
SEEDS        SURREY 
Surrey Energy Economics    ENERGY 
Discussion paper Series    ECONOMICS 
         CENTRE 

 
 
 
 
 
 
 
 
 
 

Modelling Underlying Energy 
Demand Trends 

 
Lester C Hunt, Guy Judge 

and Yasushi Ninomiya 
 

 
January 2003 

 
 

 
 
 

 

SEEDS 105 Department of Economics 
ISSN 1749-8384 University of Surrey 

 



 

The Surrey Energy Economics Centre (SEEC) consists of members of the 
Department of Economics who work on energy economics, environmental economics 
and regulation.  The Department of Economics has a long-standing tradition of energy 
economics research from its early origins under the leadership of Professor Colin 
Robinson.  This was consolidated in 1983 when the University established SEEC, 
with Colin as the Director; to study the economics of energy and energy markets.  

SEEC undertakes original energy economics research and since being established it 
has conducted research across the whole spectrum of energy economics, including 
the international oil market, North Sea oil & gas, UK & international coal, gas 
privatisation & regulation, electricity privatisation & regulation, measurement of 
efficiency in energy industries, energy & development, energy demand modelling & 
forecasting, and energy & the environment.   

SEEC research output includes SEEDS - Surrey Energy Economic Discussion paper 
Series (details at www.seec.surrey.ac.uk/Research/SEEDS.htm) as well as a range 
of other academic papers, books and monographs.  SEEC also runs workshops and 
conferences that bring together academics and practitioners to explore and discuss 
the important energy issues of the day.   

SEEC also attracts a large proportion of the department’s PhD students and 
oversees the MSc in Energy Economics & Policy.  Many students have successfully 
completed their MSc and/or PhD in energy economics and gone on to very 
interesting and rewarding careers, both in academia and the energy industry. 

 

 

 

Enquiries: 
Director of SEEC and Editor of SEEDS: 
Lester C Hunt 
SEEC, 
Department of Economics, 
University of Surrey, 
Guildford GU2 7XH, 
UK. 
 
Tel: +44 (0)1483 686956 
Fax: +44 (0)1483 689548 
Email: L.Hunt@surrey.ac.uk 
 
www.seec.surrey.ac.uk 



 i 

 
 

defg1111111111111111111111111111111111111111111111111111111111111 1111111111 
 
 

 
Surrey Energy Economics Centre (SEEC) 

Department of Economics 
 
 

SEEDS 105 
ISSN 1749-8384 

 
 
___________________________________________________________ 
 
 

MODELLING UNDERLYING ENERGY DEMAND TRENDS 
 

Lester C Hunt, Guy Judge and Yasushi Ninomiya 
 

January 2003 
___________________________________________________________ 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
This paper may not be quoted or reproduced without permission. 



 ii 

 
 



   1

Modelling Underlying Energy Demand Trends 

 

Lester C Hunt, Guy Judge and Yasushi Ninomiya 

 

 

Introduction 

This paper analyses the problems of modelling the Underlying Energy Demand Trend 

(UEDT) when estimating energy demand models.  In particular, it emphasises the need 

to ensure that a flexible approach is adopted so that the UEDT captures the important 

influences on energy demand, in addition to the conventional economic variables such 

as income and price.  As Colin Robinson pointed out when writing in a book on energy 

demand: 

“Most of the other chapters in this volume are concerned with the 
analysis of the past.  That is a fascinating subject, but in practical terms, 
the main value of historical analysis lies in any guide it gives to what 
may happen in the future.  That guidance is always imperfect and 
sometimes positively misleading.  However, in the absence of direct 
information about the future, the past is the only indicator we have of 
possible future events.” (Robinson, 1992 p. 215) 

Our approach is consistent with his view in that a flexible approach to modelling 

the UEDT ensures that as much information as possible from the past is employed to 

fully understand the past and hence enhance future projections.  Moreover, it 

emphasises the importance of correctly specifying the demand function to ensure the 

most accurate estimate of the price elasticity of energy demand is obtained.  This is 

particularly important at a time when energy and environmental policy is focussed on 

reducing emissions.  If, as found in this study, the price elasticity of energy demand is 

relatively small then using market mechanisms such as energy taxes, on their own, may 
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not achieve the desired aim – instead non-market restrictions and regulations may also 

be needed. 

This paper therefore demonstrates the importance for energy demand modelling 

of allowing for UEDTs that are stochastic in form.1  Inherent underlying trends may be 

non-linear and reflect not only technical progress, which usually produces greater 

energy efficiency, but also other factors such as changes in consumer tastes and the 

economic structure that may be working in the opposite direction to technical progress.  

To illustrate the models, demand functions are estimated for the UK whole economy 

(aggregate energy) and the UK transportation sector (oil).  In addition, it is shown that 

unless energy demand models are formulated to allow for stochastic trends and 

seasonals, estimates of price and income elasticities could be seriously biased. 

The next section describes the UEDT in detail, briefly touching upon evolving 

seasonal patterns, followed by a section explaining the econometric methodology.  The 

penultimate section presents the results for the whole economy and the transportation 

sector followed by a summary and overall conclusion. 

 

 

‘Technical Progress’, and the ‘Underlying Energy Demand Trend’ 

The concept of ‘technical progress’, when incorporated in energy demand functions, is 

an important one.  It is vital that it is clearly defined and understood.  Energy is a 

derived demand, not demanded for its own sake, but for the services it produces in 

combination with the capital and appliance stock in place at any particular point in time.  

Therefore, the amount of energy actually consumed in order to obtain the desired level 

                                                 
1 In addition, underlying seasonal influences are also modelled in a stochastic way. 
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of services depends on the given level of technology embodied in energy appliances.  

Moreover, the level of technology embedded will have come about through a 

combination of endogenous and exogenous factors (which are expanded upon below).  

However, we argue that it is not only ‘technical progress’ that influences energy 

demand trends; other (exogenous) factors will also influence energy usage, both 

positively and negatively.  We therefore introduce the more general concept of the 

UEDT, which is illustrated in Table 1 and described in more detail below.  Given this 

concept, it is important that the method employed to capture the UEDT is sufficiently 

flexible to incorporate all of these effects and ensure that potential biases are not 

introduced into the price and income elasticity estimates. 

{Table 1 about here} 

Autonomous or exogenous ‘technical progress’ in energy usage can result from 

a number of factors such as environmental pressures and regulations, and mandated 

energy efficiency standards.  All of these lead to a shift in the energy demand to the left, 

thus reducing energy consumption at a given level of income and price (Kouris, 

1983b).2 

It is often argued that in addition to the exogenous factors, ‘technical progress’ 

or improvement in energy efficiency is induced by sustainable price rises (Walker and 

Wirl, 1993).  Or, as we have argued previously, induced by price ‘shocks’ above the 

‘normal bounds’ of price changes (Hunt, et al., 2000).  Either way, as Jones (1994) 

emphasises, it is important to distinguish between the normal ‘price’ effects (as 

measured by the price elasticity of demand) and the ‘endogenous technical progress’ 

                                                 
2 Kouris (1983b) actually identifies consumer tastes as another exogenous factor that leads to less energy 
consumed (for a given level of income and prices).  We prefer, however to separate this out from 
‘technical progress’ given the ambiguous expected sign, as discussed later. 
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effect.  Moreover, it is important that the irreversibility nature of the ‘technical 

progress’ effect is recognised and not allowed to bias the (symmetric) price elasticities.  

