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ABSTRACT 

Although it is well known that energy demand is derived, since energy is 
required not for its own sake but for the energy services it produces – 
such as heating, lighting, and motive power – energy demand models, 
both theoretical and empirical, rarely take account of this feature.  In this 
paper we highlight the misspecification that results from ignoring this 
aspect, and its empirical implications – biased estimates of price 
elasticities and other measures – and provide a relatively simple and 
empirically practicable way to rectify it, which has a strong theoretical 
grounding.  To do so, we develop an explicit model of consumer 
behaviour in which utility derives from consumption of energy services 
rather than from the energy sources that are used to produce them.  As we 
discuss, this approach opens up the possibility of examining many aspects 
of energy economics in a theoretically sound way that has not previously 
been considered on a widespread basis, although some existing empirical 
work could be interpreted as being consistent with this type of 
specification.  While this new formulation yields demand equations for 
energy services rather than for energy or particular energy sources, these 
are shown to be readily converted, without added complexity, into the 
standard type of energy demand equation(s) that is (are) typically 
estimated.  The additional terms that the resulting energy demand 
equations include, compared to those that are typically estimated, 
highlights the misspecification that is implicit when typical energy 
demand equations are estimated.  A simple solution for dealing with an 
apparent drawback of this formulation for empirical purposes, namely 
that information is required on typically unobserved energy efficiency, 
indicates how energy efficiency can be captured in the model, such as by 
including exogenous trends and/or including its possible dependence on 
past energy prices.  The approach is illustrated using an empirical 
example that involves estimation of an aggregate energy demand function 
for the UK with data over the period 1960 – 2011. 
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1. Introduction 

Energy practitioners often emphasize that energy is desired not for its own sake, but 

for the services that it produces, such as space and water heating, cooling, lighting, cooking, 

etc.  Nevertheless, especially in empirical energy demand work, this feature appears to be 

frequently overlooked, as researchers tend to focus on modelling demand for aggregate 

energy, or for particular energy sources, such as natural gas, electricity, and oil products (see, 

for example, Bentzen and Engsted, 1993; Huntington, 2010).  However, as we demonstrate in 

this paper, there are potentially important, and in many cases useful, implications that arise 

from explicit consideration of energy as a derived demand, and ignoring such consideration 

results in energy demand models that are typically misspecified and from which resulting 

empirical estimates are likely to be misleading.  Further, we show that accounting for this 

feature requires only minor modifications to the types of energy demand equations that are 

typically estimated.   

This tendency for empirical studies to focus on energy rather than energy services is 

likely to be largely data driven, since information is often available on aggregate or even 

individual consumption of particular energy sources, but it is rarely available at either of 

these two levels on consumption of particular energy services such as heating or lighting.  

However, as we also demonstrate here, analysis that focuses on demands for energy services 

can be undertaken even when data on consumption or prices of these services are not readily 

                                                            
 Corresponding Author 



Economic Modelling of Energy Services  Page 2 of 40 

available.  Another contributing factor to the focus on energy rather than energy services 

could pertain to interest in determining measures of price and income responsiveness 

(elasticities).  Since neither the price nor the quantity consumed of, for example, heating 

services is generally observed, there might seem to be less interest in the own-price elasticity 

of demand for heating than in the own-price elasticity of demand for natural gas.  Interest in 

examining the likely effects of various strategies that aimed at reducing dependence on fossil 

fuels may well reinforce this effect, because mechanisms like carbon taxes or various cap and 

trade schemes can typically be translated into an effect on the prices of these fuels rather than 

effects on the prices of energy services.  Yet, as we show in this paper, analysis that focuses 

on energy rather than on energy services might well result in misleading estimates of 

elasticities, and therefore of the effects that will result from such policies.   

In this paper we demonstrate that a more conducive environment for analysis of many 

aspects of energy economics is provided by returning to the idea that energy is demanded for 

the services it provides rather than for any intrinsic reasons.  To this end, we develop a model 

of consumer behaviour in which utility is derived from consumption of these services rather 

than from the energy sources that are used to produce them.  A particular advantage of this 

framework is its demonstration of the direct role for energy efficiency in determining energy 

demand, even if energy efficiency may be predetermined at the time that current-period 

energy demand decisions are made.  While this formulation yields demand equations for 

energy services rather than for energy or particular energy sources, we demonstrate that the 

resulting equations can be readily converted into the standard type of energy demand 

equation(s) that is (are) typically estimated, although the resulting equations do involve some 

additional terms.  This approach therefore highlights the misspecification that is implicit 

when typical energy demand equations are estimated, and shows how it can be readily 

rectified.  For empirical purposes, an apparent drawback of this formulation is that 
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information is required on energy efficiency, and this is typically not directly observed.   In 

previous work, some authors (such as Beenstock and Willcocks, 1981 and Dimitropoulos et 

al., 2005) have used a deterministic or a stochastic trend to proxy energy efficiency.  Other 

authors (such as Walker and Wirl, 1993 and Haas and Schipper, 1998) have attempted to 

construct summary measures of energy efficiency, and in some specific applications, energy 

efficiency can be observed (see, for example, Schleich et al., 2014).  These approaches, 

implicitly assume that the impact of energy efficiency is exogenous, and neglect the ideas of 

some authors (such as Kouris, 1983) that energy efficiency (technical progress) should be 

considered to be endogenous, determined by energy price movements.  In contrast, the 

approach we develop here encompasses both approaches allowing for energy efficiency to be 

endogenous and thus dependent on past prices as well as other (exogenous) factors.   

To summarize, the energy demand equations that we derive from, and which are 

consistent with, the idea that demand is for energy services rather than energy itself, are no 

more complex than those that are typically estimated.  Yet, they avoid a common 

misspecification problem without requiring data on variables that are unlikely to be generally 

available, and allow for the endogeneity of energy efficiency.  In addition, the energy 

services approach opens up the possibility of examining many aspects of energy economics 

in a way that has not been previously possible.   

