by assuming that labour supply is elastic. The government
finances consumption and infrastructure expenditure through lump-sum tax-
ation. The authors are interested in the effects of permanent and temporary
changes in fiscal policy. First, when there is an increase in government con-
sumption spending, the increase in taxation needed to finance it will reduce
private sector income and consumption. The marginal utility of income in-
creases, therefore households will increase their labour supply. The increase
in labour supply raises the productivity of capital and results in additional
capital accumulation, potentially leading to a raise in the growth rate. In
addition to the effect of taxation, there is a direct effect—through the repre-
sentative agent’s felicity—of government consumption on the marginal rate
of substitution between consumption and leisure. This effect could poten-
tially reverse the adverse effect of taxation on the representative consumer’s
utility. Increased expenditure on infrastructure will have the same taxation
effect since it also needs to be financed by tax. In addition, an increase
in public infrastructure results in an increase in income that will tend to
counter the taxation effect. The total impact of increasing infrastructure on
the private capital stock is therefore ambiguous. The authors then show that
when technology is Cobb-Douglas, an increase in government consumption
will increase the private capital stock by more than an increase in public in-
frastructure would. However the welfare effect and growth effects of raising
one or the other are ambiguous.

The interaction between public expenditure and labour supply decisions
are also taken up by Devereux and Love (1995). They show that government
spending can have an impact on growth even in the absence of direct gov-



ernment investment into the capital stock. Their model comprises physical
capital and human capital. Labour supply is elastic, and human capital accu-
mulation is not taxed. When an permanent increase in government spending
occurs, its effect will depend on how the increase is financed. When the gov-
ernment uses a lump-sum tax, the private sector wealth is reduced. Both
leisure and consumption are normal goods; therefore there will be a drop in
private consumption and an increase in the labour supply. In equilibrium,
the rate of return on accumulating human capital increases, and so does the
rate of return on physical capital. Therefore the growth rate will rise. This
result, which is very close to Turnovski and Fisher hinges on the lump-sum
taxation assumption. When the lump-sum tax is replaced by an income tax,
Devereux and Love show that a permanent increase in taxation will reduce
growth via a reduction in the private capital stock.

Probably the most comprehensive recent study of fiscal policy with opti-
mising government spending is the “Model 3” of Jones, Manuelli, and Rossi
(1993). Contrary to Turnovski and Fisher (1995), they study distortionary
taxation. There is also an interesting variation on the stock/flow specifica-
tion of the productive input, where the investment is homogeneous function
of degree one in private and public investment!. In addition, there is an
important feature that is absent in the previous contributions: the gov-
ernment’s budget constraint is relaxed to its intertemporal version, i.e. the
government may accumulate debt or assets. The government would like to
use lump-sum taxation, and even if there is no lump-sum taxation is avail-
able, the government can tax the current capital stock. Since this capital
stock is predetermined, taxing it mimics a lump-sum tax. Therefore the
optimum solution consists in taxing the existing capital stock heavily in the
first periods, until a surplus is built up that allows to finance future commit-
ments without the necessity to levy further distortionary taxes. There are
two problems with that solution. The first is that the authors need to impose
a restriction on the tax rate to prevent it to hit over 100%. The computed
trajectory then depends heavily on the restriction that is adopted, in fact
when control is implemented, the tax rate jumps to the bound and remains
there for many periods. Therefore the bound drives the solution. The sec-
ond problem is that that solution is not time-consistent. At any point in the
future, as long as there is revenue to raise, there remains the temptation to
raise taxes again. The authors acknowledge that “This is clearly a problem
with the solutions presented in connection with these models” (p. 511) and
that “ ... a more complete treatment of the problem including these issues

LA CES specification is chosen for the simulations. “Model 3” does not have a
labour/leisure choice but this aspect is addressed in other models of the paper.
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would be of considerable interest” (p. 487). This is precisely what we are
addressing in this paper.

The rest of the paper is organised as follows. Section 2 sets out our
model which combines a Yaari-Blanchard consumption function with a To-
bin’s g model of private investment that takes adjustment costs into account.
Section 3 examines the steady state and derives some analytical results in
a simplified model that are confirmed in a calibrated version of the full
model. Section 4 compares the optimal precommitment fiscal policy with
time-consistent policy and Section 5 concludes the paper.

2 The Model

Our model is closest to Futagami, Morita, and Shibata (1993). Following
Yaari (1965), Blanchard (1985) and Weil (1989), we model consumers as
having finite lives. The government levies distortionary taxation or sells
bonds to finance spending on consumption and infrastructure. Infrastructure
has an external effect on labour productivity. Both private and public sector
face adjustment costs. The model is in discrete time. The details of the
model are as follows.

2.1 Consumption and Savings

We consider an overlapping generations model stretching from the current
date into the indefinite future. At each date, some new consumers are born,
who gain utility from consumption until they die. We simplify by assuming
that the intertemporal utility functions are additively separable, such that
the utility today is the discounted sum of current and future felicity. Let
u(c(t)) be the felicity that the consumer derives from consuming ¢(t) at time
t if she is alive. ¢(t) could be a vector of any sort of consumables, but for
this exposition we will consider that there is only one consumable. When the
consumer is alive, felicity is logarithmic in consumption, when she is dead
felicity is zero. Let the discount rate be x. Then an individual consumer
born at date t' maximizes her expected utility uy (t), that is:

death death
R ufee) R ()
up (t) = M Ty M T+t

=t =t

We will consider that death can occur, but we are not certain when. To
simplify, we assume that the probability of death is constant and denoted
by M. For any consumer alive in period t, the probability of being in period



" > t will be (1 — m)!"~t. Therefore the expected intertemporal utility
becomes

Eue() =E Y In(c(t") AEV C—Bu (2.1)

=t HlTh

i.e we can abstract from the date of birth in this problem. The reason is the
formulation of the probability of death as constant over time. In fact from
(2.1) we see that the finitely lived consumer’s utility function is isomorphic
to that of an infinitely lived consumer; the discount factor g is only a fraction
1 — M of the discount factor of an infinitely-lived person i.e.

IHIZ
T 141

0

Every consumer is endowed with a unit of labour that she supplies inelasticly
to the market. Labour of people of different ages is a homogeneous good.
This means that we abstract from human capital accumulation. For the
labour that she supplies at period t, the consumer receives a post-tax wage
w-(t). At any period t, we can define her human wealth hy (t — 1) as the
present value of the current and all future expected wages, discounted at the
post-tax interest rate - (t" — 1).

o0 _ )t L w, ("
me(t-1=3 a - mi: = Hvﬁ ) _hi—1) (2.2)

Again, by virtue of the exponential lifetime assumption, human wealth is
the same for all living individuals, irrespective of their age, because they all
face the same death rate and because the wage is not dependent on age.
That does not mean, however that consumers of all ages will have the same
consumption, because recently born consumers have no non-human wealth,
which they only start accumulating after birth. Non-human wealth w(t)
takes the form of physical capital k(t) or government bonds d(t), and because
of arbitrage between both types of assets, they must earn the same return.
At time t the consumer born in t' < t has some non-human wealth w,, (t — 1)
at her disposal that she accumulated in period t — 1. It consists of bonds
dy (t — 1) and capital ky (t — 1). When the consumer dies she does not leave
an intentional bequest, but her non-human wealth at the beginning of the
period where death occurs. Since modelling the links of each consumer with
her heirs would be cumbersome, the following construction is introduced.
There is an insurance company that will take the financial post-tax wealth
of each dead consumer. It will then distribute these assets as a premium o
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paid on the holdings of assets. We assume that the law of great numbers is
holding, therefore the assets per period are m (1 + 7, (t — 1)) wy (t — 1) and
the liabilities are (1 —wm) (14+7,(t—1)) mw, (t—1). If the insurance company
has no operating cost, the premium will satisfy the zero-profit condition:
1+ n=1/(1—wm). Hence we have the dynamics of non-human wealth as

w (9 = LETOE D =D)L 2.3)

1—wMm

If we forward the period-to-period budget constraint in (2.3) and make
the conventional transversality assumption that the present value of future
wealth will tend to zero, the lifetime budget constraint of a consumer is

[ee] G. . th[ﬂwlﬁ T\cﬂmﬁ\\v —cp Aﬁ\\z
(t—1) = 2.4
Emm v W H+ﬁﬂ»A&§|Hv A v
where we have defined the interest rate between period t and t" as:

¢

L+re(t) = [T+ r ) (2.5)

=t

The consumer’s problem is to maximize (2.1) under (2.4). The first order
condition is

co@+1) 147, (¢ —1)

cy () 1+ n (26)

When substituting the first-order conditions (2.6) in the lifetime budget
constraint (2.4), and making use of (2.2), we obtain consumption as

1+n

c(t) = AH - T|zv (wy (£) + ho (1))

The consumer will, at each date consume a fraction of her end-of-period
wealth. This completes the study of the individual consumer.

