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1 Introduction

This paper re-examines a model �rst investigated by Majd and Pindyck (1987). This model

amends the standard analysis of the option value of irreversible investment of McDonald and

Siegal (1986) by imposing a constraint on the maximum rate of investment, thus requiring that

the project takes time to build. The value of the project on completion is uncertain. Analysis of this

model is relevant to a number of investment problems where technical requirements constrain the

sequencing of investment expenditures. Examples include the development of mining concessions

or large building projects subject to �xed construction schedules.

We view the investment opportunities in this model as consisting of two options, commencing

investment and suspending investment once the project is underway. We �rst derive an analytical

solution for the special case where, while the project takes time to build, suspension of investment

is not possible.

We next provide a new numerical solution of the general model when both options are available.

We do this because the solution provided by Majd and Pindyck (1987) fails to enforce all the

appropriate boundary conditions. We discuss this point in detail in the main text, but it is quickly

apparent from an inconsistency between our analytical solution and the numerical solution of the

general model reported by Majd and Pindyck (1987). Our analytical solution satis�es the same

partial di�erential equation and all the boundary conditions enforced by Majd and Pindyck (1987).

However, since this is a di�erent model, the two solutions cannot in fact be the same.

Applying our alternative numerical procedure, we �nd that there are circumstances (when the

time to build is long and the opportunity cost of foregone cash
ows is high) in which the e�ects

of these two options are to a substantial degree o�setting. In this circumstance net present value

calculations are in fact an adequate guide to the investment decision. This point does not appear

in Majd and Pindyck (1987). More typically the option to commence investment dominates and,

as in the standard analysis of irreversible investment, investment should be postponed until net

present value computations yield a return which covers the value of the option.
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2 The model and the need for a corrected solution

2.1 Assumptions

A �rm can costlessly suspend and restart investment on a project. There is a maximum feasible

rate of investment (k) so that the completion of the project takes a minimum period of K
k
, where

K is the amount of capital which is required to complete the project. We shall refer to K=k as the

time to build. Investment is irreversible so the rate of investment, I, satis�es 0 � I � k.

The project, when complete (K = 0), is worth an uncertain amount V which evolves according to

the geometric brownian motion:

dV = �V dt+ �V dz (1)

with dz the standard Wiener process.

Contingent claims analysis can be used to derive the following partial di�erential equation in the

two states V and K, satis�ed when investment is undertaken at the rate I (See Dixit and Pindyck

(1994) for a detailed discussion):

1

2
�2V 2FV V + (r � �)V FV � rF +max(�I(FK + 1); 0) � LV (F ) +max(�I(FK + 1); 0) = 0 (2)

Here r is the risk free rate of return, and � is the di�erence between the market risk-adjusted return

on owning the project and the expected rate of growth of V . The cost of investment is normalized

to unity. �, the risk adjusted opportunity cost of foregone cash
ows for this project, is assumed

positive to rule out a pure holding strategy, where the investment is inde�nitely postponed to

take advantage of the anticipated growth of V . Hereafter we shall, for brevity, refre to � as the

opportunity cost. LV is a linear di�erential operator introduced to simplify subsequent notation.

Since costs are linear, optimal policy is \bang-bang", investing either at rate k (if FK + 1 < 0),

or 0 (if FK > �1). Restricting the upper case F to denote the value function when investment

takes place, and using lower case f to represent the value function when there is no investment,
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(2) becomes:

LV (F ) = k(FK + 1) (3)

LV (f) = 0 (4)

2.2 The model with no suspension of investment

Thus far this setup is exactly that described by Majd and Pindyck (1987). Our departure from

their analysis is to view this investment opportunity as involving two options: that of commencing

the start of investment and, once investment has started, that of suspending investment. We begin

with the special case in which suspension is not possible and investment once started must be

undertaken at the maximum rate until completion. (3) then represents the value of the project

once investment has commenced, and satis�es three boundary conditions:

(i) On completion of the project

F (V; 0) = V ; (5)

(ii)F is bounded from below for all (V � 0;K) (because the committed cost of the project is �nite);

and

(iii)

lim
V!+1

@ lnF

@ lnV
= 1: (6)

This applies because a 1 percent increase in V increases the �nal valuation by 1 percent on all

sample paths and, when V is large, the costs of investment can be neglected.

Subject to these boundary conditions this equation has the analytical solution (this can be formally

derived using the Laplace transform):

F (V;K) =
k

r
[exp(�rK

k
)� 1] + V exp(��K

k
): (7)

This solution has a simple economic interpretation. The �rst term re
ects the present discounted

cost of current and future investment from the current time t until completion of the project at
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t+K=k. The second term represents the present discounted value of the (uncertain) �nal value of

the project.

A net present value rule would suggest commencing investing if F (KM ; V ) � 0, leading to a

investment trigger given by

V NPV =
k

r
[exp(�

KM

k
)� exp((� � r)

KM

k
)]: (8)

The presence of uncertinty leads to the existence of an option value for the investment opportunity

prior to actual investment, f , and optimal policy is then to commence investment when the value

is greater than a threshold level i.e. V � V c(KM ). 1 Before commencement V < V c(KM ) and

the value of the investment opportunity satis�es (4). On commencement, the value of investment

in the project is given by (7).