The remainder of the paper is organized as follows. Section 2 provides background in 

terms of the few previous papers that have formally considered utility as being derived from 

energy services rather than energy itself.  However, the full implications of this approach and 

the development of estimating equations that account for all the features described above are 

not fully considered in this earlier work, which has often been focused more narrowly on 

trying to capture the irreversibility of energy efficiency improvements.  Section 3 introduces 

a new approach based on a theoretical model of utility maximization conditional on energy 
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services.  Initially the case of an aggregate energy source and aggregate energy service is 

considered.  This is subsequently extended to the case of multiple energy sources and energy 

services where each energy source provides only one energy service.  Finally, this model is 

generalized to allow for particular energy sources providing multiple energy services (such as 

natural gas providing space heating as well as cooking services), and for specific energy 

services being provided by multiple energy sources (such as space heating being provided by 

natural gas and/or electricity). Section 4 addresses issues of empirical implementation of the 

energy services models, while different approaches to modelling unobserved energy 

efficiency are considered in Section 5. Section 6 provides an empirical illustration, with a 

brief summary and conclusion presented in Section 7.  

 

2. Background 

The starting point for our approach is the observation that particular energy sources – 

such as electricity, natural gas, and oil products – are not of intrinsic value to consumers.  

Rather, energy is used in conjunction with certain types of capital equipment (some of it 

energy-using, such as furnaces, air conditioners, motors, etc.; and some of it in the nature of a 

substitute, such as insulation) to provide energy-related services (such as hot or cold air for 

space heating or cooling, hot water, etc.), and it is these services that are valued by 

consumers.  In this regard, three particular characteristics of energy-using equipment are of 

relevance: much of it is long-lived – once installed it may have a useful life that spans 

decades; much of it is fuel(s)-specific; and its technical characteristics tend to be fixed, 

requiring a given level of energy use per unit of services produced.   

There are a variety of factors that may induce consumers to change the stock of 

energy-using capital (for example by purchasing more energy-efficient appliances) and to 

substitute capital for energy (for example by installing insulation), such as a sustained period 
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of high energy prices.  This would also encourage manufacturers to improve the energy 

efficiency of capital equipment, thereby reducing the quantity of energy needed to produce a 

given level of energy-related services.  In such circumstances, one might also expect 

governments to act and modify building codes and standards applied to energy-using 

equipment in directions that encourage greater energy efficiency, for example.  Indeed, both 

of these types of developments were observed in most industrialized countries following the 

world oil price increases of the 1970s, and have continued to be observed much more 

recently, although possibly for different reasons, such as concerns with climate change and a 

desire to reduce consumption of fossil fuels.  Of course, the types of changes described here 

could also just be the result of the typical processes that give rise to technological progress.   

Regardless of what motivates such changes, one way to categorize all these effects is 

as changes in energy efficiency, that is, the efficiency with which energy is converted into 

energy services.  This efficiency can refer directly to the capital (appliance) that is used – 

such as more efficient furnaces or boilers that use less energy to produce the same amount of 

heat, or to the installation of supplementary capital, such as attic or wall insulation, or 

window replacement, or even just sealing of air leaks around windows, that mean that even 

using the same appliance, less energy is required to produce the same level of thermal 

comfort or other energy services.  In all these cases, the key characteristic is so-called energy 

efficiency; that is the amount of energy services obtained from a given amount of energy.1  

And the key problem in terms of understanding the effects of these changes on energy 

demand is that traditional energy demand models do not usually include explicit measures of 

energy efficiency, although as mentioned above, some empirical work has included 

exogenous terms that attempted to proxy technical progress and energy efficiency.  

                                                            
1 Note that this definition is usually associated with appliances associated with households and firms 
as distinct from the arguments around economy-wide aggregate energy efficiency and energy 
intensity (see for example, Filippini and Hunt, 2011). 
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There have been at least two attempts to develop and estimate models of energy 

demand that take account of the key elements of this discussion involving energy efficiency.  

Walker and Wirl (1993), in addressing the issue of apparent asymmetry in energy demand for 

transportation as real (fuel) prices rise and fall, introduce the idea that utility depends on 

services, where services are the product of energy (fuel) consumption and the efficiency of 

the equipment (vehicles).  Maximization of such a utility function yields the condition that 

marginal utility equals the price of services, which is equated to the price of energy (gasoline) 

divided by energy efficiency.  The authors construct a series for efficiency based on various 

technical vehicle characteristics and an assumed depreciation rate, and estimate a services 

demand function for three countries.  Walker and Wirl emphasize the need to measure 

technological efficiencies and not observed efficiencies, since the latter are affected by 

numerous vehicle attributes that are reversible.  While such an emphasis might be useful for 

focusing on the irreversibility aspect of technological change, in the context of understanding 

energy demand this might be viewed as a secondary objective, since any type of increased (or 

decreased) efficiency, whether technological or observed, will potentially affect such 

demand.  We return to this issue in Section 5.   

Apart from this focus purely on particular aspects of energy efficiency, perhaps one of 

the biggest drawbacks of Walker and Wirl’s (1993) approach is that the endogeneity of 

technical change, that is, of efficiency improvements, such as those induced by real energy 

price increases, is not explicitly taken into account.  The authors do recognize that technical 

efficiency is dependent on past energy prices and time, and investigate what this relationship 

might be by constructing an asymmetric filter of past historical energy prices, ܼ௧, where 

ܼ௧ ൌ ௧ݓ  ሺ1 െ ௧	if	ሻܼ௧ିଵݓ  ܼ௧ିଵ, and ܼ௧ ൌ ܼ௧ିଵ otherwise, where ௧ is the price and ݓ, 

which lies between 0 and 1, is a weight (smoothing constant).  Thus, for example, if w=1, ܼ௧ 

would just be the maximum of the historical sequence of prices, while if w=0, ܼ௧ would just 
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be the initial price in that sequence.  The formulation is designed to account explicitly for the 

asymmetry of knowledge – that is, that technical knowledge is irreversible – so that ܼ௧ cannot 

decline.  Once ܼ௧ is constructed, for an assumed value of w, Walker and Wirl regress their 

efficiency measure on ܼ௧ି and find the best fitting combination of w and the lag length, l, 

using a simple inverse functional form.  However, this analysis is entirely separate from their 

services demand function estimation.   