All consumers of the same age are identical, but consumers of different
ages have different levels of non-human wealth. We therefore need to consider
the age structure of the population when aggregating. If Ly (t) the number
of people that are born in t' and still alive at t, this is

Lo() = (1= w7 Lu(¢)



The birth rate 6 is defined by
Li(t) =6(1 —m) L(t—1)

where L(t) stands for the aggregate labour supply at time t. Note r is the
rate of growth of the aggregate population. This means that

L) =1+r)Lt—1)=...=(1+1)"L(0) (2.7)

Aggregation is performed for all age groups

t

C)= > Le(t)ce(V) (2.8)
t'=—o00
which, using (2.1) aggregates to
1—wm
C) = 7 WO + H(Y) (2.9)
A
where H(t) is aggregate human wealth defined as
t
H(t)= > Le(t)he(t) (2.10)
t'=—o00

and evolves according to

HIE
T@ Ecna+iT§ET:+§3
A Tlv (2.11)

Aggregate non-human wealth is defined as
t
o) = > Le(t) w(t) (2.12)

At birth, wy (Y — 1) = 0, and non-human wealth accumulates out of each
period’s savings. Aggregate non-human wealth can be shown to evolve as

() = (1+ 7, (£ = 1)) IH(t — 1) + W, () — C(t)

We can eliminate human wealth out of (2.9) by taking its first difference and
substituting from (2.11). This leads us to the Yaari-Blanchard function

l1+a wM+r
1—wMm 1+r

v CH=[1+rt-1)1QA—-7)]C(t-1)

N % [D(t) + K(t)] (213)

8

This function represents the consumption/savings choice of consumers. It
can be thought of as a intertemporal aggregate demand function in which
consumption depends on the expected wealth at the end if the period. For-
warding this relationship in the future, we can show that current consump-
tion depends on the sequence of all current and future interest rates and tax
rates.

2.2 Production and Investment

While consumers make consumption and savings decisions, firms make pro-
duction and investment decisions. We assume that there is a large number
of identical firms in the economy. In every date t, the problem of each firm is
to choose investments (i(t),i(t+ 1),...) and employment (I(t),l(t+1),...)
to maximize its value, which is equal to the discounted sum of future profits

W (')
et 1+ \?ﬁ\pmw\ - Hv

where 7(t') are the profits of the firm in time t', and r¢(t') is the rate of
interest between the period t and t'.

The firm does not pay taxes, which are paid by its owners on the income
they receive. Depreciation is tax deductible, which implies a subsidy paid
to the holders of physical capital. With this setup, taxes are immaterial to
the firm’s problem. Upon investment, it pays adjustment costs. We assume
that these costs are a convex function a(-) of investment to the capital stock.
Therefore profits are:

The value of the firm is maximized under the investment constraint that:
k() — (1 =0kt —1) <i(t) Vi >t

Associate a series of present-value multipliers A(t') with this constraint in
time t' and define Tobin’s q(t') as

q(t) =At) 1 +rea(t))
We can then write the Lagrangian
_ N~ () — a() (k(Y) — (1= &) k(¥ — 1) —i(t))
=2 L+rq(t)
9
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All firms are equal therefore the behaviour in the aggregate is identical to
the individual behaviour. Using a Cobb-Douglas production function where
« is the share of capital, we can write the first-order conditions for all firms

10 =1+e(77) + mom e (zaom)

|Q©Q+:~ﬁ+5w\5+c

'="Kon T E@® A N0 v
(-8 at+1) - (L+ (1) )

I)=KH -(1-9)K(-1)

(2.14)

When investment is subject to adjustment cost, firms can no longer simply
equate marginal product of capital to the interest rate in each period. The
problem of firms becomes dynamic. Investment will depend on the sequence
of interest rates from t to the indefinite future. If a government wishes to
stimulate investment it must make sure that interest rates are kept low at all
periods. In equilibrium on the savings market, the government can increase
investment by lowering taxation, which reduces the tax distortion between
the capital cost of firms and the return available to consumers.

2.3 Government Intervention

The government purchases the amount G(t) of the unique commodity from
the private sector. These purchases are split into two parts: first G4t) is
a publicly provided good that enters directly into the utility of the repre-
sentative household. We think in this case of public services that have no
input into productive services, such as expenditure on defence or cultural
and recreational activities. A second part of expenditure G'(t) is used to
augment the productive capacities of the labour force. We think of this ex-
penditure as contributing to a stock K®(t) that represents the contribution
of present and past investment in activities like health and education. This
stock evolves according to

K8(t) = (1 —6) K8(t—1) + G'(t)

where ¢ is the depreciation rate of the public capital stock. We assume
that the public capital stock depreciates at the same rate as the private
capital stock. The public capital (infrastructure) is also subject to the same
adjustment costs as the private capital stock.
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The government can finance its expenditure either through taxation 7'(t)
or through issuing single-period real bonds, the stock of which is denoted by
D(t). The government’s budget identity is

D)= (1+r(t—1)D(t—1) +Gt) — T(¢)

Government spending is the sum of consumption and investment spending,
augmented by the adjustment cost that the government pays when it invests

G =G +G'(Y) T ta A%:

Taxation 7'(t) is modelled as a uniform tax rate applied to the all income.
Total income to the population is equal to production minus the depreciation
of the capital stock. Therefore

Tt) =7(t) [Q() - K(t—1)]

2.4 Endogenous Growth

We adopt the “learning-by-doing” approach to endogenous growth pioneered
by Arrow (1962) and Romer (1986), to allow the productivity of each worker
to depend not only on the capital she is using but also on the average capital
available to the other firms and the infrastructure put in place by the gov-
ernment. We think of the government capital stock as infrastructure (like
roads ports), and any other stock that does is not privately invested but con-
tributes to country’s productivity; for example schools, the legal framework,
etc. These public goods are rival, because they are subject to congestion.
Therefore the per capita provision of these goods—rather then their aggre-
gate supply—impact on the productivity of each individual worker. In line
with this argument we model the efficiency of the labour force as

(1o KBt =1 K (= 1)

(t-1) = L-1)

where 7, captures the contribution of the public capital stock to the overall
measure of capital externality. The aggregate production function is

QW) =K(t—1)[e(t=1) L(t-1)]" "
=K{t—1)%eK8(t—1)" (=) gt —1)(1-m) (1-a)
=eK5(t—1)\"" K(t—1)
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where we define v = a + (1 — a) (1 — 1) as the contribution of private
capital to the aggregate production. Now define the growth rate as

Q) —Qt-1)
Q(t-1)

This is a model in which GDP is allowed to grow unbounded thus precluding
an examination of a steady-state in levels. We will therefore examine all
variables in per-GDP terms and examine a balanced-growth steady state
where all variables as ratios of GDP do not change. To rewrite the model in
per-GDP terms, we define all lower case variable as ratios of GDP?. Table
2.1 summarizes the model in the per GDP formulation.

n(t) =

3 Steady-state Analysis

The model of Table 2.4.1, will be used for the numerical simulations in
Section 4. In this section we first perform two steps backwards towards
simpler models. Within a first simplified model we introduce the analytical
conceptual framework. We then further simplify the model to clarify the
relationship with other simple analytical growth models. Finally we return
to the full model and investigate the comparative statics of its balanced-
growth steady state.

3.1 A Simplified Model

Most of the analytical complications of the model come from the existence of
adjustment cost of investments. We will ignore these during this subsection.
We further simplify the model by ignoring second order terms in r, M, r
and linearizing fractions in growth. We also neglect the difference between
n (1+d)/7 and d k, which roughly speaking means that when an increase of
growth occurs, the incidence on the debt burden is approximately cancelled
out against the increase in tax deduction to capital holders®. We can then
write the following simplified version of the model in a steady state where

2not per-capita, as we did in sections 2.1 and 2.2
3In the calibration of Appendix B, the difference is about .015.
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(M+4r 14z L+7(t—1)(1-1(t)
- (T - 153 o+ g et
(M+ 1) (m+T)
BT w(t) (2.15)
=EkS() T k()" — 1 (2.16)
1-9 .
= T7m® E(t—1) +i(t) (2.17)
14 ;
- QET 1) + g'(t) (2.18)
Cl4r(t-1)
= Trn@ d(t—1) + g(t) — t(t) (2.19)
= g(t) + ¢i(v) T +a A‘ﬁwmﬁw ﬂ%i (2.20)
=1(t) T - %ﬁw%_ (2.21)
. A;@ (1+ :va
k(t—1) 222)
L )i &QS G+:§v .
k(t—1) k(t—1)
_a(l+n(t+1))
B k(t)
N (1+n(t+1))%i(t+ 1) o AG +n(t+1))i(t+ cv
k(H* k(Y (2.23)
+ (1 =0)q(t+1) = (1+rt)a(t)
= d(t) + k(1)
— c(t) + (1) T + @Aﬁz + (0 (2.24)

Table 2.1: A summary of the model
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all aggregates grow at a constant rate:

M+m)(Mm+r)(d+k)=[r(1-7)+r—n—n]c (3.1)
(r—-n)d=1-yg (32)
_a(l+mn)
wli (3.3)
Hniwmug (3.4)

_ g a
—lne=(1—-) _5A v+§ _5A v
n+4 r+0 (3.5)

Then substituting for consumption from (3.4), the capital stock from (3.3)
in (3.1) and assuming that government spending adjusts to satisfy (3.2) we
obtain a relationship between the interest and growth rate. We call this
relationship the Yaari-Blanchard (YB) curve.

0=YB=YB(r,n,d,7)

ad AE.Th:E.TEA&JT%V

=1- — — _
0 Sty T+ (r—n)d

3.6
r(l—7)+r—n—n (3:6)
It depends on the fundamental parameters of the model such as the prefer-
ence rate, the share of capital etc., but also on the variables that indicate
fiscal policy. Using the government budget constraint the analysis of the YB
curve can be conducted in terms of any two of the fiscal variables 7, d and

g- Note that

JYB JYB
®|3 <0 and or

which implies a rising YB curve in the (n,7) space* given d and 7. When
the growth rate increases, the income profile of agents becomes steeper.
Agents wish to smooth consumption. Therefore they will save less at any
rate of interest. Since consumption in various periods are gross substitutes
the interest rate rises.