In summary, therefore, the endogenous technical progress referred to in Table 1 will be 

price induced resulting in a (permanent) shift of the energy demand curve to the left, but 

is distinct from the normal price effect represented by the price elasticity of demand. 

We further argue, however, that the induced changes in ‘technical progress’ can 

also come about as a result of increases in income or output (Hunt, et al., 2000).  3  In 

the short-run, this will bring about an increase in energy demand with the given 

appliance and capital stock (and could be quite significant before households and firms 

have time to adjust their stock of appliances).  Over time however, new and more 

efficient appliances will be installed and existing appliances replaced faster than would 

be otherwise.  Hence, similar to the price effect, a distinction needs to be made between 

the long-run income effect and the technical progress effect.  The increase in income 

will, in the long run, bring about an increase in the demand for energy (as new 

appliances and stock are acquired) which represents the long-run income effect.  

Furthermore, the increase in income may also induce the replacement of the existing 

stock of capital with ‘up-graded’ more efficient models and hence an irreversible 

improvement in energy efficiency (and a shift to the left of the (income) energy demand 

curve). 

In addition to the above, we argue that it is important to capture the other 

exogenous factors identified in Table 1.  The first is consumer tastes.  As mentioned 

above, change in consumer tastes could, ceteris paribus, result in a reduction in the 

                                                 
3 There is also some debate in the literature as to whether income has a distinct role in energy demand 
functions (see Kouris, 1983b, Beenstock and Wilcocks, 1983, Welsh, 1989).  We take the view, in 
agreement with Beenstock and Wilcocks and Welsh, that income should be included in the general 
specification and only omitted if accepted by the data, see Hunt, et al.  (2000) for more discussion. 
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demand for energy.4  However, it is equally plausible that it could result in an increase 

in energy demand and hence work in the opposite direction to the traditional ‘technical 

progress’ effect.  For example, it is well known that the efficiency of cars have 

improved over the last couple of decades.  This will reduce, ceteris paribus, the 

consumption of energy in the transportation sector.  However, this is outweighed by an 

increase in demand brought about an underlying increase in transportation demand.  

This has been caused by the growth in car size and engine power and a worsening of 

traffic conditions in urban areas.  Consequently, car fleet fuel intensity has hardly 

changed.  In addition, there has been a shift from public transport to (more energy 

intensive) private cars (Schipper et al., 1992, p. 123).5 

In addition, when estimating aggregate energy demand functions, whether at the 

whole economy or sectoral level, the UEDT will be affected by a change in the 

economic structure.  At the whole economy level, a switch from, say, manufacturing to 

services will affect the aggregate demand for energy.  This change is not induced by 

changes in aggregate output and/or prices but the switch from a sector with a certain 

level of energy intensity to another sector with a different level of intensity.  If 

therefore, the UEDT is not included, or modelled inadequately, these changes will be 

forced to be picked up by the activity and price variables resulting in biased estimates of 

the income and price elasticities.  This equally applies to a change in structure within 

sectors, for example, the changes over time of the sub-sectors of manufacturing.  

                                                 
4 For example, if it is a result of a government advertising campaign to encourage energy conservation. 
5 Another example, at the disaggregated level, is the significant switch in energy for space heating from 
coal to gas that occurred during the 1960s and 1970s in many industrial countries.  The reason why 
consumers switched from coal is not fully explained by economic factors, but by the desire to use the 
cleaner and more convenient alternative energy source.  Clearly, in this case the effect on the UEDT for 
gas was operating in the opposite direction to any legitimate technical improvements also taking place. 
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Given this discussion it is important to consider how the UEDT should be 

captured.  The most common procedure, in energy demand studies is to utilise a simple 

linear time trend as an approximation (to ‘technical progress’), including the recent 

studies by Barker (1995), and Erdogan and Dahl (1997). 

The appropriateness or otherwise of utilising a simple linear time trend is 

discussed by Beenstock and Wilcocks (1981, 1983) who used time a linear trend as a 

proxy of technical progress.  They openly admit that it is not a satisfactory measure but 

it is better than just ignoring since in their opinion there is undoubtedly technical 

progress in energy usage (p. 227).  However, Kouris (1983a, 1983b) has argued strongly 

against using a time trend as an approximation for technical progress.  He argues that 

technical progress is an important factor that has always been very difficult to quantify 

unless a satisfactory way of measuring this phenomenon can be found.  Therefore, a 

simple linear time trend is hardly able to capture its dynamic impact.  Moreover, 

according to Kouris (1983a), most of technical progress is induced by price changes 

rather than exogenous autonomous technical progress, and, thus, technical progress 

cannot be separated from the long-run price elasticity.  Welsch (1989) however, 

suggests that, Kouris’ argument leads to negative technical progress if the price of 

energy falls, which he argues is counterintuitive (p. 286). 

There is not, therefore, a general consensus concerning the use of a simple time 

trend to capture ‘technical progress’.  Moreover, when considering the wider definition 

of the UEDT that encompasses ‘technical progress’ and other factors it would be 

imprudent, as Kouris argues, to attempt to model it by a simple linear time trend.  It is 

feasible to expect that the UEDT will be non-linear with periods when it could be 
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upward sloping and/or periods when it could be downward sloping.6,7  Thankfully, 

recent advances in econometric techniques allow for a much more flexible and general 

approach.  The structural time series model developed by Harvey and his associates, see 

for example, Harvey et al. (1986), Harvey (1989), Harvey and Scott (1994) and Harvey 

(1997), allows for a non-linear stochastic trend that, when used in estimates of energy 

demand functions, overcomes most, if not all, of the problems discussed above.  

Moreover, the use of the simple deterministic time trend becomes a limiting case that is 

present only if statistically accepted by the data. 

Before turning to the estimation it is important to consider the possible biases 

that might exist if the UEDT is not modelled adequately.  The failure to model technical 

progress adequately will result in an over-estimate of the ‘true’ (absolute) price 

elasticity of demand.  This can be clearly seen in Figure 1a8.  Point A represents the 

initial equilibrium point given the long run demand curve D0, price level of P0, and 

energy consumption E0.  When the price increases to P1, energy demand falls to E1, 

represented by point B.  It is this reduction in demand that represents the ‘true’ long-run 

price effect that would come about by changing consumption patterns given the existing 

energy appliance stock.  For example, reducing travel by private car, switching off 

lights more frequently, lowering central heating temperature etc. (all of which could be 

reversed if prices fell again).  If the UEDT is negative (possibly induced by an 

‘abnormal’ or ‘substantial price rise but also possibly by any combination of the other 

exogenous factors discussed above) then the demand curve shifts to the left at D1.  

Hence, the new equilibrium is represented at point C with energy demand reducing 

                                                 
6 Note, if the UEDT is negative the underlying trend is downward sloping whereas if the UEDT is 
positive the underlying trend is upward sloping. 
7 This was noted by Hogan and Jorgenson (1991) who found that ‘technical progress’ is not always 
energy-saving but could also be energy-using. 
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further to E2.  The ‘true’ UEDT effect being the fall from E1 to E2.  However, if the 

estimation procedure ignores the UEDT, the estimated price effect will be from E0 to E2 

and hence over-estimate the price elasticity of demand. 