Haas and Schipper (1998), who follow a similar type of approach as Walker and Wirl 

(1993) although focusing on the residential sector rather than road transportation, point out 

that knowledge of how efficiency changes affect energy demand is important for policy 

reasons.  They consider several approaches to considering the role of irreversible efficiency 

improvements in affecting energy demand.  In one approach they use a bottom-up method, 

examining particular appliances and particular end uses, to obtain a time series for intensity 

(energy demand per unit of service, or the inverse of efficiency).  This intensity variable is 

then included as an additional explanatory variable directly in the energy demand equation, 

and is found to be significant for most countries, although interestingly, with this variable 

included, the coefficient on price is generally not significant.  In another approach they use a 

lagged value of the filter, ܼ௧, of Walker and Wirl (1993), as described above, and include this 

in the energy demand equation, although it was generally found to be not statistically 

significant.   

Recent theoretical analysis by Goerlich and Wirl (2012) extends the framework of 

Walker and Wirl (1993) to explicitly include quality as well as services in the utility 

function.2  Although Goerlich and Wirl do not conduct any econometric analysis pertaining to 

energy demand functions, one of the implications that they draw from their theoretical 

analysis is that estimates of energy demand elasticities that are obtained from formulations 

                                                            
2 This idea was suggested in a footnote in Walker and Wirl (1993).   
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that do not account for efficiency – although they again focus just on technical efficiency as 

defined earlier – will be essentially meaningless, particularly for purposes of policy analysis.   

As far as is known, the papers described above are the only studies that explicitly 

attempt to capture in their energy demand model specification, and subsequently (in two of 

the studies) in their empirical work, the concept that, consistent with the idea of demand 

being for energy services rather than energy itself, there is a role for energy efficiency to 

play.  However, this key feature does not appear to have been implemented or further 

developed in any subsequent studies.  Nevertheless, there is an associated strand of literature 

that has adopted ad hoc specifications of energy demand models, by including various forms 

of time trends, that are consistent with, and at least implicitly acknowledge, the idea that 

energy demand changes over time as energy efficiency changes.  However, by their very 

nature, in such formulations the effects of energy efficiency are treated as being exogenous.  

For example, Beenstock and Willcocks (1981, 1983) introduce a linear time trend, although 

acknowledging its limitations.  Later, Hunt et al. (2003a, 2003b), arguing that a linear trend is 

an inadequate way to capture technical progress and energy efficiency, suggesting that 

exogenous effects can be better captured via a stochastic trend – which they refer to as the 

underlying energy demand trend (UEDT).  However, according to these authors, the UEDT 

includes more than just exogenous technical progress; it also includes exogenous change 

caused by such things as habit persistence, changes in values and lifestyles, changes in 

economic structure, changes in building and environmental regulations, etc., many of which 

may cause changes in energy efficiency.   

While the approaches just described may indeed capture the effects of energy 

efficiency on energy demand, at least to some extent, a drawback is that they have no well-

grounded theoretical basis that indicates whether or in what way it is appropriate to include 

such terms in energy demand equations to capture efficiency effects.  In part this stems from 
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the continued focus on energy demand rather than the demand for energy services, since it is 

in the latter context that energy efficiency has a clearly defined role.  It is not clear why 

practitioners continue to focus on energy demand rather than the demand for energy services, 

but this may be due, at least in part, to the fact that modeling demand for energy services was 

almost peripheral rather than the key focus of the papers by Walker and Wirl (1993) and Haas 

and Schipper (1998).  Rather, in these studies, the main focus is on the irreversibility of 

technological progress, with the issue of interest becoming how to modify energy demand 

functions to deal with the irreversibility implication.  However, focusing on the demands for 

the services that energy provides, rather than the demand for energy itself, opens up the 

possibility of examining more than just the irreversibility aspects of technical change.  In 

particular, it allows a much clearer and more straightforward examination of issues such as 

rebound effects and asymmetric price responses, which comprise much of the motivation 

underlying the study by Goerlich and Wirl (2012).   

As the preceding discussion highlights, one of the key aspects of focusing on energy 

services rather than energy itself concerns energy efficiency.  In their empirical studies, both 

Walker and Wirl (1993) and Haas and Schipper (1998) construct measures of energy 

efficiency or its reciprocal, and include this in their models.  However, this can be a 

painstaking and intrinsically unsatisfactory task, as there are multiple dimensions to energy 

efficiency as described above, and many will be difficult to observe although some attempt 

has been made to proxy this via a stochastic UEDT (Hunt et al., 2003a; 2003b).  These 

difficulties may be an important reason for the lack of empirical attention explicitly given to 

the idea of modeling demands for energy services.  These problems are further exacerbated 

by the argument that technical progress and therefore energy efficiency might be endogenous 

and consequently induced by past prices, so that any construction of an index of energy 

efficiency will typically ignore this feature.  In the approach developed here our objective is 
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to develop energy demand models that take account of demand being for energy services 

rather than energy itself, as well as the inherent endogeneity of energy efficiency, yet that can 

be estimated using the type of energy datasets that are readily available.   

 

3. Modelling the Demand for Energy Services 

In this section we develop a consumer utility maximization model in which utility is 

derived from consumption of energy services – rather than consumption of energy or of 

energy sources – as well as (potentially) from other non-energy goods.  The conceptual 

approach in which utility is derived from energy services rather than energy itself appears to 

have a long history in energy economics, as many authors refer to derived demands for 

energy (see for example, Howarth, 1997; Hunt et al., 2003a, Haas et al., 2008; Fouquet and 

Pearson, 2012).  However, apart from Walker and Wirl (1993), Hass and Schipper (1998), 

and Goerlich and Wirl (2012), there appear to have been no previous attempts to model this 

explicitly or to fully develop its implications.   

We begin with a simple aggregate model in which there is just a composite energy 

good and a composite energy service, as well as a composite non-energy good, as this leads 

to the specification that is most similar to the single energy-consumption equation 

formulation that seems to be the backbone of empirical energy demand analysis.  Even in this 

greatly simplified framework, consideration of consumer demand being for energy services 

rather than for energy itself yields a different model specification in which energy efficiency 

plays an explicit role.  Next, we extend this analysis to a model in which there are various 

sources of energy (natural gas, electricity) each of which produces a single energy service 

(heating, lighting).  Finally, we generalize this to a specification in which there are multiple 

energy sources each of which may produce multiple energy services, and multiple energy 

services (such as heating) which may be produced from several different energy sources.  
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Issues involved in empirical implementation of the various models, which highlight the 

misspecification involved with typical energy demand function specifications, are examined 

in a subsequent section.   