When debt increases we have two effects. Since government spending
adjusts, with an increase in debt a decrease in public spending occurs that
leaves more room for private expenditure, thereby giving a lower interest

>0

4Since
dr  9Y/or
dn —  8Y/dn
along the YB curve.
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rate. On the other hand increased debt will lead to a higher supply of
bonds, therefore a decrease in their price, thus an interest rate increase.
When comparing the two effects for their respective strength—using the
calibration in Appendix B—we find that the latter effect is much stronger
then the former (.16 > .025); we therefore sign 0YB/0d > 0. This means
that the YB curve will shift upwards in the (n,r) space when an increase
in debt occurs. When taxation increases to expand government spending at
unchanged debt, we find that 0YB/07 < 0. An increase in taxes will reduce
the return available to bondholders and therefore requires a higher pre-tax
interest rate for savings market equilibrium.

An analogous curve to (3.6) can be derived for the case where taxation
adjusts to the increase in debt. In that case the curve is

0=YB =YB(r,n,g,d)

_ad(l+n) ] (A mudtr) (d+ 2tem)
o+r 9 TlelQﬁlzv&v;‘dlhlﬁ_

0=]1 (3.7
Here the increase in debt will leave the goods market equilibrium unchanged,
but the ambiguity of its effect on growth is still with us. On the one hand
the increase in debt has the familiar supply-side effect; on the other hand
the increase in taxation will raise the pre-tax interest rate. Similarly, the
effect will be that the interest rate increases. This version of the YB curve
can be used to investigate a tax-financed increase in government spending on
the savings market. In this case, 9YB/dg > 0. An increase in government
spending reduces consumption on the one hand and cuts the return from
savings through increased taxation; therefore an outward shift of the YB
curve will occur.

Just as we think of the YB curve as the (intertemporal) demand curve of
our model, we can conceptualize the production function and factor supply
equations as the supply curve of the economy. If we express government
spending on infrastructure is a part o of total government spending, (i.e. o =
g'/g) we can substitute from (3.2) into the production function (3.5). Using
(3.3) we obtain a relationship between growth rate and interest rate that we
call the CD curve since it is based on the Cobb-Douglas technology

0= CD = CD(r,n,7,d,0)
0=Iné+ 7 EA < v+ﬁ|§ EAEV (3.8)

r+46 n+ao

Here we have

oCD oCD
@ﬁ <0 and % <0
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Figure 3.1: YB and CD curves

which makes for a falling CD curve in the (n,r) space, given 7, d and o.
When the interest rate increases, the increased cost of capital decreases the
private capital stock. At unchanged government infrastructure expenditure,
growth will be lower. As in the case of the YB curve, we can examine the
influence of government policy on the position of the curve. When we express
the CD curve as (3.8), we can evaluate the impact of debt as 9CD/dd < 0.
An increase in debt, compensated by a decrease in government spending
will tend to lower public investment. To keep the same level of growth,
the interest rate must fall to crowd in private investment. Therefore the
CD shifts downwards in the (n,r) space. When taxes increase, this will
stimulate government spending on investment, and growth will be higher
for every interest rate, therefore we have an outward shift in the CD curve,
i.e. 90CD/0T > 0. The effect of an increase in ¢ will be similar and have the
same sign.

The equilibrium of the model will be found at the intersection of the YB
and CD curves (see Figure 3.1). Since one curve is monotonicly increasing
whilst the other is strictly decreasing we are assured of the existence of a
unique equilibrium. We can now evaluate the effect of fiscal policy on both
growth and interest rate. Differentiating the YB and CD curves, keeping
either g and ¢ or 7 and ¢ fixed, we obtain

— _0d__Or od__ Or <0

_Hmﬁu— 9YB 9CD oCD 9YB
ad T,0, Or g,0

or  On or  On

i.e. an increase in government debt leads to a reduction in the growth rate.
This result is independent of the choice of adjustment instrument. Keeping
all other fiscal variables fixed, we find a positive impact of the composition
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of government infrastructure spending on growth

__dCD 8CD
®|§ — o Or >0
oo 9YB 9CD _ 9CD 9YB
7,9,d or  On or On

An increase in the proportion of government spending on infrastructure leads
to an outward shift in the CD curve whilst the YB curve is unchanged; there-
fore we find an increase in the growth rate. However we cannot sign either
dn/dr or dn/dg because the signs are ambiguous. By contrast government
spending and taxation have unambiguous effects on the interest rate, and
we obtain

9 dYB 0CD OCD 9YB
|ﬁ _ Ot 0On ot On >0
or — 9YB 9CD _ 9CD 9YB
d,o on  Or on  Or
9YB 9CD _ 9CD 9YB
@ _ 9y On dg On >0
@.Q — 9YB 9CD _ 9CD 9YB
d,o on  Or on  Or
dCD 8CD
®|: _ ~ 9¢__on >0
oo — 9YB 9CD _ 9CD 9YB
7,9,d on  Or on  Or

It is interesting to note that the effect of an increase in debt on the interest
rate has an ambiguous effect. When debt increases, there will be an outward
shift of the YB curve, because the interest rate required on the savings
market will be higher. However, there is also a downwards shift in the CD
curve because of a decline in government spending. Unless the increase in
debt is entirely compensated by higher taxation—in which case the CD curve
does not shift—we cannot be sure that the effect is an increase of the interest
rate.

Let us summarize the results for a moment. Growth will depend posi-
tively on the fraction spend on investment and negatively on the debt. The
interest rate will increase when there is an increase in the size of the public
sector in the economy; we are therefore faced with a public/private sector
tradeoff since the private capital stock will decline when the interest rate
increases.

3.2 Relationship with Simple Models

The idea that there is a trade-off between public and private sector goes right
back to Barro (1990), who shows that, in a much simplified version of our
model, the growth rate would be maximized at 7 = 1 — v,. Below that the
public sector is to small, beyond that tax rate the public sector is to large. We
can investigate the optimal size of the public sector analytically if we make
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further restrictive assumptions. Assume that as in Subsection 3.1, there
are no adjustment costs; in addition assume that there is no depreciation
of capital and no debt. Further assume an infinitely lived household and
no population growth m = r = 0. Let 7°¢ be a tax to pay for government
consumption, and 7' the part of taxation is spent on investment, with of
course 7 = 71+ 7°. We can then write the steady state of the model in per
capital® terms as

nké =71ly (3.9)
I+n)(A+nm)=1+r(1-7~-79 (3.10)
y = k8(1—72) (3.11)

r=ay (3.12)

where n is the steady-state growth rate of capital. Such a steady-state growth
rate will exist if

() =1+akt Q-7 =71 —(14+ 101+ "?)=0
The function , (-) has the properties that

lim , (k&) = —co, lim , (k%) = 400, ,'(k8) >0

ke—0 k& —o0
which ensures the existence of a unique steady-state growth rate. We are
now ready to examine

PRrOPOSITION 1: For any given consumption tax rate 7¢ the steady-state

growth rate is maximized when the share of public investment in GDP is
equal to the share of infrastructure in production multiplied by the share of
GDP not allocated to public consumption

=(1=-7)1-79 (3.13)

Proor: If we differentiate equations (3.9)—(3.12) totally and impose the
first order condition for growth maximization dn/dr'= 0, we get

ndk =y +r'dy (3.14)
0=(1—-7=79dr—r (3.15)
dy dk
o1 —p) — 1
Lo -n) g (3.16)
dr = ady (3.17)

5This may be somewhat unconventional, but it considerably simplifies the calculations.
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(putting d7' = 1). Combining (3.17), (3.15) and (3.12) we obtain

dv__ 1 (3.18)

y 1—7i—7c

On the other hand we can use (3.14), (3.16) and (3.9) to get

Substituting out dy/y between (3.18) and (3.19) yields (3.13). Q.E.D.
We can the obtain Barro (1990) as a corollary:

COROLLARY: When there is no government consumption spending, the
growth maximizing investment tax is 7' = 1 — 7.

The crucial aspect in the model that drives this result is that the elas-
ticity of national product with respect to public infrastructure is constant.
Modelling infrastructure as a stock or a flow does not matter, neither it
is important how the remainder of output is distributed between various
factors.

As noted by Lau (1995), growth maximization is not equivalent to welfare
maximization. In his model, welfare maximization occurs when®

i_l-m c_ _A
T = H||T% and T = ﬂ n
In our model, the presence of stock variables implies that there are transi-
tional dynamics. Therefore it is not possible to compute analytical solutions
for the optimal policy, unless one would make the extreme assumption that
the government could command the steady state of the economy and simply
pick any steady state regardless of the transitional cost. This computation
can be done, but leads to complicated expressions that give no further insight
into the problem. However it is quite straightforward to show

PRrROPOSITION 2: The growth rate for an optimal fiscal policy will be
higher the lower is 7€

PROOF Using (3.13) in the model (3.9)—(3.12), we find a relationship
between government consumption and growth as

—y2/(1=72)
n=(1-)(1-79 atntn
' Ap )~ lv (3.20)

(= (- (-7

6In our calibration, this gives g¢ = 7¢ = .3%, which is tiny when compared to our

calibrated Figure ¢¢= 10%.
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Figure 3.2: Effects of simplification

Differentiating (3.20) totally, we obtain

dn
— <0
dre <

Q.E.D.
This proposition is crucial to understanding the nature of the optimiza-
tion problem. There is a trade-off between government consumption and
government investment. When a government invests it will increase pro-
duction possibilities in the future and when it consumes it increases current
utility. The problem is intrinsicly dynamic, and therefore prone to time-
inconsistency problems. As we shall see, the optimal and time-consistent
policy differ substantially; but before looking at this issue, let us dwell on
the steady state to get a feel for the effects of steady-state policy changes.