{Figure 1 about here} 

It is important, however, to recognise that this is only one source of bias and it 

depends on the assumption that the price is rising and that the UEDT is negative as 

conventionally assumed.  Whereas, the price elasticity can be both negatively and 

positively biased depending on whether the price is rising or falling and the UEDT is 

negative or positive.  Figure 1 also illustrates the alternative biases that may exist for the 

price effects.  Figure 1b shows that if the price rises but the UEDT is positive (upward 

sloping) then the price elasticity will be under-estimated if the UEDT is ignored.9  

Figure 1c shows that if the price falls but the UEDT is negative (downward sloping) 

then the price elasticity will be under-estimated if the UEDT is ignored.10  Finally, 

Figure 1d shows that if the price falls but the UEDT is positive (upward sloping) then 

the price elasticity will be over-estimated if the UEDT is ignored. 

It is equally important to recognise that similar biases will occur when 

estimating the income elasticity of demand.  Figure 2 illustrates the possible biases if 

the UEDT is not modelled adequately.  Figure 2a shows that if the income is rising and 

the UEDT is negative (downward sloping) then the income elasticity will be under-

estimated if the UEDT is ignored.  Figure 2b shows that if income is rising and the 

UEDT is positive (upward sloping) then the income elasticity will be over-estimated if 

                                                                                                                                               
8 Figure 1a is similar to that in Walker and Wirl (1993, p.188). 
9 If the rise in the UEDT is sufficiently large, but ignored, then the resultant estimated price elasticity 
could be positive. 
10 If the fall in the UEDT is sufficiently large, but ignored, then the resultant estimated price elasticity 
could be positive. 
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the UEDT is ignored.  Figure 2c shows that if income is falling and the UEDT is 

negative (downward sloping) then the income elasticity will be over-estimated if the 

UEDT is ignored.  And Figure 2d shows that if income is falling and the UEDT is 

positive (upward sloping) then the income elasticity will be under-estimated if the 

UEDT is ignored. 

{Figure 2 about here} 

The above, discussion illustrates the importance of adequately modelling the 

UEDT that encompasses the ‘technical progress’ effect.  Given the various influences 

underpinning the UEDT and hence its expected non-linear (positive and/or negative) 

nature it should be modelled in the most ‘general’ or ‘flexible’ way possible.11  

Moreover, given that in addition prices (and sometimes income) will be falling as well 

as rising, the resultant biases will vary throughout the estimation period if the UEDT is 

excluded or modelled inadequately by a simple linear time trend. 

 

 

Methodology 

Over recent years energy demand modelling has been dominated by the cointegration 

technique (As discussed in Hendry and Juselius, 2000 and 2001) with ‘technical 

progress’ either ignored or approximated by a deterministic time trend. 

The over reliance on the cointegration technique has been questioned (for 

example, see Maddala and Kim, 1998, p. 487 - 488).  In particularly, Harvey (1997) 

heavily criticises the cointegration methodology as unnecessary and/or a misleading 

                                                 
11 Harvey et al. (1986), when analysing the employment-output relationship also argued that “a stochastic 
trend offers an intuitively more appealing way of modelling variables like productivity and technical 
progress, and offers a way out of the problems caused by constraining them to be deterministic” (p. 975). 
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procedure due, to amongst other things, its poor statistical properties.12  He proposes 

instead, “to combine the flexibility of a time series model with the interpretations of 

regression” and argues that this is “exactly what is done in the structural time series 

approach” (p. 200). 

Given the discussion in the previous section, a technique is required that allows 

the UEDT to be modelled in a general and flexible way, and Harvey’s structural time 

series approach is an ideal tool in these circumstances.  The structural time series 

approach allows for an unobservable trend that is allowed to vary stochastically over 

time.  Thus the UEDT may be highly non-linear and have periods when it is upward 

sloping, downward sloping or flat.  Moreover, the deterministic linear trend (or no trend 

at all) is a restricted case of the more general model.  Thus, the restricted model is 

preferred only if it is accepted by the data. 

Therefore, the structural time series model can be combined with an 

Autoregressive Distributed Lag (ADL) to estimate energy demand functions.  This 

framework allows for both a stochastic trend and stochastic seasonality when estimating 

the price and income elasticities of aggregate energy demand: 

 

A(L) et = µt + γt + B(L) yt + C(L) pt + θTEMPt + εt  (1) 

 

where A(L) is the polynomial lag operator 1 - φ1L - φ2L2 - φ3L3 - φ4L4, B(L) the 

polynomial lag operator π0 + π1L + π2L2 + π3L3 + π4L4, and, C(L) the polynomial lag 

operator ϕ0 +  ϕ1L + ϕ2L2 + ϕ3L 3 + ϕ4L 4.  et is the natural logarithm of energy for the 

                                                 
12 Harvey actually concludes the paper by stating that the “recent emphasis on unit roots, vector 
autoregressions and co-integration has focussed too much attention on tackling uninteresting problems by 
flawed methods” (p. 200). 
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appropriate sector, yt the natural logarithm of the activity variable of the appropriate 

sector, pt the natural logarithm of the real price of energy for the appropriate sector, and  

TEMPt the average temperature.  B(L)/A(L) and C(L)/A(L) represent the long-run 

activity and price elasticities respectively and θ represents the effect of a change in 

temperature on aggregate energy  demand.  µt, is the stochastic trend, γt, is the stochastic 

seasonal variation and , εt is a random white noise disturbance term. 13 

The trend component µt is assumed to have the following stochastic process: 

 

tttt ηβµµ ++= −− 11         (2) 

ttt ξββ += −1          (3) 

 

where tη  ~ ),0( 2
ησNID  and tξ  ~ ),0( 2

ξσNID .  Equations (2) and (3) represent the level 

and the slope of the trend respectively, and depend upon the variances ση
2 and σξ

2, 

known as the hyperparameters.  These hyperparameters have an important role in that 

they govern the shape of the estimated trend model.  Table 2 illustrates the various 

trends that can be estimated from this process.  Cell (ix) of Table 2 represents the most 

general model when ση
2 ≠ 0 and σξ

2 ≠ 0 so that both the level and slope of the trend 

change stochastically over the sample period.  The remaining cells of Table 2 represent 

possible restricted alternatives, depending upon the estimates of the level and slope of 

the trend and the hyperparameters, σξ
2 and ση

2. 14 

{Table 2 about here} 

                                                 
13 I.e εt ~ NID(0, σε

2 ). 
14 Cells (iv) and (vii) are ignored since it is not possible to estimate models of this type. 
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Cells (i), (ii) and (v) illustrate the conventional regression models (ignoring 

evolving seasonals) that are special cases of the general stochastic trend models.  When 

both variances are zero, namely 2
ησ 0=  and 02 =ξσ , the model reverts to a 

conventional deterministic linear trend model, cell (v), as follows:15 

 

 et = α + βt + Z′tδ + εt        (4) 

 

Cells (iii), (vi) and (viii) are restricted versions of the general stochastic trend 

model but still involve some form of stochastic trend in the level or slope.  If ση
2 ≠ 0 but 

σξ
2 = 0 the trend is the Local Level Model with Drift provided the slope is non-zero (slp 

≠ 0), cell (vi) or the Local Level Model (random walk with drift) if the there is no slope 

(slp = 0), cell (iii).  If, however, ση
2 = 0 but σξ

2 ≠ 0 it is the Smooth Trend Model, cell 

(viii). 

The seasonal component γt  in equation (1) has the following stochastic process: 

 

ttLS ωγ =)(          (5) 

 

where tω  ~ ),0( 2
ωσNID  and 321)( LLLLS +++= .  The conventional case (ignoring 

the stochastic trend) is again a restricted version of this when the hyperparameter σω
2 = 

0 with γt reducing to the familiar deterministic seasonal dummy variable model.  If not, 

however, seasonal components are moving stochastically over time. 