3.1 Aggregate Energy Model  

In the consumer utility maximization model developed here, utility is derived from 

consumption of energy services, S, rather than consumption of energy itself, E, as well as 

from consumption of other goods, X.  Thus, given the possibly unobserved price of energy 

services, ௦∗, and the observed price of other goods, , as well as the income (or budget), Y, 

that is allocated among them, the consumer’s problem is to determine S and X to:   

,ሼܷሺܵݔܽܯ (1) ܺሻሽ		subject to			ݏ
∗ܵ  ܺ ൌ ܻ.   

Typically, neither the consumption of energy services nor the price of such services 

would be observed, although it may be in some cases, such as when there is a single energy 

source and a single energy service.  Thus, it is necessary to consider the relationship between 

these measures and observed information about the price and consumption of energy.  This 

involves the following two definitional relationships:3   

ߝ (2) ൌ 	ܵ ൗܧ      and  

∗௦ (3) ൌ 	
ܧா

ܵൗ ൌ ா	 ൗߝ     

In (2), energy efficiency (ߝ) is defined as the units of the energy service produced (S) per unit 

of energy (E).4  Thus, if more energy services can be produced using the same amount of 

energy, then efficiency has increased.  In (3), the cost per unit of energy services, referred to 

as the per-unit price of such services, is defined as the cost of energy required to produce one 

                                                            
3 See, for example, Sorrell and Dimitropoulos (2008), although this formulation is also evident in 
Walker and Wirl (1993).   

4 Note that this definition of efficiency abstracts from how efficient any particular equipment that is 
used to convert energy to energy services may be relative to other equipment that might be used to 
perform the same task.  
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unit of those services, that is, the price per unit of the energy source divided by energy 

efficiency.  Jointly, (2) and (3) imply:  

ܵ∗௦ (4) ൌ     ,ܧா	

that is, expenditure on energy services is equal to expenditure on the energy used to provide 

these services.  Given this relationship, the budget constraint in (1) can be alternatively 

written as:  

ܧா (5)  ܺ ൌ ܻ.	

Since this is the same budget constraint that would be used if utility was defined over 

consumption of energy and other goods, it may appear that considering utility as a function of 

the services provided by energy rather than as a function of consumption of energy itself has 

no real effect.  However, this is not the case.  Specifically, from (1), the demand equations for 

S and X would be given by:   

(6) ܵ ൌ ܵሺ௦∗, , ܻሻ  and  ܺ	 ൌ ܺሺ௦∗, , ܻሻ,   

so that substituting for ௦∗ in terms of ா using (3), and for S in terms of E using (2), we 

obtain:   

(7a)  ܧ ൌ ଵ

ఌ
ܵሺ௦∗, , ܻሻ ൌ

ଵ

ఌ
ܵሺಶ

ఌ
, , ܻሻ, and  

(7b)  ܺ ൌ ܺ൫ݏ
∗, ,ܺ ܻ൯ ൌ ܺቀ

ܧ
ߝ
, ,ܺ ܻቁ.   

For subsequent use, it is convenient to write the demand equations in (7a) and (7b) as 

expenditure equations:  

(8a)  ܧா ൌ ቀಶ
ఌ
ቁ ܵ ቀಶ

ఌ
, , ܻቁ ൌ ሺಶ∗ܧ

ఌ
, , ܻሻ, and  

(8b)  ܺ ൌ ܺ ቀ
ಶ
ఌ
, , ܻቁ ൌ ܺ∗ ቀಶ

ఌ
, , ܻቁ,   

where ܧ∗ሺ. ሻ and ܺ∗ሺ. ሻ are functional expressions for the expenditure on energy and on other 

goods, respectively.  As can be seen from these functional expressions, the fundamental 

difference from the typical specification that is estimated is that the energy price term is 

expressed in efficiency units, that is, the price of energy is divided by energy efficiency.  
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Obviously, if this efficiency term equals one, or some other constant – that is, if there is a 

fixed proportional relationship between consumption of energy and consumption of energy 

services – this will simplify to the usual specification where efficiency variables do not 

appear.  Note, however, that estimation of equations such as (8a) and (8b) require data over 

time or location (e.g., countries), with an additional subscript being added to all variables, so 

that to simplify to the usual specification it would be necessary for energy efficiency to be 

constant over time or location, which would seem unlikely.   

3.2 A Simple Model with Multiple Energy Sources and Services  

Next we extend this analysis to a model in which there are various sources of energy 

and various energy services, but to set the framework we begin with a simple specification in 

which each energy source produces only a single energy service, and where each energy 

service is provided by only a single energy source.  For generality, other goods apart from 

energy services are included in the utility function, but the analysis could be restricted just to 

various energy services.5  Later, we generalize this framework to allow for the more realistic 

possibility that several energy sources produce the same type of energy service (e.g., heat), 

and each energy source may produce more than one energy service.   

Initially, to simplify the analysis and notation, it is assumed that utility is derived from 

the consumption of two types of energy services – space heating (݄), and lighting (݈) – as 

well as consumption of other goods.  For ease of notation, and to facilitate development of 

the more general model that we consider subsequently, it is also convenient to distinguish the 

“consumption services” provided by other goods, (݄ݐ), from the actual amount of other 

goods that are purchased, although this may be a one-to-one definitional relationship.   

                                                            
5 This would be analogous to specifications where energy is assumed to be weakly separable from all 
other goods.   
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Thus, given the (likely unobserved) prices of heating, lighting, and other services, 
∗ , 


∗, and ௧

∗ , and an observed budget, Y, that is allocated among them, the consumer’s 

problem is to determine ݄, ݈ and ݄ݐ to:   

,ሼܷሺ݄ݔܽܯ (9) ݈, ݄			subject to		ሻሽ݄ݐ
∗݄  ݈

∗݈  ݄ݐ
∗ ݄ݐ ൌ ܻ.   

To provide a concrete example, suppose that space heating is provided using natural gas, ݃, 

while lighting is provided using electricity, ݁.  Of course, natural gas may provide other 

services, such as water heating, and cooking services, and electricity also provides power for 

appliances and possibly heating services.  Initially these complications are ignored, and it is 

assumed that each energy source only produces one type of energy service.  It is similarly 

assumed that consumption services of other goods, oth, are only produced only by other 

goods, o.  