3.3 Numerical Results

In this section, we investigate the steady state of the “full” model to check if
the earlier results on the simple model still hold and to derive more results
that depend on the values of parameters. We are also interested in obtaining
a feel for how large the impact of fiscal policy will be on the growth rate and
interest rate.

First recall that we conceptualize the equilibrium of our model as the
intersection between YB and CD curve. For the full model, we compute the
YB and CD curves and draw them on Figure 3.1. The basic results from
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the simplified model are carried over to the full model, i.e. the YB curve is
rising and the CD curve is falling. This ensures that a unique intersection
of the two curves will exist. Following the calibration, detailed in Appendix
B, the equilibrium is at n = 2.5% and r = 5%.

The simplified steady state (3.1) is clearly based on rather stringent as-
sumptions. To evaluate the importance of Tobin’s q we compare the full
model with a calibration where Tobin’s q = 0 while keeping all other pa-
rameters at the values of Appendix B. The YB curve will not be affected,
because it does not depend on adjustment costs. The CD curve without the
adjustment costs is the thin downward sloping curve in Figure 3.2.a. With-
out the adjustment cost, there would be a substantial gain in growth, in fact
the growth rate would be at 6%. We also note that the CD curve would
be much flatter without adjustment costs. Roughly speaking, to achieve an
increase in the growth rate, we need a smaller decrease in the interest rate,
because firms do not have the additional spending on adjustment costs when
investing.

Figure 3.2.b shows the impact of finite lives in the model. The figure
shows two YB curves, one fat for the case where lives are calibrated as in
Appendix B, and a thin one for infinite lives. The finite live aspect of the
model reduces the supply of savings since at each period there is a risk that
the proceeds of savings alloted to the insurance company. Therefore the YB
curve with infinite lives is lower than the finite-live YB curve.

We now turn to the comparative statics of the model, using two diagrams.
The one on the left shows the YB curve (rising) and CD curves (falling) for
two separate values of government policies. The second value is the one for
which we use the thick line, and the curves receive a ' label. This diagram
illustrates the comparative statics of steady-state policies. The growth and
interest rate can then be read from the intersection. On the right-hand
diagram, we show the evolution of the interest rate (thick line) and the
growth rate (thin line), as the policy variable (on the first axis) changes.
Note that the four policy variables g, 7, d are linked by the steady-state
budget constraint.

AT =0 q=1 Mm=r=0|g—-1=mM=r=0
dn/dd | —.0037% | —.0057% | —.0028% —.0042%
dr/dd | —.0025% | —.0047% | —.0034% —.0052%

Table 3.1: An increase in debt that reduces spending, (7,0) fixed
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Figure 3.3: An increase in debt that reduces spending

In Figure 3.3 we consider an increase in debt, compensated by a decrease
in government spending at unchanged taxes, keeping o fixed. There is a
small—hardly visible—upward movement” of the YB curve. The CD curve
rotates anti-clockwise around the point where r = n. In the region where the
economy is dynamically efficient r > n, the increase in debt will be compen-
sated by a decline in spending and therefore a reduction in infrastructure.
In the dynamically inefficient region increasing debt will allow an expansion
of government spending. As long as this case is ruled out, we will have an
unambiguous decline of the growth rate. The interest rate falls as well, but
not by as much as the growth rate because of the upward pressure from the
non-Ricardian effect.

In Table 3.1 we present numbers for the multiplier of debt. For the
full model, we predict a fall of growth by .0037% in the growth rate when
debt increases by one percent of GDP. If Tobin’s q is ignored, the fall in
the growth rate would be larger, because the CD curve is more elastic in
that case. If we withdraw the finite life aspect from the model the impact of
reduced government spending would not be affected by much—the reduction
of growth is about one quarter smaller than in a model with finite lives.

The picture is different when there is an increase in debt and taxation
adjusts. At first sight, Figure 3.4.b seems to be contradicting the Yaari-
Blanchard relationship between interest rates and growth rates, because
growth falls, and the interest rate increases. But Figure 3.4.a explains the

“With an infinitely lived agent without population growth, there would be none.
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Figure 3.4: An increase in debt sustained by higher taxation, (g, o) fixed

Ag=0 q=1 M=r=0|q-1=mMm=r=0
dn/dd | —.0016% | —.0025% | —.0007% —.0011%
dr/dd .0021% .0013% .0010% .0005%

Table 3.2: An increase in debt sustained by higher taxation, (g, o) fixed

apparent paradox, and illustrates the usefulness of the YB-CD framework.
Because there is no change in government spending, the CD curve does not
shift. The only shift is the outward shift of the YB curve. Therefore at the
intersection, there will be an increase in the interest rate and a decline in
the growth rate. The example shows that there is a substantial difference
in the way an increase in debt acts on growth, depending on the way the
additional debt is financed.

This can further be illustrated by the multiplier of debt on interest and
growth rate. Our calculations from Table 3.2 suggest that the impact in the
growth rate is twice as large when spending is reduced rather than taxation
increased. However in the latter case the private capital stock will fall under
the impact of the increase in the interest rate. If adjustment costs are absent
then the impact of debt through a reduction on growth will be higher. The
CD curve is flatter in that case, thus the leftward shift in the YB curve will
have more impact on growth as compared to the interest rate. Our figures
for the full calibration suggest a strong increase in the interest rate. Under
infinite lives, the impact is only half of what it would be under finite lives.

23



Assuming away adjustment costs would also contribute to the interest rate
impact being underestimated.

In Figure 3.5 we consider an increase of taxes to increase government
spending at unchanged debt. The upward shift in the YB curve is due to the
distortionary effect in taxes. The outward shift in CD is due to the effect of
increased government spending on infrastructure. At the intersection, there
is a substantial crowding out effect, which makes for an ambiguous effect
of the spending programme on the growth rate. If the YB curve shifts out
by more than the CD curve, the result of would be a decline in the growth
rate. As the right-hand diagram suggests, this would be the case for a strong
increase in taxation, that brings taxation to over 50%.

D YB'

tax rates, the growth rate will eventually fall. The finite-life aspect of the
model hardly matters but Tobin’s q exerts a substantial dampening effect
on both growth and interest rate movements.

Up until now we have kept the part of investment expenditure in total
government expenditure, o, fixed. We now study a shift in the fraction o.
In Figure 3.6 the YB curve does not shift since it does not depend on o,
because it is only affected by the total size of government expenditure, but
not by its decomposition. For each level of investment, private capital will
be more productive when infrastructure has been increased, therefore at any
given interest rate the growth will be higher and there is an outward shift in
the CD curve. The growth rate and interest rate increase.

In Table 3.4 we present the multipliers at the calibrated steady state.
Again the inclusion of Tobin’s q has a moderating impact on the changes in
growth and interest rate.

7.5%)

7.5%+

5%

2.5% p B 25% — T~
CD

2% 4% 2 4

(a) g =20% vis g = 40%

Figure 3.5: An increase of spending financed by taxation, (7,0) fixed

Ad=0 g=1|mMm=r=0|qgq—-1=m=r=0
dn/dg | 7.4% | 10.2% 07.7% 10.2%
dr/dg | 16.0% | 19.0% 15.6% 19.0%

Table 3.3: An increase of spending financed by taxation, (7, 0) fixed

The computations in Table 3.3 suggest that for the calibration of Ap-
pendix B, an increase of government spending by one percent of GDP will
increase the rate of growth by .07%. Unfortunately the interest rate increases
by more than that, which depresses the supply of private capital. For higher
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Figure 3.6: Increase in the fraction spent on infrastructure, (7, g, d) fixed

Ag=0 gq=1|mvMm=r=0|q-1=m=r=
dn/do | 5.7% | 7.7% 5.6% 7.3%
dr/do | 6.7% | 9.4% 7.2% 9.6%

Table 3.4: Increase in the fraction spent on infrastructure, (7, g,d) fixed
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4 Intertemporal Aspects and the Time-Inconsistency
Problem

Until now the paper has focused on the steady state of an economy in which
consumers are intertemporal optimizers. Fiscal policy has been introduced
in an ad hoc fashion ignoring the consequences of treating the government
too as an intertemporal optimizer. Although the government may not neces-
sarily be able to stick to pre-announced plans, we assume that it is perfectly
benevolent and chooses a utility function which reflects that of a “represen-
tative consumer”. Note that we assume that the government uses the same
discount rate as the individual household; however there is no representa-
tive consumer in our overlapping generations model, but rather a spectrum
of young and old consumers and those yet to be born. We get round this
by using aggregate consumption to represent households of different gener-
ations.

v =>3 AEV (In(C(t+ ') + 7 In(Gt + t'))] (4.1)

=0 I+n

This approach has been suggested by Calvo and Obstfeld (1988). They
showed that a general optimization problem that takes account of genera-
tional diversity could be broken down into a problem of maximizing a func-
tion of aggregate consumption and a second problem of distributing aggre-
gate consumption between generations. By using a social welfare function
which aggregates consumption across all households of different ages we can
formulate the optimization problem in a state-space linear-quadratic form
and so utilize the Markov-perfect concept of a time-consistent equilibrium
set out in Appendix C.