(4) has a general solution

f(V ) = AV �1 +BV �2 ;

where �1; �2 are the positive and negative roots respectively of the fundamental quadratic 1
2�

2�2+

(r � � � 1
2�

2)� � r = 0. Application of the boundary condition f(0) = 0 (if the project value ever

falls to zero, it remains zero from (1), with zero associated option value) gives B = 0.

Two further boundary conditions are needed to determine V c and f(V c). These are a value

matching condition

f(V c) = F (V c) =
k

r
[exp(�rKM

k
) � 1] + V c exp(��KM

k
):

(this would apply for any commencement threshold of the form V (KM )) and the optimality condi-

tion FV (V c) = fV (V c) (this is the �rst order condition for optimal commencment of investment).

Substituting for f then shows that the optimal threshold V c(KM ) for commencing investment F

satis�es:

�1F (V
c;KM ) = V cFV (V

c;KM ) (9)

1We denote the total investment required for the project by KM . Note that the threshold here is only valid for

K = KM , i.e. before commencement of the project.
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where �1 is the positive root of the fundamental quadratic. Substitution of (9) into (7) then yields:

V c =
�1

�1 � 1

k

r
[exp(�

KM

k
)� exp((� � r)

KM

k
)] (10)

Comparison of (10) and (8) shows that allowing for the option to delay the commencement

of the investment project leads to an increase in the threshold for investment from V NPV to

V c = �1
�1�1

V NPV , the same proportionate increase in the threshold for investment that occurs in

McDonald and Siegal (1986), where there is no constraint on the maximum rate of investment.

Since all expenditures are committed once the project is underway, the analysis is essentially no

di�erent from the standard analysis of irreversible investment.

Note that we can rewrite (10) as

V c

KM

=
�1

�1 � 1

V NPV

KM

=
�1

�1 � 1

1

r

�
KM

k

�
�1

[exp(�
KM

k
)� exp((� � r)

KM

k
)] (11)

showing the optimal investment threshold, and indeed the net present value investment trigger,

expressed as a proportion of the total investment KM , is a function only of the time to build,

KM=k. We shall therefore consider this ratio rather than the threshold itself when we report our

results in Section 4.

2.3 The general model

Now consider the general model in which there is an option to suspend investment temporarily as

well as the option to delay commencing investment. In this case the value function satis�es (2),

reproduced below as (12), for all K > 0.

LV (F ) �
1

2
�2V 2FV V + (r � �)V FV � rF = max(I(FK + 1); 0): (12)

Since there are no other costs of starting or stopping investment, optimal policy is to invest when

V � V �(K) and to suspend investment when V < V �(K) for some threshold V �(K) i.e.

LV (F ) = k(FK + 1) V � V �(K)

LV (f) = 0 V � V �(K)
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V �(K), which is a function of the remaining time to build K, now represents the smallest value of

the project for which further investment is worth undertaking. For V � V �(K) the value of the

project includes the option value of future suspensions because, unlike the previous case, reduction

of V below the threshold V � leads to suspension of investment and (4) then applies in place of

(3). Similarly for V � V �(K) the option value f satis�es (4), but an increase in V to above V �

leads to recommencement of the investment in the project (at the maximum rate k). It is therefore

necessary to solve jointly for F , f and V �. (In the model with no suspension of investment we

�rst solved for F and then jointly for f and V �.)

The �nal condition on completion of the project (F (V; 0) = V ) and the boundary conditions for

f at 0 (f(0) = 0) and F in the limit as V tends to in�nity (limV!1(F (V;K)) = V exp(��K=k) +

k(exp(�rK=k) � 1)=r are the same as in the case where suspension is not possible. However the

lower limit on V for which (3) holds is now V �, and so the boundary condition that F be bounded

for all V > 0, which applies when there is no option to suspend, must be replaced by an additional

boundary condition which applies on V �.

It can be seen by comparing (12), (3) and (4) that this threshold, V �, is characterised by

FK(V ) + 1 � 0 V � V �(K)

fK (V ) + 1 � 0 V � V �(K)

with equality on the boundary. This additional condition,

FK(V
�) + 1 = 0 (13)

is a �rst order condition for optimality which ensures that V � is the optimal threshold for sus-

pending investment as well as the optimal threshold for commencing investment. This has the

economic interpretation that we suspend investment if the marginal value of investment falls to

less than its marginal cost (= 1).

The remaining boundary conditions on the optimal investment threshold V � are those which apply

on V c in the case where there is no option to suspend (i.e. continuity of the value function and
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its �rst derivative), so (9) now applies on V � for all K:

�1F (V
�;K) = V �FV (V

�;K) (14)

(Note that (13) implies that LV (F ) = 1
2
�2V 2FV V + (r� �)V FV � rF = 0 on V �, and, comparing

this with (4) and noting that we already require F (V �) = f(V �) and FV (V �) = fV (V �) from (14),

we see that (13) is equivalent to requiring FVV (V �) = fV V (V �). We shall use this to simplify the

boundary conditions we impose in our numerical solution.).