Generalizing (2), the energy efficiency of each energy service is defined as the units 

of the service produced per unit of the corresponding energy source.6  Thus, if ε is heating 

efficiency, ε is lighting efficiency, and ε௧ denotes the efficiency of providing consumption 

services of other goods (which would generally be equal to 1),7 then by definition,  

ߝ (10) ൌ 	



		;	 ߝ ൌ 	




	;	 ௧ߝ ൌ 	

௧


	,			

where g, e, and o are the quantities of natural gas, electricity, and other goods, respectively.  

As a result, the cost per unit of heating services, which is equated to the (unobserved) price, 


∗ , is a function of heating efficiency, since if the heating efficiency is twice as great, this 

means that it would take half as much natural gas to produce the same amount of heat, and 

                                                            
6 It is not necessary to be specific about the definition of a unit of each of these energy services, since 
the units of measurement of the efficiency variables will adjust to accommodate alternative choices of 
units of services.   

7 Note that if the analysis is just restricted to energy expenditures, with Y defined as expenditure just 
on energy sources rather than total expenditure, then ‘oth’ could refer to services provided by oil 
products, for example, in which case ߝ௧ would refer to the efficiency with which oil products 
produce energy services, and therefore need not equal one.   
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the (variable) cost (that is, the cost of the natural gas used) would be half as much.  Of course 

there would also be a capital cost associated with obtaining increased heating efficiency (e.g., 

a new furnace or boiler, or increased insulation), but it is assumed that this capital decision 

has been made in advance of the utilization decision.  Hence, the budget, ܻ, available to be 

spent on the three goods would be net of the annualized capital costs.8   

Thus, the relationship between the price of heating and the price of natural gas, , 

between the price of lighting and the price of electricity, , and between the price of the 

services provided by other goods and the price of other goods, , is given by:   

 (11)
∗ ൌ 	


ఌ
	;		 

∗ ൌ 	 
ఌ
	;			 ௧

∗ ൌ 	 
ఌ

	.	

As a result of (10) – (11), expenditure on heating, 
∗݄, equals expenditure on natural 

gas, ݃, expenditure on lighting, 
∗݈, equals expenditure on electricity, ݁, and expenditure 

on services provided by other goods, ௧
∗  ,Thus . ,equals expenditure on other goods ,݄ݐ

using (10) and (11), the budget constraint in (9) can be alternatively written as:   

݃ (12)  ݁   ൌ ܻ.			

Since this is the same budget constraint that would be used if utility was defined over 

consumption of natural gas, electricity, and other goods, it may again appear that considering 

utility as a function of the services provided by the various energy sources rather than as a 

function of the energy sources themselves has no real effect. However, this is not the case.  

Specifically, from (9), the demand equations for ݄, ݈, and ݄ݐ would be given by:   

(13) ݄ ൌ ݄ሺ
∗ , 

∗, ௧
∗ , ܻሻ;   ݈	 ൌ ݈ሺ

∗ , 
∗, ௧

∗ , ܻሻ;   ݄ݐ ൌ ሺ݄ݐ
∗ , 

∗, ௧
∗ , ܻሻ 

Using (10) – (11) to substitute for , , and ௧
∗  in terms of , , and , and for 

h, l, and oth in terms of g, e, and o, we obtain:   

(14a)  ݃ ൌ
ଵ

ఌ
݄൫݄

∗ , ݈
∗, ݄ݐ

∗ , ܻ൯ ൌ
ଵ

ఌ
݄ሺ


ఌ
,

ఌ
,

ఌ

, ܻሻ,			

                                                            
8 The model could be generalized to include capital equipment purchasing decisions, but we do not 
consider this extension here.   
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(14b)  ݁ ൌ
ଵ

ఌ
݈൫݄

∗ , ݈
∗, ݄ݐ

∗ , ܻ൯ ൌ
ଵ

ఌ
݈ሺ

ఌ
,

ఌ
,

ఌ

, ܻሻ,  and 

(14c)   ൌ
ଵ

ఌ
݄൫݄ݐ

∗ , ݈
∗, ݄ݐ

∗ , ܻ൯ ൌ
ଵ

ఌ
ሺ݄ݐ


ఌ
,

ఌ
,

ఌ

, ܻሻ.   

Thus, compared to commonly-used specifications, demands for all of the goods, 

including the various energy sources, depend on the prices of the energy sources, the price of 

other goods, the budget, and heating, lighting, and ‘other’ efficiency.  Since, in a systems 

context, most commonly used functional forms (e.g., translog, Almost Ideal Demand System) 

involve estimation of a system of budget or expenditure share equations, it is convenient to 

write the demand equations in (14a), (14b) and (14c) as expenditure share equations:   

(15a)  ݏ ൌ
ଵ


ቀ

ఌ
ቁ ݄ ቀ


ఌ
, 
ఌ
, 
ఌ

, ܻቁ ൌ ݃ሺ

ఌ
, 
ఌ
, 
ఌ

, ܻሻ.   

(15b)  ݏ ൌ
ଵ


ቀ
ఌ
ቁ ݈ ቀ


ఌ
, 
ఌ
, 
ఌ

, ܻቁ ൌ ݁ሺ

ఌ
, 
ఌ
, 
ఌ

, ܻሻ.   

(15c)  s୭ ൌ
ଵ


ቀ
ఌ
ቁ ݄ݐ ቀ


ఌ
, 
ఌ
, 
ఌ

, ܻቁ ൌ  ቀ

ఌ
, 
ఌ
, 
ఌ

, ܻቁ,   

where ݏ,  , are the expenditure shares for natural gas, electricity, and other goodsݏ	and	,ݏ

where, for example, ݏ ൌ   .݃/ܻ, etc

As can be seen from these expressions, the fundamental difference from the typical 

system of energy demand equations specification that is estimated is that the price terms are 

all expressed in efficiency units, that is, the price of natural gas is divided by heating 

efficiency, the price of electricity is divided by lighting efficiency, etc.  Obviously, if all these 

efficiency terms equal one, that is, there is a one-to-one relationship between consumption of 

the energy source and consumption of energy services – this will simplify to the usual 

specification where efficiency variables do not appear.  Note that, as was the case for the 

equations derived for the aggregate model, the data that would be used in estimation would 

differ across time periods or individuals, so that there is an additional subscript added to all 
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variables.  Thus, to simplify to the usual specification it would be necessary that all the 

efficiency terms equalled one for all observations, which seems unlikely.9   

Of course, the results derived here only hold when each energy source provides a 

single energy service, and each energy service is provided by only a single energy source.  