However a consequence of using this welfare criterion is that it embodies
the policymaker’s desired distribution across present and future generations
and is dependent upon the authorities’ discount factor. In particular, wel-
fare improvement with respect to our chosen social welfare function is not
necessarily Pareto improving with respect to present and future generations;
for example, an increase in long-run growth can be at the expense of the
current generation (See Saint-Paul (1992)). In our model with private capi-
tal externalities and tax distortions, there are potential efficiency gains, but
these cannot be disentangled from an increase in social welfare measured
by (4.1) which arises from redistribution between generations. Nonetheless,
bearing in mind the distinction between welfare improvement using (4.1) as
the criterion, and Pareto improvement across all generations, we formulate
the governments problem as the maximization of (4.1) with respect to fiscal
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instruments, given the model summarised in Table 2.1.

4.1 Solvency Counsiderations
Let p(t) = (1 +r(t))/(1 +n(t)) — 1 be the “growth-adjusted” real interest
rate over [t,t + 1]. Then solving the government budget identity

dt) =(1+r(t—1))d(t—1) 4+ g(t) — t(t) (4.2)

forward in time we transform the budget identity into a solvency constraint
at time t

t(t) —g(t)
IT+pt)1+pt+1))...(1+pt+t))

dit—1) = (4.3)
where t(t) — g(t) is the primary deficit at time t, provided that the transver-
sality or “no-Ponzi” condition

d(t+t)

A T p@) Ao+ D). A+ plere) 0 (44)

holds. In (4.3) and (4.4) we assume that eventually p(t) > 0. This is a
feature of the Yaari-Blanchard consumption/savings model and rules out
dynamic inefficiency. According to (4.3) a government in debt with d(0) > 0
must, sometime in the future, run primary surpluses to be solvent.

It should be noted that the transversality condition (4.4) does not re-
quire a stable debt/GDP ratio but merely that, in the long run, it does not
increase faster than the growth adjusted real interest rate p(t). Stability
of is sufficient but not necessary to ensure solvency. However in a world
with even very small departures from perfectly functioning capital markets,
the notion of unbounded government debt/GDP ratios does not appeal. A
stronger concept of solvency is that debt/GDP ratios do stabilize. We shall
refer to the transversality condition (4.4) and the latter stability condition as
weak and strong solvency conditions respectively.® In this paper we adopt
the strong condition and enforce it through a small penalty attached to debt
in the government’s loss function which reflects the costs of issuing debt (or
acquiring assets if d is negative) and of collecting taxes we modify the social
welfare function (4.1) as follows. The single-period welfare function becomes

u(t) = C(t) + 1 In G —na (d(t)* — 7 (7(8))* = nar (A7(1)? ws)
.5

8Buiter and Patel (1990) provide an interesting discussion of this distinction.
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The third term in (4.5) with a small value for 74 is sufficient to ensure a
stable debt/GDP ratio, i.e. strong solvency. The final two terms penalize
both large changes and large levels in the tax rate. We think of the inclusion
of these extra terms as imposing a constraint on the liabilities or assets the
government can acquire and on the extent of taxation it can impose in any
one period. All these terms cover features not directly included in the model.

4.2 Expectations and Time Inconsistency

The credibility of policies and the associated problem of time inconsistency
is potentially a major issue in any policy debate. In the model of this paper
time inconsistency originates from two basic sources. First, when taxes are
distortionary the time inconsistency of optimal tax-smoothing over time are
well-known.” Second, we have both a private and public capital external-
ity to address, which requires some combination of public investment and
inducements to increase private investment and private savings. One such
inducement is the reduction of taxation so it is immediately apparent there
is a policy trade-off between a public sector investment programme which
implies higher, taxation and a strategy aimed at increasing private sector
investment.

To explore why these considerations lead to a time-inconsistency problem
let us consider the dynamic behaviour of consumption and of Tobin’s q. In

linearized form' these can be written as
Ce=u iy Faang Fa3 T Fag g, —asTy (4.6)
= ¢y + O (4.7)

say, where ©(-) is an increasing function of next period’s growth rate and ex-
pectations of next period’s tax rate and non-human capital, and a decreasing
function of the real interest rate. Similarly for Tobin’s q we have

q¢ = P1 A5y + Bane — Bk — Bary (4.8)
=5 QM.TH + ® Twwv
say, where ®(-) is an increasing function of the current growth rate and a

decreasing function of the real interest rate and the private capital-labour
ratio. Solving forward in time we then have

co=Y 0%, and q =) ¥, (4.10)

t'=0 =0

9See Faig (1995) for a recent discussion of these issues.
10We use time as a subscript for differences with the steady state around which we
linearize, e.g. ¢¢ = ¢(t) —c.
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giving consumption and Tobin’s q as a function of expected future endoge-
nous variables which themselves depend on instrument settings.

Given these features of the model and rational expectations we can distin-
guish between the cases when an authority has or does not have a reputation
for precommitment. A fiscal or monetary authority which enjoys reputation
in this sense can exercise the greatest leverage over the private sector in
that an announced path of instrument settings would be credible and would
effect private sector behaviour immediately in the desired way. For instance
the announcement of low taxes in the distant future will immediately raise
savings, lower the real interest rate and increase private investment.

When a government cannot precommit itself to a future policy, it must
act each period to maximize its welfare function, given that a similar op-
timization problem will be carried out in the next period. Formally, the
policymaker maximizes at time t a welfare function U(t) such that

Ut)=ut) +oU(t+1) (4.11)

where wu; is the single-period welfare given above and Uy is evaluated on
the assumption that an identical optimization exercise is carried out from
time t+ 1 onwards. The solution to this problem is found by dynamic pro-
gramming and, unlike the precommitment policy leads to a time consistent
trajectory or rule for instruments. The simulations reported below use a
linearized form of the model and a Taylor series quadratic approximation to
the social welfare function valid in the vicinity of the original steady-state
corresponding to the calibration in Appendix B. This approximation re-
duces the optimization problems under both precommitment and discretion
to a manageable linear-quadratic form details of which are to be found in
Appendix sec:linear.

4.3 Simulation Results

We first report results for the central values of the calibrated model and
then we consider some interesting variations. First, however, we need to
choose the parameters 7, nar, and 7g in (4.5). If we put , = ngar = 0
which implies no constraint on the size of the tax rate in any one period,
but enforce strong solvency by setting 14 equal to a small value (in fact we
find that 0.1 is sufficient for this purpose) we obtained optimal trajectories
under precommitment for which the tax rate in the first period is over 100%,
though the tax rate falls sharply thereafter. This oddity reflects a number of
deficiencies in our model including the absence of other tax distortions, the
absence of explicit modelling of collection costs, political constraints on high
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tax rates etc, as well as the shortcomings of a linear-quadratic approximation.
Fortunately quite small values of i, and na, easily? remedy this feature of
the simulation.

Columns (2) and (3) of Table 4.1 report the steady-state values of key
variables for the precommitment (P) and time consistent (TC) regimes and
Figures 4.1 and 4.2 show the trajectories. All variables are reported in
deviation form about their baseline values. The welfare losses are in percent
growth equivalents, again relative to the baseline i.e. a welfare gain of 1% is
equivalent to a permanent increase in growth of 1%.

What then do our results tell us about the benefits of precommitment
when fiscal policy affects long-run growth? For our central parameter values
this is summarized in terms of the transitional and steady-state values of the
welfare loss Uy and U, respectively. For the former regime TC is inferior by

2We choose 7 = nar = 1. In fact these are small values because in our quadratic
approximation the marginal rate of substitution between the consumption/GDP ratio ¢
and 7 along the modified utility curve is —n, 7* ¢2/c¢* = .127, for our calibration.

central calibration same calibration except v» = .33
P Regime | TC Regime | P Regime TC Regime

_ (=M — (=M

T axm |07 204n)
Too 0.58 2.12 0.9 24 0.18
Too 0.21 0.39 1.0 1.6 0.53
Coo 0.34 13 —-0.23 12 5.54
deo -95 —180 —-94 —188 —40
Too —-4.9 —27 —4.8 —27 —10
9 | —21 —9.9 —2.2 -9.9 ~7.0
g 0.82 2.2 1.3 2.9 15
koo —-24 —0.72 —-14 —18 —5.7
k&, 4.1 6.5 4.8 7.9 8.5
qo 41 14 7.9 19 6.6
U 0.74 0.17 1.2 0.5 0.19
Uso 0.50 0.17 0.75 0.32 0.31

Table 4.1: Precommitment (P) and Time-Consistent (TC) Policies. Vari-
ables are in % and measured as deviations about the original steady-state.
For example, n¢ = n(t) —n where n(t) is actual and n is steady-state growth.
All are (new) steady-state values except for Uy which is the transitional wel-
fare loss from the baseline values to the new steady state. Uy and Uy, are

expressed as growth rate equivalents relative to the baseline.
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a 0.57% growth equivalent, and for the latter 0.33%. This is not insignifi-
cant, but not spectacular either. The manner in which this welfare difference
comes about is of interest. The long-run growth rate under regime TC is
actually greater than under P, i.e. precommitment does not raise growth.
This underlines the fact that welfare maximization in models with transi-
tional dynamics is by no means equivalent to growth maximization. The
main reason for this outcome is that under TC government consumption is
lowered to a level close to zero. The negative welfare implications of the
latter mean that despite the higher growth TC is inferior to P in a welfare
sense.
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Figure 4.1: Fiscal Policy Under Precommitment

From Figure 4.1 and 4.2 and the steady-state values we can see that under
both regimes there is an initial burst of high taxation which gives way eventu-
ally to the tax rate falling below the baseline. Government consumption also
initially falls under both regimes and government investment rises. A com-
bination of a tax increases and a reduction in spending reduces government
debt and eventually when d drops below —53.5%, the baseline debt/GDP
ratio, the government begins to acquire assets. The main differences between
P and TC is that first, under the latter, government consumption gradually
rises to an eventual steady-state close to its baseline whereas under TC the
fall is permanent. Second, the TC regimes lowers the tax rate by far more
and indeed when 7 drops below the baseline tax rate of 22% it becomes a
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Figure 4.2: Fiscal Policy in the Time Consistent Regime

subsidy to the private sector financed by returns from publicly-owned assets.
Both regimes see the government acquiring assets, but these are much higher
under TC. As a result under that regime both private and public investment
is higher and this explains the higher growth rate.