A simple argument establishes that V � < V c. Write F as the sum of a complementary function

FC (representing the option value of suspending investment) and the particular solution given in

(7):

F (V;K) =
k

r
[exp(�rK

k
)� 1] + V exp(��K

k
) + FC (15)

FC is always positive and declines with V (FC > 0; FC
V < 0 the second inequality arising because

an increase in V delays suspension of investment on all sample paths). Substitution of (15) into

(14) then yields:

V �

K

 
1�

exp(��K
k
)

�1 � 1
FC
V jV �

!
+

�1

�1 � 1
exp(�

K

k
)
FC

K
=

V c

K
(16)

Then since the term multiplying V �=K is greater than 1 and the second term (involving FC=K)

is positive, we see that V � is less than the threshold V c which applies when there is no option to

suspend. (10) is an upper bound on the investment threshold in the general case.

As an illustration of these boundaries consider Figure 1 2 which shows the investment threshold

suggested by a net present value computation V NPV =K, the optimal threshold V c=K when there

is no option to suspend, and the optimal threshold V �=K when both options are available (the

numerical computation of V � is described in the next section). The parameter values are � = 0:05,

r = 0:02 and � = 0:4 (think of the K=k axis as the number of years required to complete the

project (from 0.5 to 12 years)). Note that as K=k increases, V c=V � gets larger while V �=V NPV

gets smaller.

2Numerical precision puts a lower limit on the value of K=k for which V �=K can be calculated. The graph

contains only numerical computations of V �=K.
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Figure 1: V �=K, V c=K and V NPV =K as a function of K=k for � = 0:05, r = 0:02 and � = 0:4

2.4 The need to provide a corrected solution

F (K) and V � must be computed numerically. We provide a corrected procedure for doing this

because that applied by Majd and Pindyck (1987) fails to enforce all the appropriate boundary

conditions. This is apparent from the following considerations:

� A total of six boundary conditions are needed to solve for f; F and V �. Majd and Pindyck

only supply �ve.

� In the special case in which suspension of investment is not possible, F satis�es all �ve

boundary conditions stated by Majd and Pindyck (1987) together with a sixth condition that

F be bounded from below. However their procedure is supposed to be solving a di�erent

model in which suspension is possible and hence in which the value function is not given by

(7). Thus their statement must omit an alternative sixth condition, which ensures that their

numerical results are not the same as (7).
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� The boundary condition missing from Majd and Pindyck (1987) is our equation (13). This

is not implied by the �ve other boundary conditions. As a counterexample consider the

analytical solution of the special case (7), (10). Di�erentiation shows that this solution

satis�es the �ve other boundary conditions stated by Majd and Pindyck (1987) but not this

sixth one. Nor is (13) satis�ed by their solution (this is apparent from making approximate

calculations using their table 1).

Closer examinationof their results also reveals other problems arising from their incorrect numerical

procedure:

� They report a value function in their table 1 which, for all values of V above the investment

threshold, is slightly smaller than that implied by our equation (7) for the project value where

suspension is not possible. The introduction of the additional option to suspend investment

must however increase, not reduce, the value function. So if (7) is correct their computations

are incorrect.

� They report values for V � in table 1 which to numerical approximation lie exactly on our V c,

and some values in table 2 (for example all � = 0:4 values) which exceed our V c. We have

shown however that V � < V c (and we will show using our alternative numerical computations

that V � can be considerably less than V c).

� Their proposed procedure is one in which the value function is computed independently of

the boundary (as they describe their procedure it is possible to compute the value function

over the entire state space and then return to locate V � using condition (14)). The value

function thus computed cannot correctly incorporate the option value of future suspension.

Why is thescheme applied by Majd and Pindyck (1987), which is a standard solution procedure

for the valuation of an American put option, not appropriate for this model of time to build? With

the American put there is only one option, exercising for a known payo� f = E�V (the di�erence

between the strike price E and the current value of the underlying asset). In that case there are
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two rather than three boundary conditions which must be satis�ed on V � corresponding to the

two unknowns, the value of the option and the position of the boundary itself.

As we point out, in contrast to the American put, the opportunity of time to build involves exercise

not of one but two options. The option to suspend investment results in the additional condition

(13). An extra condition is necessary because f contains an unknown function of K. The scheme

applied in Majd and Pindyck (1987) enforces continuity of the value function and its �rst derivative

(or equivalently (14)) but fails to enforce (13). Comparison of our results with those of Majd and

Pindyck (1987) shows that their scheme in fact converges, at least approximately, to V C . In e�ect

they failed to incorporate the option value of suspension.

We could have enforced (13) using a �nite di�erence scheme similar to that of Majd and Pindyck

(1987) but using an iterative search to �nd the value of V �(K) which satis�ed all three boundary

conditions. As we show in the next section these conditions can be imposed more conveniently

using an alternative numerical procedure, the analytic method of lines. This procedure involves a

joint computation of the value function and the investment threshold and yields a non- negative

option value for suspension and a threshold V c which is strictly less than V � for positive K. We

are satis�ed that this procedure is reliable within reasonable margins of numerical accuracy.