However, this one to one correspondence between energy services and energy sources is 

unlikely to hold in practice.  For example, heating can be produced using natural gas (as in 

the simple model) or electricity, or possibly other energy sources, or possibly a combination 

of energy sources.  Natural gas can produce space heating, cooking, and water heating (which 

may or may not be separate from space heating), and electricity can be used to produce 

lighting (as in the simple model), space and/or water heating, refrigeration, power for small 

appliances, etc.  Therefore, we next consider a generalization of the simple model of the 

demand for energy services to allow for these possibilities.   

3.3 Generalized Model with Multiple Energy Sources and Services  

Here we consider the case where there are ݊ energy sources, indexed ݅, ݆ ൌ 1,… , ݊, 

each of which may produce more than one of ݊∗ energy services, indexed ݉, ݍ ൌ 1,… , ݊∗.  

For notational convenience, energy services are defined separately according to the energy 

source that is used to produce them.  Thus, rather than considering heating as an energy 

service that can be produced using electricity or natural gas, or some other energy source or 

combination of energy sources, for modelling purposes heating produced by electricity is 

considered to be a different energy service to heating produced by natural gas.10   

                                                            
9 Since there is no set definition of a unit of heating or of lighting, the scaling of the ߝ is arbitrary, so 

it may be preferable to view the model as reducing to the usual specification if the ߝ are the same for 

each service, for all observations, which seems equally unlikely.  

10 Although in both cases the end result is heating, it is often the case that efficiency improvements are 
for a particular energy service–energy source combination.  Note that this way of modelling energy 
services does not preclude more than one energy source being used at the same time to produce these 
energy services, such as a boiler that produces heat using both electricity and natural gas.   
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Using ݔ୧ to denote the quantity of the ith energy source or good, and ݒ୫ to denote the 

quantity of the mth energy service, the efficiency of energy source i used to produce energy 

service m is given by ε୫, where: 

ߝ (16) ൌ 	 ௩
௫

 , 

where ݔ is the quantity of energy source i that is used to produce energy service m, so that  

ݔ (17) ൌ 	∑ ఢݔ  ,   

where ∑ ሺ. ሻఢ  refers to the sum over all energy services (m) that are provided by energy 

source i.  As in the simple model, relationships analogous to (11) provide the links between 

the (unobserved) prices of the energy services (∗ ), each of which is provided uniquely by a 

single energy source, and the prices of the energy sources ().  Specifically,  

∗ (18) ൌ 	 
ఌ
 ,  	݅ ൌ 1,… , ݊; 		݉ ൌ 1,… , ݊∗; 		݉߳݅.   

Thus, total expenditure on energy source i is the sum of expenditure on all the services 

produced by that energy source, so that: 

ݔ (19) ൌ 	∑ ఢݔ ൌ 	∑ ∗ ఢݒ  ,  	݅ ൌ 1,… , ݊; 		݉ ൌ 1,… , ݊∗; 		݉߳݅.   

Hence, the budget constraint for the case where the household derives utility from 

consumption of energy services and other goods becomes ∑ ∗୫ ∗୫୬ݒ
୫ୀଵ ൌ ܻ and the 

consumer’s problem is to determine ሼݒ୫, ݉ ൌ 1,… , ݊∗ሽ to:    

,ଵݒሼܷሺݔܽܯ (20) ,ଶݒ … , 			to	subject		∗ሻሽݒ ∑ ∗ ݒ
∗
ୀଵ ൌ ܻ,   

which yields derived demand equations for the services/goods given by: 

ݒ (21) ൌ ଵሺݒ
∗, ଶ

∗, … , ∗
∗ , ܻሻ ൌ ሺݒ	

భ
ఌభ
, భ
ఌమ
, … , 

ఌ∗
, ܻሻ,   

and hence expenditures on each energy service given by: 

∗ (22) ݒ ൌ 	ቀ 
ఌ
ቁ	ݒሺ

భ
ఌభ
, … , 

ఌ∗
, ܻሻ,   

Although expenditure on energy service m, ୫∗  ୫, is equal to expenditure on theݒ

amount of energy source (i) used to produce that energy service, ୧ݔ୧୫, this latter expenditure 
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is generally unobserved unless energy source i is used to produce only a single energy 

service.  However, summing over all energy services produced by energy source i yields ݔ, 

total expenditure on energy source i, which is observed.  Specifically, dividing both sides of 

(19) by total expenditure, Y, and in conjunction with (22) yields expenditure share equations:   

ݏ (23) ൌ
௫

	ൌ 	 ൫భ

ೊ
൯∑ ∗ ఢݒ ൌ 	 ൫భ

ೊ
൯∑ ቀ

ఌ
ቁ	ݒ ቀ

భ
ఌభ
, … , 

ఌ∗
, ܻቁఢ  

  ൌ	ݏሺ
భ
ఌభ
, … , 

ఌ∗
, ܻሻ,  ݅ ൌ 1,… , ݊.  

Thus, compared to the simple model considered previously, the only difference is that 

the price of each energy source appears (potentially) more than once in each expenditure 

share function, in each case divided by the respective efficiency term.  Again, in contrast to 

standard energy demand equations, the key difference is that each energy price is divided by 

an efficiency term, and these terms are typically not included at all, let alone as the 

denominator of the price terms, in specifications that are typically estimated.   