                                                 
15 Ignoring the seasonality for simplicity 
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The equations to be estimated therefore consist of equation (1) with (2) (3) and 

(5).  All the disturbance terms are assumed to be independent and mutually uncorrelated 

with each other.  As seen above, the hyperparameters ση
2, σξ

2, σω
2, and σε

2 have an 

important role to play and govern the basic properties of the model.  The 

hyperparameters, along with the other parameters of the model are estimated by 

maximum likelihood and from these the optimal estimates of βT, µT and γT are estimated 

by the Kalman filter which represent the latest estimates of the level and slope of the 

trend and the seasonal components.  The optimal estimates of the trend and seasonal 

components over the whole sample period are further calculated by the smoothing 

algorithm of the Kalman filter.  For model evaluation, equation residuals are estimated 

(which are estimates of the equation disturbance term, similar to those from ordinary 

regression) plus a set of auxiliary residuals.  The auxiliary residuals include smoothed 

estimates of the equation disturbance (known as the irregular residuals), the smoothed 

estimates of the level disturbances (known as the level residuals) and smoothed 

estimates of the slope disturbances (known as the slope residuals).16  The software 

package STAMP 5.0 (Koopman et al., 1995) is used to estimate the energy demand 

models. 

In practice therefore, the general model, equation (1), is estimated initially, and a 

suitable restricted model selected by testing down from the over-parameterised model of 

equation (1) which satisfies parameter restrictions without violating a battery of 

diagnostic tests.  In addition, following Harvey and Koopman (1992), normality, 

kurtosis and skewness statistics for the auxiliary residuals are examined in order to 

                                                 
16  In practice the level and slope residuals are only estimated if the level and slope components are 
present in the model, i.e. ηt and/or ξt are non-zero. 
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identify outliers and structural breaks and, if necessary, appropriate dummies 

incorporated in the models. 

A number of checks are undertaken to ensure the acceptability and robustness of 

the stochastic formulations.  Firstly, the stochastic elements are either restricted to their 

deterministic form and/or omitted.  This generates six ‘general specifications’ being 

initially estimated as follows: 

Specification I: Stochastic trend and stochastic seasonals (as discussed above) 

Specification II: Stochastic trend and deterministic seasonals 

Specification III: Deterministic trend and stochastic seasonals 

Specification IV: Deterministic trend and deterministic seasonals 

Specification V: No trend and stochastic seasonals 

Specification VI: No trend and deterministic seasonals 

Each specification is estimated using the general to specific approach as outlined 

above for specification I.  The results therefore indicate the appropriateness of the 

stochastic specifications.  Moreover, they illustrate the impact on the estimated price 

and income elasticities of any mis-specification by assuming a deterministic trend or no 

trend at all.  

Secondly, (where appropriate) the preferred models for each specification are re-

estimated and tested, via Likelihood Ratio (LR) tests, for the following restrictions: 

(a) deterministic seasonal dummies; 

(b) a deterministic time trend; 

(c) a deterministic time trend with deterministic seasonal dummies; 
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This acts as a further check of the stochastic specifications to ensure they are always 

accepted by the data.   

 

 

Results 

To illustrate the approach, quarterly unadjusted data for 1971q1 – 1997q4 are used to 

estimate an aggregate energy demand function for the UK whole economy and an oil 

demand function for the UK transportation sector.  Data for the period 1972q1 – 1995q4 

are used to estimate the models; the first four observations are lost due to the four period 

lag in the general model and eight observations (for 1996 and 1997) are retained for 

post sample prediction tests. 

 

Whole Economy aggregate energy demand 

The results for specifications I – VI for the whole economy are given in Table 3 (details 

of the definitions and sources of the data are given in the appendix).  Note, each 

specification has been found individually by following the general to specific procedure 

outlined in the previous section; therefore, Table 3 gives the preferred models for each 

specification. 

{Table 3 about here} 

For all specifications, GDP (y) the real energy price (p), and air temperature 

(TEMP) are significant drivers of whole economy aggregate energy demand.  In 

addition, the auxiliary residuals for the irregular component indicated that there is a 

significant impulse shock in energy demand in the first quarter of 1974 - reflecting the 

first oil crisis and the effect of the UK miners strike.  To capture this outlier, an impulse 
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dummy variable for 1974q1 is included in all specifications, which is always significant.  

No other signs of outliers or structural breaks were found. 

The diagnostic statistics presented in Table 3 show that specifications (I) and (II) 

are clearly preferred since the residuals are white noise without any signs of mis-

specification; furthermore, these specifications predict well, clearly passing the post-

sample prediction tests.  On the other hand, specifications (III – VI), that include one or 

more deterministic components, not only suffer from severe auto-correlation, but also 

consistently fail the prediction tests, even at the 1% level of significance.  These signs 

of mis-specification cannot be removed from specifications (III - VI) regardless of the 

number of additional lagged variables17.  In addition, the LR tests (where applicable) 

indicate that the stochastic form of the trend is always preferred by the data when there 

are restricted to be deterministic.  Overall, therefore, these results suggest that the 

stochastic formulation of the UEDT is necessary for the appropriate modelling of UK 

whole economy aggregate energy demand. 

The stochastic seasonal component appears to play a relatively small role, 

however, other than specification III, the LR tests (where applicable) indicate that the 

stochastic seasonals are preferred by the data.  In particular, the LR test (a) for 

specification (I) indicates that the deterministic restriction on the stochastic seasonal is 

invalid.  Overall, this clearly suggests that that the specification that includes both the 

stochastic trend and the stochastic seasonals (I) is preferred by the data. 

The estimated elasticities for the different specifications in Table 3 are quite 

different.  The long-run income elasticities estimated by the models without any trend 

(specifications V and VI) are zero.   The estimated long run income elasticities from 



   17

Specifications (I) to (VI) are much higher; at around 0.6.  This is a clear example of the 

biased estimated elasticities discussed earlier, which may be brought about by ignoring 

the UEDT when it should be included.18  Given the shape of the estimated UEDT for 

specification (I) (see Figure 3 below) it is not surprising that there is no great divergence 

between the estimated long-run income elasticities for specifications (I) to (IV); the 

UEDT, in this case, can be reasonably approximated by a deterministic trend.  In a 

similar fashion, the estimated long-run price elasticity does not vary considerably 

between specifications (I) to (IV).  However, the estimates for specifications (V) and 

(VI), without a trend at all, are larger (in absolute terms).  This is another example of 

biased estimates caused by inappropriate modelling of the UEDT.19 

It is useful to discuss the shape of the UEDT for the preferred specification (I) in 

some detail.  It is the Local Level with Drift trend (cell (vi) of Table 2).  It includes a 

stochastic trend level with a fixed slope.  The estimated UEDT has a clear ‘downward’ 

shape over the period driven entirely by the stochastic movement of the level as 

illustrated in the top right hand chart of Figure 3.  This implies that the UEDT in the 

energy demand declined almost continuously, even after controlling for the income and 

price effects.  However, looking more closely the top left hand chart of Figure 3, it can 

be seen that there was a substantial decline during the early 1980s towards the mid-

1980s, but the decline diminished in the late 1980s and the early 1990s.  The different 

estimated average annual growth rates of the UEDT over various sub-periods are 

                                                                                                                                               
17 Therefore, the results shown in Table 3 are estimated by the models after deleting the insignificant 
variables at 5% level.  Again, the deletion has no discernible affect on the diagnostics - which are 
consistently poor. 
18 I.e. the exclusion of the UEDT may lead to an under-estimation of the long-run income elasticity when 
the UEDT is generally downward sloping. 
19 In contrast, the differences between modelling seasonality appear to have little effect on the estimated 
income and price elasticities.  This is to be expected, since the estimated hyperparameters for the 
seasonals are much smaller (0.009) than those of the trend (0.341) as seen in Table 3. 
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summarised in Table 3, and this emphasises the non-linearity of the UEDT.  In 

summary, therefore, the UEDT generally declines, but not at a fixed rate as the 

conventional deterministic model assumes. 