3 Numerical solution

3.1 General method

We solved (3) with associated boundary conditions using the analytic method of lines, which has

been shown to give e�cient and accurate solutions for the related parabolic moving boundary

problem of American option valuation (see Carr and Faguet (1994)).

This method involves discretising the K variable so that the partial di�erential equation (3) is

replaced by a series of second order ordinary di�erential equations on the region V �n � V � 1.

Each ordinary di�erential equation is valid on a line K = constant, and the lines are indexed
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by the remaining investment. The solution is obtained by stepping successively backwards from

the known �nal solution with no remaining investment (5). At each stage we need to derive the

ordinary di�erential equation, which depends on the solution to the previous stage, �nd its general

closed-form solution, and then apply the boundary conditions at either end ((6) at in�nity and

(13) and (14) at the lower threshold) to obtain the coe�cients of each term in the solution. The

solutions become increasingly more complicated as the number of steps increases; however we use

Richardson extrapolation to improve the speed of convergence of the method. With extrapolation,

we obtain accurate results with only �ve iterations and �nd that the error correction in performing

the last two iterations is negligible for the range of K we investigate.

Speci�cally, we let the change in investment between successive approximations be �K, and replace

the K derivative in (3), FK, by the backwards �nite di�erence approximation (F (K) � F (K �

�K))=(�K). For ease of solution we also transform to log variables i.e. X = ln(V ) (or V = eX ).

This transforms the resulting ordinary di�erential equation to one with constant coe�cients. After

these transformations (3) becomes

�2

2
F
(n)
XX +

�
r � � � �2

2

�
F
(n)
X � rF (n) = k

�
1 +

F (n) � F (n�1)

�K

�
; (17)

or rearranging,

�2�K

2
F
(n)
XX +

�
r � � � �2

2

�
�KF

(n)
X � (r�K + k)F (n) = k

�
�K � F (n�1)

�
; (18)

where F (i) is the ith approximation to F and �X and �XX denote the �rst and second derivatives

with respect to X. The initial and boundary conditions (5), (6), (13) and (14) become

F (0)(X) = eX (19)

F (n)(X) ! ex��
K

k +
k

r
(e�r

K

k � 1) as X !1 (20)

F (n)(X�) = A(n)e�1X (21)

F
(n)
X (X�) = �1A

(n)e�1X (22)

F
(n)
XX (X

�) = �21A
(n)e�1X (23)
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where

�1 =
1

2
� r � �

�2
+

s�
1

2
� r � �

�2

�2

+
2r

�2

is the positive root of the fundamental equation 0:5�2�2+ (r� �� 0:5�2)� � r = 0, and A(n) is as

yet unknown. (21) and (22), which enforce continuity in the value function and its �rst derivative

with respect to V (or equivalently X) across the optimal investment threshold, are equivalent to

(14). As mentioned in the previous section, the third boundary condition (13) implies LV (F ) = 0

on V �. Noting that LV (f) = 0 for V � V � and using (21) and (22), we see that (13) is equivalent to

enforcing continuity of the second derivative with respect toX at V �,i.e. (23), which is signi�cantly

easier to apply.

The general solution for (18) is composed of the general solution to the related homogenous equa-

tion plus the particular solution due to the inhomogeneous term (the right-hand side).

The homogeneous equation related to (18) is

�2�K

2k
F
(n)
XX +

�
r � � � �2

2

�
�K

k
F
(n)
X �

�
r
�K

k
+ 1

�
F (n) = 0: (24)

This has a general solution of the form

F (n)(X) = a(n)e�1X + b(n)e�2X

where

�1;2 =
1

2
� r � �

�2
�

s�
1

2
� r � �

�2

�2

+
2r

�2

�
1 +

k

r�K

�

are the positive and negative roots respectively of the fundamental equation 0:5�2�K�2 + (r �

� � 0:5�2)�K�� (r�K + k) = 0, and a(n); b(n) are to be determined.

3.2 Solution for �rst iteration

The particular solution for the inhomogeneous equation depends on the inhomogeneous term

k(�K � F (n�1)) and hence on the previous iteration's solution. For the �rst iteration, F (1), the
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inhomogeneous term in the equation is k(�K � eX ) (since F (0)(X) = eX by (19)). We therefore

try a solution of the form c(1)eX + d(1) and �nd that the particular solution is

1

1 +D
eX � �K

1 +R
;

where D = ��K=k and R = r�K=k.

The general solution for the �rst iteration is

F (1)(X) = a(1)e�1X + b(1)e�2X +
1

1 +D
eX � �K

1 +R
:

If we now apply the boundary condition at in�nity, (20), we see that a(1) = 0. (It turns out that

a(n) = 0 for all n for the same reason). The boundary conditions at X� give us three equations

for three unknowns, A(1); b(1) and X�1 itself:

A(1)e�1X
�

1 = b(1)e�2X
�

1 +
1

1 +D
eX

�

1 � �K

1 + R
;

�1A
(1)e�1X

�

1 = �2b
(1)e�2X

�

1 +
1

1 +D
eX

�

1 ;

�21A
(1)e�1X

�

1 = �22b
(1)e�2X

�

1 +
1

1 +D
eX

�

1 ;