 

4. Empirical Implementation of the Energy Services Models 

Next we consider empirical implementation of the models of energy services that were 

developed in the previous section.  This analysis clearly identifies the misspecification 

problems that are implicit in the energy demand formulations that are typically estimated, and 

shows how they can be avoided.  We begin here with the aggregate model, and then consider 

the generalized version of the model with multiple energy sources and services (which 

includes the simple version of this model as a special case).  In a later section, a UK 

aggregate model is presented as an empirical example to illustrate the potential scope of such 

misspecification. 
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4.1 Aggregate Model   

For the aggregate model of energy services, we focus on the expenditure equations in 

(8a) and (8b).  Since, via the budget constraint in (5), these two expenditures sum to income, 

Y, it is only necessary to consider one of the two equations.  Here, since it is of most interest 

in the energy literature, we focus on the energy expenditure equation in (8a), that is, ாܧ ൌ

ሺಶ∗ܧ
ఌ
, , ܻሻ.  The prevalent functional specification for an aggregate energy demand or 

expenditure equation is the double-logarithmic form which, ignoring the stochastic 

component(s) and other dynamic terms that are often included (which we discuss later), can 

be written as:11   

(24) lnሺாܧሻ ൌ ଵߚ  ଶߚ ln ቀ
ಶ
ఌ
ቁ  ଷߚ ln   ସߚ ln ܻ, 

which could be written equivalently as:12   

(25) lnሺாܧሻ ൌ ଵߚ  ଶߚ ln ா  ଷߚ ln   ସߚ ln ܻߚହ ln  or  ,ߝ

(26) ln ܧ ൌ ଵߚ  ଶߚ
∗ ln ா  ଷߚ ln   ସߚ ln ܻߚହ ln   ,ߝ

where ߚଶ
∗ ൌ ሺߚଶ െ 1ሻ.  Imposing homogeneity of degree zero in prices and incomes (an 

implication of the budget constraint), these can be rewritten in real terms as:   

(27) ln ቀಶ

ቁܧ ൌ ଵߚ  ଶߚ ln ቀ

ಶ

ቁ  ସߚ ln ቀ




ቁߚହ ln  or  ,ߝ

(28) ln ܧ ൌ ଵߚ  ଶߚ
∗ ln ቀಶ


ቁ  ସߚ ln ቀ




ቁߚହ ln   ,ߝ

where ቀಶ

 ቁ is real expenditure on energy, while E is the quantity of energy.  Althoughܧ

there are implied parameter restrictions in these equations, namely ߚହ ൌ െߚଶ in (25) or (27), 

                                                            
11 Note, however, that this functional form is not entirely consistent with the model in (8a) and (8b), 
since the double-logarithmic form cannot satisfy the adding-up conditions implicit in the budget 
constraint, that is, that the sum of expenditure on the two goods equals total expenditure.  Further, to 
avoid the restriction of constant price elasticities over time, a more flexible functional form would be 
required.  An alternative possibility is considered subsequently.   

12 However, the different left-hand side variables in (25) and (26) have potentially different 
implications for the stochastic specification, and when lagged dependent variables are included as part 
of the specification.   
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and ߚହ ൌ െሺ1  ଶߚ
∗ሻ in (26) or (28), these will generally not need to be imposed due to the 

way in which the energy efficiency variable is specified, which we consider later.   

Thus, in terms of empirical implementation, the only change that occurs when account 

is taken of demand being for energy services rather than for energy itself, is the addition to 

the estimating equations of a term involving the (natural logarithm of the) energy efficiency 

variable.  Hence, focusing on demand for energy (as is typically done) rather than demand for 

energy services is tantamount to omitting this term from the estimating equations.  Unless 

this term is constant across observations, estimation by standard methods will result in 

omitted variable bias, and this has implications for the price elasticities and other measures 

that would be determined from such an equation.  

In the specification in (28), the own-price energy elasticity is given by ߟಶሺܧሻ ൌ

	 డா
డಶ

ൌ ଶߚ
∗	, while in specification (27), ߟಶሺܧሻ ൌ 	 ሺߚଶ െ 1ሻ.  For both (27) and (28), the 

own-price elasticity is restricted to be constant throughout the sample period, which is 

arguably a drawback, given the evidence from Walker and Wirl (1993), Haas and Schipper 

(1998), and Ryan and Plourde (2002), among others, that such a restriction is inappropriate.  

We therefore also consider an alternative functional specification.   

A popular more flexible functional form that could be used is the Linearized version 

of the Almost Ideal Demand System (LAIDS), introduced by Deaton and Muellbauer (1980).  

In this case, the expenditure equations in (8a) and (8b) would be replaced by expenditure 

share equations.  As shown in Ryan (2014), use of LAIDS with the aggregate energy services 

model, again with homogeneity and the adding-up conditions applied, leads to the following 

functional form for the energy equation:   

ாݏ (29) ൌ ଵߙ  ଶߙ ln ቀ
ಶ

ቁ  ସߙ ln ቀ




ቁߙହ ln   ,ߝ
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where ݏா ൌ ቀಶா

ቁ is the share of income that comprises expenditure on energy, ߙହ ൌ െߙଶ, 

and ݈݊ ܲ is the predetermined (prior to estimation) Stone Price Index, defined here as:  

(30) ݈݊ ܲ ൌ ாݏ ln ா  ሺ1 െݏாሻ ln    .

In this case, the energy own price elasticity is given by:13  

ሻܧಶሺߟ (31) ൌ 	
డா

డಶ

ಶ
ா
ൌ ఈమ

௦ಶ
െ ସߙ െ 1,   

which is not constant since ݏா varies across observations.   

4.2 Generalized Model with Multiple Energy Sources and Services 

Next we consider empirical implementation of the general model with multiple 

energy sources and energy services using typically available data that pertain just to 

consumption and prices of energy sources.  Since it is used so frequently in empirical 

analysis, the specification considered here is again the Linearized version of the Almost Ideal 

Demand System (LAIDS), although similar analysis could be undertaken using alternative 

functional formulations.  For LAIDS, the expenditure share equations are derived from a cost 

function rather than a utility function, but the outcome in terms of the preceding analysis is 

unchanged.  Following Deaton and Muellbauer (1980), the equations for the expenditure 

shares for each energy service, s୫∗ ൌ ∗ ௩


ൌ 	 ௫


, have the form:  

∗ݏ (32) ൌ ∗ߙ	  ∑ ߛ
∗ ݈݊	ሺ∗ሻ  ∗ߚ ሺ݈݊ ܻ െ ݈݊ ܲ∗ሻ,    m, q = 1, …, ݊∗,  

In the linearized form of the AIDS model, the price index, ln ܲ∗in (32) is replaced by 

a predetermined price index, such as the Stone Price Index:  