{Figure 3 about here} 

Evolution of the stochastic seasonal component is illustrated in the bottom half 

of Figure 3.  Although its stochastic movement is relatively moderate in contrast to the 

estimated UEDT, it is observed that the demand in the 1st and the 2nd quarters gradually 

increased and decreased respectively over time, suggesting conventional seasonal 

dummies are too restrictive.  Not surprisingly, the LR test (a) rejects the restriction of 

deterministic dummies in favour of the stochastic formulation as seen in Table 3.  

Table 4 summarises some previous estimates of long-run energy demand 

elasticities for the UK whole economy.  It can be seen that the estimates from our 

preferred specification, of 0.56 and –0.23 for the income and price elasticity 

respectively, fall in the middle of those given in Table 4.  Of all the studies given in 

Table 4 only Welsch (1989) includes a time trend as a proxy for the UEDT, the other 

studies all ignoring it completely.  The inclusion of a deterministic time trend is 

considered as an important issue by Welsch.  Although the estimated long-run income 

and price elasticities are 0.71 and −0.21 which are somewhat different from the 

estimates here20, his finding is still consistent with what we have found i.e. when the 

trend (deterministic or stochastic) is completely ignored, a lower income elasticity and a 

higher price elasticity (in absolute terms) are generated.  Welsch argues that the lower 

price elasticity implies that energy efficiency improvement is mostly induced by 

                                                 
20 These differences may be caused by the significantly different estimation period used in the studies. 
Haas et al. (1998) show the estimation using the data covering only before the plummeting in oil prices, 
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autonomous technical progress rather than price-induced, and a higher income elasticity 

is led by the separation between pure income effect and technical progress effect 

(p.290).  This is a case where the deterministic time trend acts as a reasonable 

approximation of the UEDT – as illustrated above. 

{Table 4 about here} 

 

Transport oil demand 

Table 5 reports the estimated results for all six specifications for UK transportation oil 

demand.  Unlike for the whole economy, there are no auto-correlation problems, with 

all specifications passing the diagnostic tests presented.  However, specifications (II), 

(IV) and (VI), with deterministic seasonals, all fail the post-sample prediction tests; thus 

indicating that stochastic seasonals are necessary for the oil transportation.21 

The results for the Specifications (I) and (II) (with a stochastic trend) are the 

most parsimonious with a lag of only one quarter on y required to capture the 

adjustment to the long-run.  Specifications (III) and (VI) (with a deterministic trend) 

need the largest number of the lagged variables with complex dynamics.  Specifications 

(V) and (VI) also has a rather complex lag structure with the temperature variable 

insignificant and hence excluded – in contrast to the other specifications  

{Table 5 about here} 

In determining the preferred specification for transportation oil demand, those 

with deterministic seasonal dummies, (II), (IV) and (VI), are rejected given their poor 

forecasting performance.  The choice is therefore between specification (I) with a 

                                                                                                                                               
around 1985, tends to produce much higher values for both income and price elasticities compared to the 
estimation using the data including after the period (p.125). 
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stochastic trend, specification (III) with a deterministic trend and specification (VI) with 

no trend (all with stochastic seasonals).  There is little to choose between these 

specifications in terms of the diagnostics.  However, specification (I) with the stochastic 

trend is preferred given it is the most parsimonious of the models and more importantly 

the LR tests (a) and (c) clearly reject the restriction of a deterministic trend.  

The shape of the estimated UEDT for specification (I) is given in the top left 

hand chart of Figure 4.  This shows that the UEDT is generally upward sloping; 

therefore, after controlling for the normal income and price effect, the use of 

transportation energy has been increasing.  This illustrates that over the past 25 years 

(other than the last few years of the estimation period) the sector has become more 

energy intensive.  This increase in energy intensity shown by the upward UEDT reflects 

a shift in the energy demand curve to the right, ceteris paribus.  This is consistent with 

Schipper et al. (1992, p. 145 - 146).  However, the different estimated average annual 

growth rates of the UEDT over various sub-periods summarised in Table 4, emphasise 

again the non-linearity of the UEDT.  In the oil transportation case, therefore, although 

the UEDT is generally increasing, it is not at a fixed as the conventional deterministic 

model would assume. 

{Figure 4 about here} 

The hyperparameter of the seasonal components are relatively small compared 

to that of the level indicating that the stochastic movement in the seasonal component is 

not as large as the stochastic fluctuation of the trend.  However, the changes in the 

seasonal pattern are still found to be stochastic and, as already stated, are clearly 

preferred to conventional deterministic seasonal dummies.  The pattern is illustrated in 

                                                                                                                                               
21 This is despite the LR test (a) for specification (III) suggesting that the restriction of deterministic 
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the bottom charts of Figure 4.  This shows that the magnitude of seasonal fluctuations 

have diminished since the early 1980s, in particular, the first quarter increases and, 

conversely, the second and quarter demand gradually declines over time.  Note since the 

model includes the temperature variable, these seasonal movements can be considered 

as a non-temperature induced seasonal pattern. 

The estimated long-run elasticities for income and price are also different 

between the models which are roughly divided into the three groups: the No trend 

models (specifications V and VI), the deterministic trend models (specifications III and 

IV) and stochastic trend models (specifications I and II).  The estimated income 

elasticities by the no trend models are higher than other models including either the 

deterministic or stochastic trend.  This is another example of the over-estimation of the 

income elasticity by a model that ignores the UEDT when it is upward sloping and GDP 

is increasing over the sample period.  In contrast, the estimated long-run price 

elasticities given by the no trend models are almost identical to that of the stochastic 

trend models. 

{Table 6 about here} 

The estimated long-run income and price elasticities from the preferred model 

are 0.80 and -0.13 respectively.  Table 6 summarises the estimated elasticities of UK 

petrol demand from previous studies – none of which consider the UEDT.  It can be 

seen there are substantial differences between the estimates with most given a much 

higher income elasticity to that found here – Dargay’s (1992) conventional model being 

the exception.  These higher estimates being consistent with the biases outlined earlier: 

that is the income elasticity is over estimated if the ‘true’ upward sloping UEDT is 

                                                                                                                                               
seasonals is acceptable by the data. 
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omitted during a period when income is increasing.  Other than Fouquet et al. (1997), 

where the long-run price elasticity is constrained to zero, all estimated long-run price 

elasticities give in Table 6 are greater (in absolute terms) than the –0.13 estimated here.  

Given the volatility in the real energy price variable, it is not possible to ‘predict’ any 

bias.  But given our statistical results it suggest that these previous results are over 

estimates (in absolute terms). 

 

 

Summary and Conclusion 

This paper has highlighted the important concept of the Underlying Energy Demand 

Trend (UEDT), which encompasses technical progress, consumer tastes, and changing 

economic structure.  It has also shown that it is important to include the UEDT in the 

general form when estimating energy demand elasticities and that the appropriate 

econometric technique employed is flexible enough to allow the UEDT to take a non-

linear form – as dictated by the data. 