After some manipulation these can be solved explicitly to give

A(1) =
�2

(1 +R)(�2 � �1)(�1 � 1)
�Ke��1X

�

1 ;

b(1) =
�1

(1 +R)(�2 � �1)(�2 � 1)
�Ke��2X

�

1 ;

eX
�

1 =
�2�1(1 +D)

(1 +R)(�2 � 1)(�1 � 1)
�K; :

This means the full solution for the �rst iteration is

f (1)(X) = �2
(1+R)(�2��1)(�1�1)

�Ke�1(X�X
�

1
); X � X�1

F (1)(X) = �1
(1+R)(�2��1)(�2�1)

�Ke�2(X�X
�

1
) + 1

1+D e
X � �K

1+R ; X � X�1

with

eX
�

1 =
�2�1(1 +D)�K

(1 +R)(�2 � 1)(�1 � 1)
:
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3.3 Second and subsequent iterations

For the second iteration we must solve

�2�K

2
F
(2)
XX +

�
r � � � �2

2

�
�KF

(2)
X � (r�K + k)F (2) = k

�
�K � F (1)

�
;

in (X�2 ;1), where F (1) is now known. Note that because we are only solving this in (X�2 ;1) and

X�2 (2�K) > X�1 (�K), we need only consider the form of F (1) for X � X�1 , i.e.

F (1)(X) =
�1

(1 +R)(�2 � �1)(�2 � 1)
�Ke�2(X�X

�

1
) +

1

1 +D
eX � �K

1 +R
:

However, when we consider the inhomogeneous term

k(�K � F (1)) = � k�1�Ke��2X
�

1

(1 +R)(�2 � �1)(�2 � 1)
e�2X � k

1 +D
eX ��K

�
k +

1

1 +R

�
:

we see that since it has a term in e�2X , we must seek a particular solution of the general form

c(2)eX + d(2) + g(2)Xe�2X :

The general solution for the homogeneous equation is, as for the �rst iteration,

f (2)(X) = a(2)e�1X + b(2)e�2X X � X�2

F (2)(X) = A(2)e�1X X � X�2

and a(2) = 0 from the boundary condition at in�nity (20). The general solution for the second

approximation is

F (2)(X) = b(2)e�2X � k�1
s(1+R)(�2��1)(�2�1)

Xe�2(X�X
�

1
)

� 1
(1+D)2 e

X � �K(2+R)
(1+R)2 X � X�2

f (2)(X) = A(2)e�1X X � X�2 (25)

As for the �rst approximation, the boundary conditions at X�2 give three equations for the three
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unknowns, b(2); A(2), and X�2 :

A(2)e�1X = b(2)e�2X
�

2 � k�1

s(1 + R)(�2 � �1)(�2 � 1)
X�2 e

�2(X
�

2
�X�

1
)

� 1

(1 +D)2
eX

�

2 � �K(2 + R)

(1 + R)2

�1A
(2)e�1X = �2b

(2)e�2X
�

2 � k�1

s(1 + R)(�2 � �1)(�2 � 1)
e�2(X

�

2
�X�

1
)

� k�1�2

s(1 +R)(�2 � �1)(�2 � 1)
X�2e

�2(X
�

2
�X�

1
) � 1

(1 +D)2
eX

�

2

�21A
(2)e�1X = �22b

(2)e�2X
�

2 � 2k�1�2
s(1 + R)(�2 � �1)(�2 � 1)

e�2(X
�

2
�X�

1
)

� k�1�
2
2

s(1 +R)(�2 � �1)(�2 � 1)
X�2e

�2(X
�

2
�X�

1
) � 1

(1 +D)2
eX

�

2 :

From these we can �nd explicit formulae for b(2) and A(2), and the equation satis�ed by X�2 , which

must be solved numerically 3

(�1 � 1)(�2 � 1)

(1 +D)2
eX � �K�2�1(2 + R)

(1 +R)2
� k�1e

��2X
�

1

s(1 + R)(�2 � 1)
e�2X = 0: (26)

Following a similar procedure we can �nd the third, fourth and �fth approximations,V �3 ; V
�

4 and V �5

for the optimal investment threshold, and F (3); F (4) and F (5), and f (3); f (4) and f (5) respectively

for the value of the investment project. These are given in Appendix A.

We can, however, considerably improve the accuracy of our results with a relatively small number

of iterations by using the technique of Richardson extrapolation. This uses a combination of

approximations chosen to eliminate the errors between the successive approximations and the true

result. The Richardson extrapolation with two components is

V �(12) = 2V �1 � V �2 ;

F (12)(X) = 2F (1) � F (2);

the Richardson extrapolations with three, four and �ve components are given in Appendix A.

These were found to be give results which were extremely close together up to large values of K

(K = 6).

3For our numerical simulations we used a simple bisection method, in spite of slightly slower speed, because it

eliminated the problems associated with the value of this function for low values of X
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In the results presented in the next section, we have used the Richardson extrapolation on �ve

approximations, F (12345) and X�12345.

4 Findings

As mentioned in Section 2, all �ndings we report are in terms of the proportional investment thresh-

olds with respect to the investment K, i.e. we report the investment threshold divided by K. This

facilitates the analysis because this proportionate investment thresholds (V c=K; V NPV =K; V �=K)

are functions of K, the remaining investment, and k, the maximum investment rate, only through

their ratio, K=k, which represents the (minimum) time to complete the project.