We know from the comparative statics analysis of Section 3 why the two
sets of fiscal policies have the effects we see. It is less straightforward to
explain why the differences occur. The nature of the time-inconsistency of
the initially optimal policy, regime P, is dynamic and does not arise from
permanent benefits from policy surprises as in the Lucas surprise-inflation
type of model. The only surprise occurs at the beginning of the regimes; we
assume that the baseline policy is a rational expectations equilibrium and the
regimes P and TC are not anticipated. But thereafter there is no scope for
any more surprises. Broadly speaking, time-consistent policies have flatter
profiles for trajectories and a fairly stationary welfare loss over time. Time-
inconsistent policies promise long-run policies which are quite different from
those in the short and medium term. It is this feature which renders the
fiscal policy trajectories under P time inconsistent i.e. if re-optimization were
to occur at any time, the new policies would not imply a continuation of the
existing trajectories. This pattern is observed in Figure 4.1 and Figure 4.2.
Both regimes require an initial increase in the tax rate in order to finance
government investment. This is followed by a reduction in the tax rate that
facilitates increased private sector savings and investment. Under regime P
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the fiscal instruments arrive at the new steady-state relatively early.

Our second policy exercise considers a variation in the crucial parameter
v2 in the Cobb-Douglas production function. The central choice assumes
that observed levels of public sector capital stock corresponding to our base-
line are such that the marginal product of public and private capital are the
same. Then we have o = .7, and the contribution of the public capital stock
to the overall capital externality is given by 71 ~ 50%. Now suppose that the
public sector provides the only externality i.e. v3 = 1, and v = a = 33%
for our calibration. Columns (4) and (5) of Table 4.1 presents results for this
case in the steady-state of the two regimes. Both regimes now involve a much
greater increase in public investment and a greater increase in the growth
rate relative to the baseline. The gains from optimization are correspond-
ingly greater. The broad qualitative features we observed before remain, and
the benefits from precommitment are of the same order of magnitude.

The last column of the table shows results for our last experiment. Given
that we do not seem to ever observe governments accumulating assets rather
than debt it seems worthwhile to generate this outcome in our model. We
concentrate on the TC regime and consider the outcome if the policymaker
discounts the future very heavily. This could capture a “political equilib-
rium” in which the government in a two-party democracy faces the prospect
of losing office with a probability of ¢ per period and accordingly discounts
at a rate 1 — ¢ times that of the social planner. The last column shows this
case with ¢ = 1/2. The welfare loss reported is that of the social planner
with ¢ = 0 as before. Now we observe d > —54% so in the new equilibrium
the government still has positive debt (in fact at 13% of GDP). The growth
rate is now considerably less than that in the P regime and the transitional
welfare benefit of precommitment at the social rate of discount is now over
1%. In fact in the steady state the transitional welfare outcome of the TC
regime is worse than that of the baseline “do nothing different” situation!

5 Conclusion

We believe this paper to be the first to study time-inconsistency under a
model of endogenous growth. Our main result is that precommitment can
actually lead to lower long-run growth and the time-consistent solution is
associated with an overaccumulation of assets by the government.

The overall profile of taxation and expenditure under the optimal (time-
inconsistent) policy is reminiscent of the one discussed by Chamley (1986).
A large burst of taxation in the first periods is followed by a decline in the
tax rate. However we also see a later increase in taxation, such that the
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limiting tax rate is still positive due to discounting. The explanation for this
profile is quite familiar. The installed capital stock is predetermined at the
beginning of the control period, i.e. the start of control is not expected by
the private sector. Therefore a tax on that stock mimics a lump-sum tax.
Using a heavy tax in the beginning therefore minimises the overall cost of
tax collection.!> When we take account of the time-consistency constraint,
the incentive to raise taxes persists through all periods until no more taxes
are needed to finance expenditure. Obstfeld (1991) is an early contribution
that established this result. Our study shows that the essence of Obstfeld’s
results carries over to a much more developed model incorporating endoge-
nous growth. If we believe that the accumulation of debt is an important
feature of observed economic policy, considering time-consistent policies does
not bring the predictions of the model closer to the empirical facts; in fact
it drives them away since asset accumulation of the government is larger.

The new element that we add to the picture is the decision between
government consumption and investment expenditure. A naive view would
be to blame time-consistency for insufficient investment. Our numerical ex-
periments suggest that this is not correct and in fact the time-consistent
policy overaccumulates public capital. Loosely speaking we are adding an-
other layer of overinvestment into the dynamic behaviour. For any given
path of government expenditure, the time-consistent policy overaccumulates
financial assets (with respect to the optimal policy). When we free govern-
ment spending we also have overinvestment in physical assets. If we believe
that “out there in the real world” governments in fact underinvest, we can
not take comfort from the time-consistency approach when searching for a
theoretical underpinning for this view, unless we allow the government to
discount much more heavily than the private sector.

These results must be qualified when we take into account of the most
important limiting feature of the model, which is that the economy is closed.
When the economy is open there are externalities from one country’s fiscal
deficit on the others. In particular debt becomes more attractive since an in-
crease in one country’s debt will only raise the common interest rate. There
is also the question of the externality of one country’s government expen-
diture on the growth rate on the other. These issues are left for further
research.

' Note that this result is not dependent on the finite-life aspects of the model. In fact
the impact of the finite life aspect is rather small. All that matters is that taxation is
distortionary.
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A The linear-quadratic framework

In this appendix we present the linear-quadratic form of our model. It is
written in differences from the steady-growth state. For any variable z, we
introduce the notation

rxe=x(t) —x

where z(t) is the actual value, and z the steady-growth value. For the target
variables (see below) we need to reintroduce levels; we do that with a special
variable 1y =1, V.

When writing down the model, it is important to grasp the sequence of
events though time. The capital and infrastructure stocks at the beginning
of the period t are predetermined as ki_; and k{_;. Therefore output in
period t and the growth rate in period t are equally predetermined. However
the split of output between various usages is not predetermined. From the
Yaari-Blanchard consumption function, we can see that actual consumption
depends on the expected value of wealth and the taxation in the next period.
Its linearized version (A.5) can be forwarded in time to demonstrate that
present consumption depends on the path of interest rates—therefore on
government spending—and tax rates from t to the indefinite future. To
model this dependency we define a forward looking variable 7f such that
i = —p7l | + gi. We can define the rational expectations of government
spending as

e
7, = lim £
w1 T Tk

The same procedure is followed for the tax rate, and u is given a very small
value. To linearize the adjustment costs we assume that a(-) is linear and
define ¢ = a(z)/x ¥ x The equation where adjustment costs occur are written
as

9(t) = g%t) T +1 iﬁwﬂ j
i(t) 1+ n(Y))
aty =1+ 29 (1000
a(l+n(t+1)) (1+n(t+1))%i(t+ 1) (A1)
R T (0
+(1-0)q(t+1) = (L+r(t)a(t)
() (1+ n(t)

Hngc+ch+eA|ﬁmwdl&%+ac

37



The rest of the linearization is straightforward. The state equations are

1-6 (1-9)ke ; « a(l+n)
e P S ! 0=—-—-— —k—(1
\aﬁ = T+n \aﬁIH A”_. i 3vwv Ny + gy A>Mv A N1 + 52 t A + 3v dit1
gottr o Q4nd ood o (A.3) +(A+r)ac+ar (A.16)
Tl (1+n)? " " 14n LTI R . —Arg = —T¢+ T (A.17)
1-9§ (1-9)k ) g g
ke = ke 1 — —— A4 - = _Jt It
TR T AgaE (44 LR (4.18)
MAT L+r(l=7) c(l+r(1=7) 20i(1+n)Y pi? $i (1+n)
oHA H+dvntll T+n Ct— 1 +n)2 Tt1 AH._.{V ftHlﬂztl._.%?lﬁtIQNL_\MHS
G|J cr (M +r) (m+ 1) : : .
¥ - USRS (A.5) Qi1 (1
T+n ¢ 1+n (I1-m)(1+71) e AHJTﬁV Sﬂlgﬂ@zﬁ.fﬁ\ﬁwplﬁlmﬁ
tmmi = mﬁ — Gt (A.6) (A.20)
tﬁﬂ& =7 — Tt (A7) —di =d1+d; (A.21)
The measurement equations are: — = —e el (A.23)
ok ok T4 —g% = —gf+ ¢¢ A24
—ty = — AHI v Ty — 4 (A.8) Q“ gt e ( )
I+n AH + 3v 1+ —Ny = —Ny¢ + AH + Sv “: A>wmv
20 ¢ (1+n ; # k JA:
_ge=— :E S|,&|§ ng k= L (A.26)
ke k8 A.P 8 k ke
: f
+ g (L+n) o kS —Tyr = — (A.27)
\amu H H
i = — AH _ Ok v T — Ok Nis1 + 70 ke Here the starred variables denote target values, and the A stands for
1+n (14 n)? 1+n changes in time. This type of variables are needed to formalize the extensions
(A.10)
1_ to government’s objective. This is a quadratic approximation of the welfare
— WHI = I\WW ky — T el k¢ (A.11) criterion (4.1). The term in private consumption may be written as
n
1+7r 1+nr)d (1-0)k (t+t)
—u, = — d¢ + ﬁ + Mo ! ]
t+1 Ton® T+n2  (T+n2| (A.12) qM 0 TBA Yt Sv +In(Y(t+t VL (A.28)
1-9§ d
— ke — — tepr — 1
T+n ' T+n't 91 i = There first term of the sum (A.28) is
29 (1+n) . 2¢i(l+n) 241
e k " k2 foat ﬂ " A>.va W ¢ 1 AQ? + Sv = M mq Ao c vm + constant
o Im| ————~— | R 55 — Ctv/
(A.14) = Y (1) 2¢% =~ (A.29)
29 (1+n) . 29i(14+n 291
Qi1 = { T41 — L MN ) ke + M Tyl
(A.15)
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The second term of (A.28) can be expanded as:

Mmﬁ In(Q(t+t)) =1n(Q(t))

=0

+0In(Q(t)) + (1 +n(t)
+ 0 In(Q(v)) + 0 In(1 4+ n(t) + 0* In(1 + n(t+ 1))

nﬁ@ﬂz +T@ QM% In(l + n(t+ )

= H|m MUR In(1 + n(t+ t')) + constant
ﬁ\l

MU@

=0

2
Nty UERY

1+n 2(1+mn)?

+ constant

22

H|m

Since the growth rate has a high coefficient attached to it, we include squares
in the deviation of the growth rate. The equation that defines the growth
rate can be approximated as

:*Iﬁ HI|§\% AHIQ&FHI\AWL M
1+n k ke UL 2 k k8

The last term can be incorporated in our approximation of the growth effect.

2
¢ ’ n ’
v (Yerv Ny tt
W o' n(Yiyv) W o' T+n  2(1n)?

_ (L —12)72 [kv—1 w?&
2 k ke

2
% + constant

1 (A.30)
= EPTTET e M o' (n—niv)?
2(1+n) H 0 =

1-— /
_ o (=) M o' k7 + constant

1-0p 2 =

where we define

The same split as in (A.28) for private consumption can then be made for
government, consumption. We also incorporate penalties on taxation and
changes to taxation, (to reflect tax collection costs), debt (to reflect the cost
of administering the debt) and on changes in Tobin’s . To sum up all the
components, the instantaneous loss of the government is

2
Lg%y o(1+mn) 2, 0=y7)o(l+n)
U= — 4+ L+ n? + K
T g T 1-9@+n2t (1-o0) ¢
+ar AT 4+ nad;? 4+, (A.31)

and the intertemporal loss is

Ui = Mmﬁ -t 5

=t

B Calibration

The model is calibrated around a steady-growth state fitted to the economy
of the United States in 1990. There are two possible approaches on how to
calibrate a model like ours. The first consists in collecting data about ob-
servable variables like debt, growth, consumption etc, and deduce variables
that are not observed from the steady state of the model. A second approach
would do the opposite, i.e. use different scenarios of the unobserved variables
to see whether in the steady state these will give values for the observed vari-
able that conform to observation. This method has the advantage to allow
for “what if” simulations to study the effect of changes in the unobserved
exogenous parameters.

We have taken a hybrid pragmatic approach. From the model it is appar-
ent that the growth rate is the central variable of the model whose deduction
as an endogenous variable would be subject to multiple numerical solutions.
Therefore we first choose n = 2.5%. We also fix r = 5%. For the population
we chose m = 2% and overall population growth r = 1%. This is to take
account of immigration.

For the capital stock, we have data available from OECD (1994) about
the net capital stock K = 9650.3 billion $US. in 1990. This is the fig-
ure we choose for the private capital stock!? ie. k ~ 1.8. We also col-
lect the following figures from the US department of commerce mirror at
gopher://una.lib.umich.e du:70/11/ebb, all in millions of dollars.

12This figure excludes public infrastructure but data on infrastructure is not available.
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Taking ¢ to stand for fixed investment and observed figure for the capital
stock k we calibrate the depreciation rate as

(I4+mn)i
k

To estimate the stock of infrastructure we use our assumption that the rate
of depreciation of private and public capital are equal to deduct the public
infrastructure stock from the government expenditure on infrastructure. To
estimate that expenditure, we collect data for various categories of expendi-
ture numbered 1-14 in Table B.2. We assume that the categories 4, 5 and 12
are the expenditure contributing to the capital stock of the government. We
can then compute o, the proportion of investment expenditure, as o =~ 36%.
This is used to find the stock of infrastructure
og(1+n)

kK= ——— = 79%
n+o

0= —n =~ 6%

The constant € is obtained from the identity between production and national

income
E=(1+n)k8 k21~ 73%

Let a(x) = ¢ x, for the adjustment parameter we choose ¢ = 3. Tobin’s
g is then derived from

q=1+2¢(n+0)~15

which appears to be on the high side, i.e. slightly above the range suggested
in the recent empirical study by Blanchard, Rhee, and Summers (1993), but
when we use the equation for the desired capital stock we find

(i +n)? (r+9)k

a=9y 1+n +4 1+n ~ 33%
Gross domestic Product 5250.8
Personal Consumption Expenditures | 3523.1
Gross Private Domestic Investment 832.3
Fixed Investment 798.9
Government Purchases 975.2
Gross Domestic Purchases 5330.5
Final Sales to Domestic Purchasers 5297.2

Table B.1: US national accounts in 1989 (source: US Bureau of Commerce)
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which is in line with received wisdom that suggests that capital’s share is
about one third of output.

To calibrate the relative efficiency of the private vis-a-vis the public sec-
tor, we use the relative share of the private capital stock

k

=——=69
ke +k %

V2

Private consumption is found as
c=1-i[l+¢(d+n)]—g=63%

This is somewhat lower than the direct national income figures suggest, be-
cause consumption is a residual when investment and government spending
including adjustment costs are subtracted from output. It is a widely held
view that national account systems overestimate consumption, therefore this
approach to integrate adjustment costs into the national accounting identity
seems appropriate.

Category A B C
0 | Total expenditure 1194.60 | 501.66 | 438.77
1 | General public services 78.71 14.25 | 23.63
2 | Defense 293.54
3 | Public order and safety 10.57 | 20.01 | 40.83
4 | Education 21.50 | 169.14 | 191.57
5 | Health 154.19 | 87.30 | 36.27
6 | Social security & welfare 317.82 | 82.74 | 32.39
7 | Housing and community amenities 32.62 3.61 13.01
8 | Recreation, cultural & religious affairs 3.21 2.67 | 13.69
9 | Fuel & energy 5.41 .26 2.14
10 | Agriculture, forestry, fishing & hunting 21.89 8.99 2.42
11 | Mining, manufacturing & construction .64
12 | Transports & communications 29.89 | 46.74 | 27.23
13 | Other economic affairs & services 38.29 7.04 2.20
14 | Other expenditures 187.17 | 5891 | 53.39

Table B.2: US Government expenditure by Category. Column A is “con-
solidated central government” expenditure, B is “state region and province
government”, and C is “local government” (source: IMF Government Fi-
nance Statistics Yearbook)
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Government consumption is the part that is left from total government
spending once government investment has been taking place and adjustment
costs have been paid

d“=g(l—0c—0cyp(n+9))~10%

Now we look at the financing of that expenditure. Here we combine ex-
penditure data from Table B.1 and debt data from Table B.3. Adding the
debt components and dividing by GNP gives a ratio of 53.5%. The overall
tax rate in the steady-state can then be determined from the government’s
budget constraint

d(r—n)+ (1+n)

g
= ~ 22
T 1+n—-0k %

Using that value in the consumption function, we can deduce the time pref-
erence parameter out of the observed data
a=0+n)(d+k(m1+r)+ec[r(l—7)1+r)(1—m)+(1—m)
(r =)+ (r+m)m(l=n)]/lc(l+r)+ (m+r)(k+d)]/(1+n)
~ 1.8%

Finally we calibrate the government felicity parameter 1 on the ratio of
public versus private consumption

C
3 = .Q| ~ ”_.ﬂﬁNu
c
Consolidated Central Government Debt 2207.46
State, Region & Province Government Debt 1989 | 283.31
Local Government Debt 361.37

Table B.3: US government debt in 1989 (source: IMF Government Finance
Statistics Yearbook)

44

C The Solution Procedures
C.1 Setting Up the Linear Version

The model of Appendix A can be expressed in state-space form as

Zi+1 Z¢
=A B C.1
xMt; T; Ewm (1)
st = E; _HM“H— + Es wy AOMV

where z; is an nj x 1 vector of predetermined variables at time t. x; isanngx1
vector of free variables, and x{,;  denotes rational expectations of x¢;1. In
our model there are only three non-predetermined variables, consumption
and the two forward-looking variables for government policy, therefore ny =
3. s¢ is an ng x 1 vector of target variables, expressed as deviation from a
bliss point. In our model the bliss point for consumption and government
consumption are 100% of GDP, and the bliss point for growth is 100% as
well. Of course these points can not be achieved simultaneously at any date,
therefore the welfare loss will be strictly positive. The loss of the government
is written as

| R
Uy = 3 M o' mﬁl\ 7 Sty (C.3)

t'=0

where 77 is a symmetric and positive definite matrix of weights and ¢ > 0 is
the discount factor. The policymaker’s optimization problem is to minimize
U; subject to the model (C.1) and the initial vector z¢. Substituting (C.2)
in (C.3) will give the following form of the welfare loss