The structural time series model has therefore been used to estimate the UEDT 

(and evolving seasonals) for the UK whole economy and transportation sector.  A non-

linear downward sloping UEDT is found for whole economy aggregate energy demand, 

whereas a non-linear upward sloping UEDT is found for transportation oil demand.  

Moreover, it is clearly demonstrated that the stochastic form of the UEDT and the 

seasonals are preferred to the deterministic alternatives. 

An important policy implication is the low estimated price elasticity of demand 

for the transportation sector coupled with an upward sloping UEDT.  This illustrates 

that any improvement in the technical energy efficiency in the energy appliances (cars, 
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lorries, etc.) has been more than cancelled out by a) an increase in more energy using 

luxury/comfortable appliances and/or b) greater utilisation of the appliances.  Given 

this, and the relative price insensitivity, energy policy should focus more on changes in 

peoples life style, via advertising campaigns, stricter regulations, etc. in order to reduce 

oil demand and hence emissions – rather than an over reliance on market mechanisms 

such as energy taxes. 
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Data Appendix 

The data set is quarterly seasonally unadjusted for the period 1971q1 to 1997q4.  

 

Energy Consumption 

The energy consumption data for the whole economy refers to UK Final Consumption 

of aggregate energy in million tonnes of oil equivalent (mtoe), E(we).  For the 

transportation sector the energy consumption data refers to UK Final Consumption of 

‘petroleum’ in million tonnes of oil equivalent (mtoe), E(o).  These were taken from 

various issues of the UK Energy Trends up to June 1999.  Data before 1992 have been 

converted to mtoe from millions of therms.  e(we) and e(o)represents the natural 

logarithm of E(we) and E(o) respectively. 

 

Activity 

The nominal and constant prices expenditure estimates of UK Gross Domestic Product 

GDP(E) at market prices were kindly supplied by the Office of National Statistics 

(ONS) since the seasonally unadjusted data are not published.  Therefore the activity 

variable for the both the whole economy and the transportation sector, (Y) is the 

constant GDP(E) series re-based and indexed to 1990 = 100.  The implicit GDP(E) price 

deflator at 1990=100 was calculated from the nominal and constant price series. y 

represents the natural logarithm of Y. 

 

Energy Prices 

The real price index for the whole economy, P(we), is a weighted average of the real 

price indexes form the manufacturing sector, the transportation sector, P(o), and the 
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residential sector.  The nominal aggregate price series for the residential sector is a 

weighted average of different fuels from the GB Domestic Fuel Price Index (taken from 

various issues of the UK Energy Trends up to June 1999).  The nominal aggregate price 

series for the industrial sector is a weighted average of different fuels from the GB 

Industrial Fuel Price Index (taken from various issues of the UK Energy Trends up to 

June 1999).  The nominal price series for transportation oil is the Oil and Petrol index 

from the GB Domestic Fuel Price Index (taken from various issues of the UK Energy 

Trends up to June 1999).  For all three sub-sectors the nominal indexes were deflated by 

the GDP(E) deflator and re-based to 1990=100 to give the real energy price indexes for 

the three sub sectors.   p(we) and p(o)represents the natural logarithm of P(we) and P(o) 

respectively. 

 

Temperature 

TEMPt refers to the average GB quarterly temperature in degrees Celsius taken from 

various issues of the UK Digest of Energy Statistics (DUKES). 
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Table 1. Underlying Energy Demand Trend (UEDT) 

 
Underlying Energy Demand Trend (UEDT) 

 
 

(Pure) Technical energy efficiency 
 

 
Consumers  

tastes 

 
Economic Structure

 
Endogenous 

 

 
Exogenous 

 

 
Exogenous 

 

 
Exogenous 
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Table 2: Classification of Possible Stochastic Trend Models22 
 
   LEVEL 

 
SLOPE 

No Level  
Lvl = 0, ση

2 = 0 
Fixed Level 
Lvl ≠ 0, ση

2 = 0 
Stochastic Level 
Lvl ≠ 0, ση

2 ≠ 0 

No Slope 
Slp = 0, σξ

2 = 0 
(i) Conventional regression but 
with no constant and no time 
trend 

(ii) Conventional regression 
with a constant but no time 
trend. 

(iii) Local Level Model 
(random walk plus noise). 

Fixed Slope 
Slp ≠ 0, σξ

2 = 0 
(iv)  (v) Conventional regression 

with a constant and a time trend. 
(vi) Local Level Model with 
Drift. 

Stochastic Slope 
Slp ≠ 0, σξ

2 ≠ 0 
(vii)  (viii) Smooth Trend Model. (ix) Local Trend Model. 

                                                 
22 The seasonal component is omitted at this stage for simplicity. 
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Table 3 Estimated results for the UK whole economy energy demand  
1972q1 − 1995q4 

 

 SPECIFICATIONS 

 

(I) 
Stochastic 
Trend and 
Stochastic 
Seasonals 

(II) 
Stochastic 
Trend and 

Deterministic
Seasonals 

(III) 
Deterministic

Trend and 
Stochastic 
Seasonals 

(IV) 
Deterministic

Trend and 
Deterministic

Seasonals 

(V) 
No Trend 

and 
Stochastic 
Seasonals 

(VI) 
No Trend 

and 
Deterministic 

Seasonals 
Estimated 
Coefficients 

      

yt 0.6847** 0.8096** 0.4705** 0.5234**   
 (5.934) (7.316) (4.941) (5.437)   
       

yt-3 -0.2256* -0.2992** -0.3366*  -0.4032**   
 (2.095) (2.822) (2.480) (3.367)   
       

∆3yt     0.2955** 0.4066** 
     (3.306) (4.446) 
       

yt-4   0.2340 0.2960**   
   (1.909) (2.658)   
       

pt-3 -0.1897** -0.2050** -0.1963** -0.2031** -0.2359** -0.2673** 
 (3.880) (3.979) (7.549) (7.456) (10.196) (10.877) 
       

et-1 0.1848** 0.1124* 0.3269** 0.2731** 0.4137** 0.3111** 
 (3.330) (2.202) (5.661) (4.829) (6.966) (5.173) 
       

TEMPt -0.0239** -0.0242** -0.0231** -0.0235** -0.0221** -0.0229** 
 (12.117) (12.005) (10.179) (10.131) (9.221) (8.955) 
       

Irr1974q1 -0.0764** -0.0761** -0.1001** -0.0990** -0.0974** -0.0987** 
 (4.470) (4.226) (4.894) (4.703) (4.624) (4.326) 

Long-Run 
Estimates 

      

Income (Y) 0.5632 0.5750 0.5465 0.5725 0 0 
Price (P) -0.2327 -0.2309 -0.2917 -0.2794 -0.4024 -0.3879 

Estimated 
Hyperparameters 

      

σε
2 × 10- 4 1.489 1.969 3.214 3.606 3.442 4.411 

ση
2 × 10- 4 0.341 0.401 0 0 0 0 

σξ
2 × 10- 4 0 0 0 0 0 0 

σω
2 × 10-4 0.094 0 0.055 0 0.136 0 

Nature of Trend 
Corresponding 
cell of Table 1 

Local Level 
with Drift 

(Cell vi) 

Local Level 
with Drift 

(Cell vi) 

A Linear 
Trend 
(Cell v) 

A Linear 
Trend 
(Cell v) 

No Trend 
 

(Cell ii) 

No Trend 
 

(Cell ii) 