4.1 Dependence on K=k

We �rst consider how the proportional optimal investment threshold, V �=K, varies with the time

to build K=k. As shown in Section 2, the ratio of the optimal investment threshold with no

suspension of investment, (V c=K from (10)), to the investment threshold based on a Net Present

Value rule, (V NPV =K from (8)), is

V c=K

V NPV =K
=

�1

�1 � 1
� 1: (27)

This ratio is independent of K=k.

Figure 1 shows how V �=K, V c=K and V NPV =K change with the time to build K=k. Whilst

the investment thresholds V c=K and V NPV =K always rise with increasing time to build, the

investment threshold with the option to suspend, V �=K, falls when the time to build is small

before reaching a minimum and starting to rise as a function of the time to build.

An expansion of V �=K for small times to build K=k� 1 shows that to leading order

V �

K
=

�1

�1 � 1

 
1� �p

2

�
K

k

�1

2

+
1

2

�
� � r +

�2

2

��
K

k

�
+ O

 �
K

k

� 3

2

!!
: (28)
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This indicates that V �=K always falls for for times to build very close to 0 (where the �rst term

��=21=2(K=k)1=2 < 0 dominates). This initial decline in V �=K for small K=k is independent of

the other parameter values. The value of K=k for which the minimum of V �=K occurs is sensitive

to �, � and r. Our computations of V �=K (as in Figure 1) con�rm that, as suggested by (28), the

position of this minimum increases when � and � increase and when r decreases.

The ratio V �=V NPV always falls as time to build increases, re
ecting the greater signi�cance of

the option to suspend as the time over which it may be exercised increases. As anticipated, we

�nd V NPV =K � V �=K � V c=K for all �; �; k computed, and that V �=K ! V c=K as the time

to build decreases (K=k ! 0). Additionally we �nd that as time to build increases (K=k ! 1),

V �=K ! V NPV =K .

4.2 The ratio of optimal investment thresholds

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

sigma

V
*/

V
c

V*/Vc vs sigma for delta = 0.03, 0.06, 0.09, 0.12; r = 0.04, K/k = 3, 12

K/k = 3

K/k = 12

Figure 2: V �=V c as a function of � for � = 0:03; 0:06;0:09; 0:12 and K=k = 12 and 3
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A measure of the relative e�ects of the two options, commencing and suspending the investment,

is the ratio of the optimal investment thresholds, V �=V c. Figure 2 plots this ratio against changes

in the uncertainty, measured by �, for a range of values of �, and for two times to build K=k.

There are two new points demonstrated by this graph. First, changing � from low to high values

leaves the ratio V �=V c unchanged (within the limits of numerical accuracy) i.e. a change in the

opportunity cost has proportionately the same e�ect on the two investment thresholds. Second,

V �=K decreases as a proportion of V c=K as the volatility increases, demonstrating the hedging

nature of the option to suspend and its e�ect in limiting the increase in initial investment threshold.

Finally, as also appears in Figure 1, V �=V c decreases as the time to build increases.

4.3 E�ect of opportunity cost � on V �=K; V c=K

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1

2

3

4

5

6

7

8

9

10

11

delta

V
/K

Vc/K, V*/K vs delta for sigma = 0.2, r = 0.02, K/k = 12, 3

 

Vc (K/k=12)

V* (K/k=12)

Vc (K/k=3)

V* (K/k=3)

Figure 3: V �=K and V c=K as functions of � for � = 0:2 and K=k = 12 and 3

Figure 3 plots the optimal investment thresholds, V �=K and V c=K, against the rate of opportunity

cost, �, for various values of K=k. This con�rms one of the main results of Majd and Pindyck
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(1987) and their intuition that for investment both with and without the suspension option there

are two competing e�ects of a change in �. The �rst is that increasing the opportunity cost (of

foregone cash-
ows) lowers the values of the options to commence and suspend investment, and

hence lowers the investment threshold. This dominates for small values of �. The second is that,

because of the time taken to complete the investment project, increasing the opportunity cost

decreases the value of the cash
ows arising from the project (since they are discounted at a higher

rate). This makes the project less attractive and so raises the investment threshold. As expected,

this second e�ect is more pronounced for larger values of � and when time to build is long. Since

the ratio V �=V c is independent of �, the minimum of this graph is the same as reported by Majd

and Pindyck (1987).

4.4 Implications for investment criteria

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.5

2

sigma

V
/V

np
v

Vc/Vnpv, V*/Vnpv vs sigma for delta = 0.12, r = 0.04, K/k = 3, 6, 12

 
Vc/Vnpv

V*/Vnpv (K/k = 3)

V*/Vnpv (K/k = 6)

V*/Vnpv (K/k = 12)

Figure 4: V c=V NPV and V �=V NPV as a function of � for � = 0:12, r = 0:04 and K=k = 3; 6 and

12
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(27) shows that when suspension of the investment is not possible, the introduction of uncertainty

fundamentally alters the investment criteria from a naive NPV rule. This has greatest e�ect (and

hence the largest potential errors in using a NPV framework for decision making) for large values

of � or small values of �. This is illustrated by the top line in Figure 4 which shows the ratio

V c=V NPV (which is independent of the time to build K=k) as a function of the uncertainty �.