1

Ui 2

o0
MU @m _”V\HTQ @ Yt + 2 V\M_H_LQ G Wiy
v=o (C.4)

T
+ d<ﬁ+t Hﬂﬁ\uﬁtz@

Where we use the definitions Q = E] nE;, U = E] nE,, and R = E] nE,.
We also introduce the notation y; = [z],x/] as the state vector, of dimen-
sion ng x 1, where ng = n;, + ns. For the vectors that have the dimension
ns X 1, it is convenient to partition the vector into the first n,, elements and
the n¢ elements that follow. Using this notation, for example

H%Fﬁ
ye= T\m; (©5)
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where here of course y,; = z¢ and y, = z;. It is also inconvenient to
introduce a similar notation for matrices. Let X be any matrix of dimension
ng X ng, then write

vm umm
> Sl C.6
Tmﬁn NWL (C.6)

such that X, , is of dimension nj, X n, X, is of dimension nf x n, X, ¢ is of
dimension n, x nf and Xy is of dimension n¢ x ny. We will make repeated
use of this notation in the remainder of the appendix, when we develop the
solution procedures for both the precommitment and the time consistent
case.

C.2 The Optimal Policy With Precommitment

To find the optimum policy under precommitment, consider the govern-
ment’s ex-ante optimum policy at t = 0 under the assumption that precom-
mitment is possible. By standard theory of Lagrangian multipliers, we then
minimize the Lagrangian

Lo=Up+ Y o'Av[Ay+Bw—y] (C.7)

t=0

with respect to {y ¢}, {At}2g, and {w}{2,, for a given zy. This gives
the first order conditions that

wi=-R ' [oB" A1+ U y{] (C.8)
Uwi=X—0A" A1 — Qye (C.9)

together with the original constraint
Yir1 = Ay +Bwy (C.10)

Equations (C.8), (C.9) and (C.10) hold for t > 1. They can be written in
state-space form as

0 o AuP# -U Hﬂ\\HWAV yTTH
A-BRIUT 0] [y
—Q+UR'UT 1| |x

= R

The solution to (C.11) requires 2 ng boundary conditions. The first order
condition in t = 0, requires that

Ao dyo =0 (C.12)
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Within yq the first n, elements are predetermined, therefore dy§ = 0, whilst
the ny elements that follow are free and therefore require from (C.12) that

Aro =0 (C.13)

This gives n¢ boundary conditions to solve (C.11). The initial value zo gives
n;, more conditions. Finally the transversality condition

lim o' Ay =0 (C.14)

t—oo

provides ng more conditions, which complete to the required 2ng boundary
conditions. The solution takes the form

Substituting into (C.9) we get

wi=—(R+B"SB) (B'SA+U")y,

(C.16)
=-Fy:
say, where S is the solution to the Ricatti matrix equation
S=Q-UF-F ' U"+F ' RF
(C.17)

+(A-9BF)'S(A-BF)

To complete the solution we express the non-predetermined variables at time

t, T/mﬁ ¢ v;.m d " in terms of the predetermined variables [z, v;.ﬁ o . Rear-
ranging (C.15), we obtain

Tv; _ ﬁmv% - mmM mﬁv m?w mmﬁ ﬁ Z %

Xy —S;¢ Sep Sii | [At 18

Z

=—-N
2
say. Substituting into (C.16) gives
I 0 Z¢
w14
-N -N A

be TR LR (C.19)

Z¢

¢ TL
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say, and combining (C.10), (C.16) and (C.18) gives

Zit1 1| z¢ I 0
=T(A-BF)T h T =
TFI.; A v TF; here Tﬁv mn;

|§ o.wo
|m 7_ Av
say. Given the solution S to the Ricatti equation (C.17), equations (C.18)
to (C.20) completely characterize the solution to the optimization problem.
The solution can be expressed as a feedback on the history of the state
vectors. At t = 0, this feedback is simply given by (C.19). To find the
feedback for the following periods, use (C.20) to write

Apt+1 = Hepzg + Hep Ap ¢ (C.21)
Solving (C.21) and using (C.12), we find

t
yPTTH = HthU MmmbmvﬁNﬁ\t Aowwv
t'=0
Hence the feedback form of the rule wy = G z; + G¢ g can be expressed
solely in terms of the (at time t) predetermined variables z.
Finally let us evaluate the welfare loss along the trajectory or “cost-to-
go”. From the envelope theorem and the first order condition (C.12), we
have that

AU dLo

— = =0 AT C.23
dyo dyo 0 (0.23)
Hence from (C.15) on integration we have
1
Uo=735 Yo S¥o (C.24)
at time t' = 0. At time t this becomes
1
U =sy/ Sy (C.25)

2

Another way of expressing Uy, which will proof useful, is found by eliminating
x¢ in (C.25) using (C.18). We obtain

1
Ui=—3 [trace(Nyp 2 z( ) + trace(Nese Ap ¢ A ()] (C.26)
which at t = 0, using (C.13) becomes
1
Up = —3 [trace(N, , Zo 2 )| (C.27)
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C.3 The Time Consistent (Markov-Perfect) Solution

The precommitment solutions takes the feedback form of a rule (C.19) which
as we have seen from (C.21) is a rule with memory. The time-inconsistency of
this solution is best seen by examining the cost-to-go (C.25). Re-optimising
at time t and reneging on the commitment given at time 0 involves putting
Ap.t = 0. Thus the gains from reneging are —trace(Ng vﬁ;v@b. Since
it can be shown that Ny is negative definite (Currie and Levine (1994),
chapter 5, page 145 for a formal proof), it follows that everywhere along the
trajectory at which As¢ 7# O there will be gains from reneging and the ex
ante optimal policy will be suboptimal ex post.

In order to construct a time-consistent policy we employ dynamic pro-
gramming and seek a Markov-perfect equilibrium in which instruments are
still allowed to depend on the past history, but only through a feedback on
the current value of the state variables. This precludes feedback as in (C.21)
which involves memory. Thus we seek a stationary solution wy = Gz in
which Uy is minimized at the time t subject to the model (C.2) in the knowl-
edge that an identical procedure will be used to determine Uy at time
t+ 1. Other features of the solution are the x¢ = —IN zy, which we know
is true of saddle-path stable solutions to rational expectations models un-
der a rule wy = —Fz¢, and Uy = NH S z;. Notice that all three solution
features follow from the precommitment solution with Ap¢ = 0 for all t.
The solution is completely characterized by the matrices F, N and S. We
now derive an iterative procedure and sequences F¢, N¢ and S; which—if
convergent—converge to the these stationary values. Suppose that from time
t+ 1 onwards,

Xerv = —Nig1 Zegr Vi >1 (C.28)
Then from (C.1)

X1 = —Nig1 (Appze + Aprxe + Bp wy)

= Arpzi + Agrx + Brwy (C.29)
Thus
x¢ =Jizg + Kiwy (C.30)
where
o= ~(Arr+ Niwy >F©\H (Neg1 App + Agp) (C.31)
Ki=—(Ags+ Ny Ap )™ (N1 By + By) (C.32)
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Rewrite (C.4) as

1
Ui = MA%MQS.TM%HGS*.TiMWiL + 00U
(C.33)

then putting Uiy = 21 Si41 2e41/2, and substituting for x, from (C.30),
we obtain

U, = W ANH OﬁNﬁ._.wNu‘@ﬁiﬁ._.iu.mﬁiﬁv + E
(C.34)
where
Q=Qpp+J{ Qep+QpeJi+J{ QesJy (C.35)
Ui=U,+QueKi+J/ Ug + I QerJ¢ (C.36)
R=R+U] K +K/ U+ K] QK (C.37)
Similarly eliminate x; from (C.1) to obtain
zei1 = Az + Bywy (C.38)
where
A=A, +A,¢d¢ (C.39)
B =B, + A, K, (C.40)
Hence substituting (C.38) into (C.34) we arrive at
Ui = W [z, (Qi+ 0A¢Si1Ay) 7
+2z/ (U¢+ oA/ S By we (C.41)

+ su A“_.‘Hwkﬁ + Y ”_MwH mﬁnTw wﬁv <<»H_

The control problem is now to minimize U; with respect to wy given the cur-
rent state z¢. and given S¢y; and N1 which are determined by subsequent
reoptimizations. The first order condition is then

wi=(Ri+0B{ Siy1 B) (U +0A{ Si;1 Bz

=Gz (C.42)

say. Then combining (C.30) and (C.42) we have
Xt = A...—ﬁ - Hﬂm va Zy AO%WV
= |zﬁ Zy AO%%V
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say. Substituting (C.42) into (C.41) and equating the quadratic terms in z¢
gives

St =Qi+ UG+ G/ U +G| R(G, (C.45)
+ (A +B(G)"Si1(0A + B(Gy) .
Given S¢t1 and Ny equations (C.42), (C.43) and (C.45) give Fy, Ny, and
S defining our iterative process. If these converge!® to stationary values F,
N and S, then we have a time-consistent optimal rule w; = G z, with cost
to go

1

U = W z! Sz = 3 trace(S Zy) (C.46)

13We have not found any problems with convergence for a wide range of models, in-
cluding that in this paper
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