Average Annual Growth rate of the estimated UEDT    
1972q1 – 1995q4 -0.76% -0.85% -0.73% -0.82% 0% 0% 
1972q1 – 1974q4 -0.44% -0.44% -0.73% -0.82% 0% 0% 
1975q1 – 1979q4 -0.64% -0.67% -0.73% -0.82% 0% 0% 
1980q1 – 1984q4 -1.26% -1.44% -0.73% -0.82% 0% 0% 
1985q1 – 1989q4 -0.95% -1.07% -0.73% -0.82% 0% 0% 
1990q1 – 1995q4 -0.42% -0.48% -0.73% -0.82% 0% 0% 
Diagnostics       
Equation       
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Residuals 
Standard Error 1.68%  1.65%  1.82%  1.78%  1.99% 2.00% 
Normality 0.35 0.82 2.39 1.60 0.19 0.03 
Kurtosis 0.35 0.41 0.00 0.06 0.00 0.00 
Skewness 0.00 0.41 2.39 1.54 0.19 0.02 
H(30)/H(31) 0.91 0.99 0.97 1.28 0.75 0.54 
r(1) -0.07 -0.03 0.24** 0.27** 0.24* 0.28** 
r(4) 0.04 0.12 0.29** 0.33** 0.28** 0.40** 
r(8) 0.02 0.04 0.14 0.17 0.11 0.21* 
DW 2.12 2.03 1.47 1.42 1.48 1.37 
Q(x,n) Q(8,6) = 

6.21 
Q(8,7) = 

4.62 
Q(8,7) = 

34.34** 
Q(8,8) = 

40.62**
Q(8,7) = 

35.36** 
Q(8,8) = 

51.62**
R2  0.99 0.99 0.99 0.99 0.98 0.98 
Rd

2  0.84 0.84 0.81 0.82 0.77 0.77 
Auxiliary 
Residuals 

      

Irregular       
Normality 0.67 2.83 0.57 0.37 0.23 0.04 
Kurtosis 0.30 0.02 0.37 0.26 0.11 0.02 
Skewness 0.38 2.81 0.20 0.10 0.11 0.03 

Level       
Normality 0.75 0.11 n/a n/a n/a n/a 
Kurtosis 0.00 0.00 n/a n/a n/a n/a 
Skewness 0.74 0.11 n/a n/a n/a n/a 

Slope       
Normality n/a n/a n/a n/a n/a n/a 
Kurtosis n/a n/a n/a n/a n/a n/a  
Skewness n/a n/a n/a n/a n/a n/a 

Predictive Tests 
(1996Q1-1997Q4) 

      

χ2
(8) 9.62 14.06 23.55** 25.66** 24.15** 25.64** 

Cusum t 1.34 1.20 4.34** 4.30** 4.40** 4.34** 
LR tests       
Test (a) 4.25*  n/a 2.23 n/a 7.50** n/a 
Test (b) 28.27** 29.67** n/a n/a n/a n/a 
Test (c) 33.92** n/a n/a n/a n/a n/a 

Note: 
 ∆3yt denotes yt − yt-3. 
 t-statistics from STAMP 5.0 are given in parenthesis. 
 ** Indicates significant at the 1% level and * indicates significance at the 5% level; 
 Normality is the Bowman-Shenton statistic, approximately distributed as χ2

(2); 
 Skewness statistic is approximately distributed as χ2

(1); 
 H(30) is the test for heteroscedasticity, approximately distributed as F(30, 30); 
 r(1), r(4) and r(8) are the serial correlation coefficients at the 1st, 4th and 8th lags respectively, approximately distributed as 

N(0,1/T); 
 DW is the Durbin Watson test for first-order autocorrelation; 
 Q(x,n) is the Box-Ljung Q-statistics based on the first xth residuals autocorrelation and distributed as χ2

(n); 
 R2 is the coefficient of determination; 
 Rs

2 is the coefficient of determination based on the differences around the seasonal mean (see Harvey, 1989, p.268); 
 χ2

(8) is the post-sample predictive failure test; 
 The Cusum t is the test of parameter consistency, approximately distributed as the t-distribution; 
 The restrictions imposed for the LR test are explained in the text. 
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Table 4. Previous energy demand studies for UK whole economy aggregated energy demand 
 
 Study (years) Technique / model used Data used Estimated long-run income and 

price elasticities 
Westoby and Pearce (1984) Dynamic log linear  

(Manufacturing output/GDP 
ratio included) 

Annual data 
1954 - 80 (27 obs.) 

ηy = 0.760 
ηp = -0.210 
No trend included 

Welsch (1989) Static/dynamic log linear 
reduced form by OLS    

Annual data 
1970 - 84 (15 obs.) 

ηy = 0.71 
ηp = -0.11 
Trend included but no details 
given 

Hunt and Manning (1989) Log-linear EG 2-step Annual data  
1967 - 86 (20 obs.) 

ηy = 0.38 to 0.49 
ηp = -0.30 to 0.33 
No trend included 

Hunt and Witt (1995) Johansen - VECM Annual data 
1967 - 94 (28 obs.) 

ηy = 0.23  
ηp = -0.29 
No trend included 

Note: ηy = the long-run income elasticity, ηp = the long-run price elasticity 

Source: Hunt and Lynk (1992), Atkinson and Manning (1995), Fouquet (1996) and Clements and Madlener (1999) with some additions and modifications 
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Table 5. Estimated results for the UK transportation oil demand 1972q1 − 1995q4 

 

 SPECIFICATIONS 

 

(I) 
Stochastic 
Trend and 
Stochastic 
Seasonals 

(II) 
Stochastic 
Trend and 

Deterministic
Seasonals 

(III) 
Deterministic

Trend and 
Stochastic 
Seasonals 

(IV) 
Deterministic

Trend and 
Deterministic

Seasonals 

(V) 
No Trend 

and 
Stochastic 
Seasonals 

(VI) 
No Trend 

and 
Deterministic 

Seasonals 
Estimated 
Coefficients 

      

yt 0.5634** 0.5912** 0.4381** 0.4757** 0.4128* 0.4657** 
 (5.387) (6.031) (5.006) (5.393) (5.937) (6.702) 
       

yt-1 0.2327*  0.2746**     
 (2.266) (2.834)     
       

yt-2   -0.2389* -0.2605**   
   (2.511) (2.716)   
       

pt -0.1285** 0.1269**     
 (4.323) (4.120)     
       

pt-2   -0.1042** -0.1120** -0.0429* -0.0487** 
   (4.369) (4.595) (2.596) (2.746) 
       

∆ pt   -0.1896** -0.1930** -0.1702** 0.1713** 
   (5.576) (5.575) (4.717) (4.618) 
       

et-1   0.5728** 0.5391** 0.6515** 0.6065** 
   (7.947) (7.615) (11.401) (10.636) 
       

TEMPt 0.0045** 0.0047** 0.0041* 0.0044*   
 (2.901) (2.818) (2.266) (2.369)   

Long-Run 
Estimates 

      

Income (Y) 0.7961 0.8658 0.4662 0.4667 1.1843 1.1835 
Price (P) -0.1285 -0.1269 -0.2438 -0.2430 -0.1230 -0.1237 

Estimated 
Hyperparameters 

      

σε
2 × 10- 4 0.736 1.106 2.083 2.315 2.393 2.828 

ση
2 × 10- 4 0.798 0.799 0 0 0 0 

σξ
2 × 10- 4 0 0 0 0 0 0 

σω
2 × 10-4 0.039 0 0.030 0 0.006 0 

Nature of Trend 
Corresponding 
cell of Table 4.1 

Local Level 
with Drift  
(Cell vi) 

Local Level 
with Drift  
(Cell vi) 

A Linear 
Trend 

(Cell v) 