Note this is for a relatively large value of �.

With large � and long time to build, the introduction of the option to suspend means that the NPV

criteria is once again an appropriate guide to decision making. This is illustrated by the bottom

line of Figure 4 which shows the ratio V �=V NPV for a time to buildK=k = 12 and � = 0:12. In this

case the optimal threshold taking into account the uncertainty, V �=K, is less than 10% greater

than the NPV threshold, V NPV =K, even for 50% volatility. The remaining dotted lines show

the ratio V �=V NPV for shorter times to build. As the time to build decreases or the uncertainty

increases, this ratio (and hence the errors incurred by use of the NPV rule) increases and, especially

for large values of �, becomes large (it produces an optimal threshold 60% greater than the NPV

threshold when the time to build is 3 years and volatility is 50%).

5 Conclusions

Our paper has sought to improve on the analysis of time to build o�ered by Majd and Pindyck

(1987), distinguishing the separate options of commencing and suspending investment. We provide

a closed form solution for the case where the only option available is that of commencing investment

and show that the proportionate increase in the optimal threshold for commencing investment,

relative to that suggested by a net present value calculation, is exactly that which applies to an

irreversible investment project which can be completed instanteneously (the standard analysis of

McDonald and Siegal (1986)). Investment is postponed until the point at which the net present

value equals the value of exercising the option to invest.

Turning to the general case where both options are available, we �nd that the �nite di�erence
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numerical solution method applied by Majd and Pindyck (1987) does not enforce all the required

boundary conditions. We provide an alternative numerical procedure which uses the analytical

method of lines to enforce all these conditions.

Comparing our results with those of Majd and Pindyck (1987) yields a new economic insight:

the two options to commence and suspend investment alter the optimal investment threshold in

di�erent directions and, for some combinations of parameters, are largely o�setting. Speci�cally,

when the opportunity cost of the foregone cash
ows from the project is large and the time to

build is long, the optimal investment threshold is close to that suggested by a net present value

calculation. In this case a net present value criterion, which does not take account of the values of

the options to commence and suspend investment, is an appropriate guide to decision making.

For intermediate parameter values the optimal investment threshold lies between that suggested

by a net present value computation and that which emerges when the only option is commencing

investment. In the limit, as the time to build grows longer or the opportunity cost grows higher, the

ratio of the optimal threshold to that suggested by a net present value criteria tends to unity. For

most parameter values it is necessary to take account of both options in assessing the investment

decision. We also �nd that when the time to build is increased, but other parameters are held

constant, the optimal investment threshold as a proportion of the total investment, V �=K, initially

falls before eventually rising as K=k becomes su�ciently large; the value of K=k which minimizes

V �=K is sensitive to the values of �, � and r.

In other respects our analysis con�rms that of Majd and Pindyck (1987). Like them we �nd that an

increase in the opportunity cost from a low level reduces the optimal investment threshold because

it reduces the value of the option to invest relative to the expected net bene�ts of investment.

Further increases in the opportunity cost eventually increase the investment threshold because of

the greater relative e�ect of the net bene�ts of the investment. Increasing uncertainty raises the

optimal investment threshold, but when both options are taken into consideration does so by less

than reported by Majd and Pindyck (1987).
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A Approximations for X�
n and F

(n)

The �rst approximation for the value function is

F (1)(X) = b(1)e�2X + c(1)eX + d(1) X � X�1

f (1)(X) = A(1)e�1X X � X�1

where

A(1) =
�2

(1 + R)(�2 � �1)(�1 � 1)
�Ke��1X

�

1 ;

b(1) =
�1

(1 + R)(�2 � �1)(�2 � 1)
�Ke��2X

�

1 ;

c(1) =
1

1 +D
;

d(1) = � �K

1 + R
;

and where we have used the notation D = ��K=k and R = r�K=k.

The �rst approximation for the optimal investment threshold is

V �1 = eX
�

1 =
�2�1(1 +D)�K

(1 +R)(�2 � 1)(�1 � 1)
:
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The second approximations are given by

F (2)(X) = (b(2) + g(2)X)e�2X + c(2)eX + d(2) X � X�2

f (2)(X) = A(2)e�1X X � X�2

where

A(2) =
(�2 � 1)c(2)

�1(�2 � �1)
eX

�

2
(1��1) +

�2g
(2)

�1(�2 � �1)
eX

�

2
(�2��1)

b(2) =
(�1 � 1)c(2)

�2(�2 � �1)
eX

�

2
(1��2) � g(2)

�
X�2 +

2�2 � �1

�2(�2 � �1)

�

c(2) =
c(1)

1 +D

d(2) = � (�K � d(1))