A Linear 
Trend 

(Cell v) 

No Trend 
(Cell ii) 

 

No Trend 
(Cell ii) 

Average Annual Growth rate of the estimated UEDT    
1972q1 – 1995q4 0.54% 0.41% 0.60% 0.65% 0% 0% 
1972q1 – 1974q4 -0.06% -0.28% 0.60% 0.65% 0% 0% 
1975q1 – 1979q4 1.03% 0.92% 0.60% 0.65% 0% 0% 
1980q1 – 1984q4 0.63% 0.57% 0.60% 0.65% 0% 0% 
1985q1 – 1989q4 0.85% 0.61% 0.60% 0.65% 0% 0% 
1990q1 – 1995q4 0.08% 0.00% 0.60% 0.65% 0% 0% 
Diagnostics       
Equation 
Residuals 

      

Standard Error 1.51%  1.52%  1.47%  1.44%  1.63% 1.61% 
Normality 0.31 0.43 2.97 0.19 1.16 0.49 



   

 

35

Kurtosis 0.00 0.26 1.93 0.14 0.15 0.36 
Skewness 0.31 0.18 1.04 0.06 1.01 0.13 
H(30)/H(31) 0.75 1.03 0.93 1.14 0.79 1.13 
r(1) 0.02 0.05 -0.10 -0.05 -0.06 0.02 
r(4) -0.05 0.07 -0.08 -0.04 0.03 0.13 
r(8) -0.02 0.04 0.04 0.04 0.05 0.08 
DW 1.95 1.87 2.18 2.07 2.12 1.95 
Q(x,n) Q(8,6) = 

0.60 
Q(8,7) = 

5.50 
Q(8,7) = 

4.34 
Q(8,8) = 

5.52 
Q(8,7) = 

5.87 
Q(8,8) = 

11.23 
R2  0.99 0.99 0.99 0.99 0.99 0.99 
Rs

2  0.54 0.54 0.57 0.58 0.47 0.48 
Auxiliary 
Residuals 

      

Irregular       
Normality 2.81 0.73 0.27 0.01 0.70 0.58 
Kurtosis 2.70 0.59 0.00 0.01 0.67 0.55 
Skewness 0.11 0.14 0.27 0.00 0.03 0.03 

Level       
Normality 1.22 0.57 n/a n/a n/a n/a 
Kurtosis 0.89 0.43 n/a n/a n/a n/a 
Skewness 0.34 0.14 n/a n/a n/a n/a 

Slope       
Normality n/a n/a n/a n/a n/a n/a 
Kurtosis n/a n/a n/a n/a n/a n/a  
Skewness n/a n/a n/a n/a n/a n/a 

Predictive Tests 
(1996Q1-1997Q4) 

      

χ2
(8) 11.98 20.27** 11.97 17.01* 12.88 17.97* 

Cusum t -0.45 -0.47 -1.37 -1.37 -2.30 -2.38 
LR tests       
Test (a) 7.45**  n/a 2.08 n/a 4.53* n/a 
Test (b) 48.50** 41.53** n/a n/a n/a n/a 
Test (c) 48.97** n/a n/a n/a n/a n/a 

Note: See Notes for Table 3 
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Table 6. Previous energy demand studies for the UK transport oil demand 
Study (years) Technique / model used Data used Estimated LR elasticities 
Dargay (1992) Unrestricted ECM irreversible 

demand model 
Annual data 
1960 - 88 (29 obs.) 

ηy = 1.49 
ηp = -0.15 (only for max. price) 
ηp = -0.10 (for price fall and rise, 
but insignificant at 10% level) 

 Unrestricted ECM 
conventional reversible 
demand model 

Annual data 
1960 - 88 (29 obs.) 

ηy = 0.70 (insignificant at 10%  
level) 
ηp = -0.40 (insignificant at 10% 
level) 

Dargay (1993) Log-linear EG 2-step  
(structural form model) 

Annual data 
1950 - 91 (42 obs.) 

ηy = 1.5 
ηp = -0.7 to -1.4 

Hodgson and Miller (1995) DTI energy model Annual data 
1954 - 88 (35 obs.) 

ηy = 0.81 
ηp = -0.3 

Franzén and Sterner (1995) Dynamic log-linear model Annual data 
1960 - 88 (29 obs.) 

ηy = 1.6 
ηp = -0.4 

Fouquet et al. (1997) Log-linear EG 2-step  Annual data  
1960 - 94 (35 obs.) 

ηy = 1.95 to 2.05 
ηp = 0 

Ninomiya (1997) Log-linear EG 2-step  
(structural form model) 

Annual data 
1955 - 94 (40 obs.) 

ηy = 1.0 to 1.1 
ηp = -0.18  

Note: None of the studies includes any trend. ηy = the long-run income elasticity, ηp = the long-run price elasticity 

 



Figure 1: Possible biases in estimated price elasticities of energy demand
(a) Negative UEDT (downward sloping) and price rise
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(c) Negative UEDT (downward sloping) and price decline

E0 – E1 = Price effect
E1 – E2 = UEDT effect
E0 – E2 = Estimated price effect if UEDT is not modelled
Therefore, price elasticity may be over-estimated if UEDT is not 
incorporated in the model.
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E1 – E0 = Price effect
E1 – E2 = UEDT effect
E0 – E2 = Estimated price effect if UEDT is not modelled
Therefore, price elasticity may be under-estimated if UEDT is not 
incorporated in the model.
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(b) Positive UEDT (upward sloping) and price rise

E0 – E1 = Price effect
E1 – E2 = UEDT effect
E0 – E2 = Estimated price effect if UEDT is not modelled
Therefore, price elasticity may be under-estimated if UEDT is not 
incorporated in the model.
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(d) Positive UEDT (upward sloping) and price decline

E1 – E0 = Price effect
E1 – E2 = UEDT effect
E0 – E2 = Estimated price effect if UEDT is not modelled
Therefore, price elasticity may be over-estimated if UEDT is not 
incorporated in the model.
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Figure 2: Possible biases in estimated income elasticities of energy demand
(a) Negative UEDT (downward sloping) and income rise

(c) Negative UEDT (downward sloping) and income decline

E0 – E1 = Income effect
E1 – E2 = UEDT effect
E0 – E2 = Estimated income effect if UEDT is not modelled
Therefore, income elasticity may be under-estimated if UEDT is not 
incorporated in the model.

E0 – E1 = Income effect
E1 – E2 = UEDT effect
E0 – E2 = Estimated income effect if UEDT is not modelled
Therefore, income elasticity may be over-estimated if UEDT is not 
incorporated in the model.

(b) Positive UEDT (upward sloping) and income rise

E0 – E1 = Income effect
E1 – E2 = UEDT effect
E0 – E2 = Estimated income effect if UEDT is not modelled
Therefore, income elasticity may be over-estimated if UEDT is not 
incorporated in the model.

(d) Positive UEDT (upward sloping) and income decline

E0 – E1 = Income effect
E1 – E2 = UEDT effect
E0 – E2 = Estimated income effect if UEDT is not modelled
Therefore, income elasticity may be under-estimated if UEDT is not 
incorporated in the model.
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Figure 3: UK Whole Economy Aggregate Energy Demand 
Estimated UEDT (top left), slope of UEDT (top right), estimated seasonal 
variation (bottom left) and individual seasonal variations (bottom right) 
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Figure 4: UK Transportation Oil Demand 

Estimated UEDT (top left), slope of UEDT (top right), estimated seasonal 
variation (bottom left) and individual seasonal patterns (bottom right) 
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