1 +R

g(2) = � kb(1)

s�K

and where we have used the notation s = (�2 � 0:5)�2 + r � �, and V �2 = eX
�

2 is the solution of

(�1 � 1)(�2 � 1)c(2)eX + �2�1d
(2) + (�2 � �1)g

(2)e�2X = 0

The third approximation is given by

F (3)(X) = (b(3) + g(3)X + h(3)X2)e�2X + c(3)eX + d(3) X � X�3

f (3)(X) = A(3)e�1X X � X�3

where

A(3) =
(�2 � 1)c(3)

�1(�2 � �1)
eX

�

3
(1��1) +

eX
�

2
(�2��1)

�1(�2 � �1)

�
�2g

(3) + 2h(3)(�2X
�

3 + 1)
�

b(3) =
(�1 � 1)c(3)

�2(�2 � �1)
eX

�

3
(1��2) � g(3)

�
X�3 +

2�2 � �1

�2(�2 � �1)

�

� h(3)
�
X�3

2 +
2(2�2 � �1)

�2(�2 � �1)
X�3 +

2

�2(�2 � �1)

�

c(3) =
c(2)

1 +D

d(3) = � (�K � d(2))

1 + R

g(3) = � k

s�K

�
b(2) � �2

2s
g(2)
�

h(3) = � kg(2)

2s�K
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V �3 = eX
�

3 is the solution of

(�1 � 1)(�2 � 1)c(3)eX + �2�1d
(3) +

�
(�2 � �1)(g

(3) + 2h(3)X) + 2h(3)
�
e�2X = 0

The fourth approximation is given by

F (4)(X) = (b(4) + g(4)X + h(4)X2 + i(4)X3)e�2X + c(4)eX + d(4) X � X�4

f (4)(X) = A(4)e�1X X � X�4

where

A(4) =
(�2 � 1)c(4)

�1(�2 � �1)
eX

�

4
(1��1)

+
eX

�

2
(�2��1)

�1(�2 � �1)

�
�2g

(4) + 2h(4)(�2X
�

4 + 1) + 3i(4)(�2X
�

4
2 + 2X�4 )

�

b(4) =
(�1 � 1)c(4)

�2(�2 � �1)
eX

�

4
(1��2) � g(4)

�
X�4 +

2�2 � �1

�2(�2 � �1)

�

� h(4)
�
X�4

2 +
2(2�2 � �1)

�2(�2 � �1)
X�4 +

2

�2(�2 � �1)

�

� i(4)
�
X�4

3 +
3(2�2 � �1)

�2(�2 � �1)
X�4

2 +
6

�2(�2 � �1)
X�4

�

c(4) =
c(3)

1 +D

d(4) = � (�K � d(3))

1 +R

g(4) = � k

s�K
b(3) � �2

s
h(4)

h(4) = � k

2s�K
g(3) � 3�2

2s
i(4)

i(4) = � k

3s�K
h(3)

and V �4 = eX
�

4 is the solution of

�
(�2 � �1)(g

(4) + 2h(4)X + 3i(4)X2) + 2h(4) + 6i(4)X
�
e�2X + (�1 � 1)(�2 � 1)c(4)eX + �2�1d

(4) = 0

The �fth approximation is given by

F (5)(X) = (b(5) + g(5)X + h(5)X2 + i(5)X3 + j(5)X4)e�2X + c(5)eX + d(5) X � X�5

f (5)(X) = A(5)e�1X X � X�5
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where

A(5) =
(�2 � 1)c(5)

�1(�2 � �1)
eX

�

4
(1��1)

+
eX

�

2
(�2��1)

�1(�2 � �1)

�
�2g

(4) + 2h(4)(�2X
�

4 + 1) + 3i(4)(�2X
�

4
2 + 2X�4 )

�

b(5) =
(�1 � 1)c(5)

�2(�2 � �1)
eX

�

4
(1��2) � g(4)

�
X�4 +

2�2 � �1

�2(�2 � �1)

�

� h(4)
�
X�4

2 +
2(2�2 � �1)

�2(�2 � �1)
X�4 +

2

�2(�2 � �1)

�

� i(4)
�
X�4

3 +
3(2�2 � �1)

�2(�2 � �1)
X�4

2 +
6

�2(�2 � �1)
X�4

�

c(5) =
c(4)

1 +D

d(5) = � (�K � d(4))

1 +R

g(5) = � k

s�K
b(4) � �2

s
h(5)

h(5) = � k

2s�K
g(4) � 3�2

2s
i(5)

i(5) = � k

3s�K
h(4) � �2

2s
j(5)

j(5) = � k

4s�K
i(4)

and V �5 = eX
�

5 is the solution of

�
(�2 � �1)(g

(5) + 2h(5)X + 3i(5)X2 + 4j(5)X3) + 2h(5) + 6i(5)X + 12j(5)X2
�
e�2X

+ (�1 � 1)(�2 � 1)c(5)eX + �2�1d
(5) = 0

The Richardson extrapolations with two, three, four and �ve components are

V �12 = 2V �1 � V �2 ;

V �123 =
1

2
V �1 � 4V �2 +

9

2
V �3

V �1234 = �1

6
V �1 + 4V �2 �

27

2
V �3 +

32

3
V �4

V �12345 =
1

24
V �1 �

8

3
V �2 +

81

4
V �3 �

128

3
V �4 +

625

24
V �5

with similar expressions for the value function approximations.
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