(33) ln ܲ∗ ൌ 	∑ ∑ ∗ݏ ln ఢ

ୀଵ ൌ 	∑ ln  ሺ∑ ∗ఢݏ ሻ

ୀଵ ൌ 	∑ ݏ ln 

ୀଵ ൌ ln ܲ,   

                                                            
13 See Buse (1994) for an evaluation of the various possible elasticity expressions that can be used 
with the LAIDS model.  This expression is the most widely used and, according to Buse’s results, is 
marginally the best. 
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where ݏ୧ ൌ 	∑ ∗ݏ , so that ln ܲ∗  simplifies to the usual Stone Price Index defined over 

energy sources, 	ln ܲ ൌ 	∑ ݏ ln 

ୀଵ   Since, from (18), ln p୯∗ ൌ ln ሺ	p୨ ε୯ሻ⁄ ൌ ln p୨ െ

ln ε୯, 	݆ ൌ 1,… , n; ݍ	 ൌ 1,… , n∗; 		qϵj	, (32) can be re-written as:   

∗ݏ (34) ൌ ∗ߙ	  ∑ ∑ ߛ
∗ ln ൬

ೕ
ఌ
൰ఢ


ୀଵ  ∗ߚ ሺ݈݊ ܻ െ ݈݊ ܲሻ	

			ൌ ∗ߙ	  ∑ ∑ ߛ
∗ ln൫൯ఢ


ୀଵ െ	∑ ߛ

∗ ln൫ߝ൯  ∗ߚ ሺ݈݊ ܻ െ ݈݊ ܲሻ, 

m, q = 1, …, ݊∗, where ∑ ∑ ߛ
∗ ln൫ߝ൯ఢ


ୀଵ ൌ 	∑ ߛ

∗ ln൫ߝ൯ .   

In the general case, different energy services are provided by the same energy source, 

and thus face the same price for that energy source (but possibly have different efficiencies), 

while unobserved budget shares for different energy services provided by a specific energy 

source sum to the observed budget share for that energy source.  Thus, (34) can be aggregated 

by summing across all the different energy services provided by each of the n energy sources 

ሺ∑ ୫∗୫୧ݏ ሻ to yield the following system of budget share equations, one for each energy 

source (or good):   

ݏ (35) ൌ ߙ	  ∑ 	݈݊ߛ  ሺ݈݊ߚ ܻ െ ݈݊ ܲሻ  ሾܶܯܴܧሿ,    i, j = 1, …, ݊,  

where  

ߙ (36) ൌ 	∑ ∗ఢߙ ; ߚ	 ൌ 	∑ ∗ఢߚ ; ߛ	 ൌ 	∑ ∑ ߛ
∗

ఢఢ ; ݏ	 ൌ 	∑ ∗ఢݏ ,   ݅, ݆ ൌ 1,… , ݊,  

and ∑ ሺ. ሻఢ  refers to the sum over all energy services (m) that are provided by energy source 

(i), where i, j =1, …, n index the n energy sources and/or goods, and   

ܯܴܧܶ (37) ൌ െ∑ ൫∑ ∗ߛ ߝ	݈݊ ൯ఢ .   

Note that the usual adding-up conditions (since the sum of the budget shares is 1), 

along with homogeneity and symmetry, which apply to the energy services share equations in 

(32) or (34), have implications for the parameters in the energy sources share equation (35).  

In particular, adding-up requires: 

(38) ∑ ∗ߙ ൌ 1;			∑ ߛ
∗

 ൌ 0			for all ݍ;			∑ ∗ߚ ൌ 0;      m, q = 1, …, ݊∗,   



Economic Modelling of Energy Services  Page 24 of 40 

while homogeneity and symmetry require:   

(39) ∑ ߛ
∗

 ൌ 0			for all ݉; 		 and			ߛ
∗ ൌ ∗ߛ ,		     m, q = 1, …, ݊∗.   

As can be seen from the definitions in (36),  γ୫୯∗ ൌ γ୯୫∗ ,  m, q = 1, …, n∗, implies that 

γ୧୨ ൌ γ୨୧,  i, j = 1, …, n, while ∑ α୫∗୫ ൌ 1 → 	∑ α୧୧ ൌ 1;		∑ β୫∗୫ ൌ 0 → ∑ β୧୧ ൌ 0; and 

∑ γ୫୯∗୫ ൌ ∑ γ୫୯∗୯ ൌ 0	 → 		∑ γ୧୨୨ ൌ ∑ γ୧୨୧ ൌ 0.  Thus, the same conditions that apply to (32) 

or (34) apply to the re-parameterized specification in (35). Of course, for (35) to satisfy 

adding up it is also necessary that ∑ ሾTERM୧ሿ୧ ൌ 0, which can be shown to hold given the 

restrictions in (38). 14 

To summarize, in terms of empirical implementation, the only change that occurs with 

the LAIDS model when consumers determine demands for energy services rather than for 

energy sources, is the addition to each of the estimating equations for the expenditure shares 

of TERM୧ defined in (37).  Apart from this term, even though energy services might be 

provided by multiple energy sources, and any particular energy source may provide several 

different types of energy services, the system of equations that would be estimated when the 

model is specified in terms of energy services would be the same as the system that would 

typically be estimated when utility is defined simply over energy sources (and possibly 

goods), and the usual parameter restrictions would be appropriate.  In particular, expenditure 

shares would still be defined in terms of energy sources, and the price terms in the estimating 

equations would still refer to the prices of these energy sources.  Thus, focusing on demands 

for energy sources (as is typically done) rather than demands for energy services is 

                                                            
14 Note that if the efficiency terms were also to be introduced in the Stone Price Index in (33), by 

defining ln ܲ∗ ൌ ∑ ∗ݏ ln ∗
∗
ୀଵ ൌ lnܲ െ ∑ ∗ݏ ln ∗ߝ

∗
ୀଵ   in (37) would becomeܯܴܧܶ ,

െሾ∑ ൫∑ ∗ߛ ߝ	݈݊ ൯ఢ െ ߚ ∑ ∗ݏ ln ∗ߝ ሿ.  Typically, since the Stone Price Index is used as an 

approximation to linearize the share equations, and since introducing unobserved efficiency terms into 
(33) would mean that ln ܲ∗ could not be determined prior to estimation and would therefore result in 
all current period shares appearing as explanatory variables in each share equation, (33) would not be 
defined in this way.   
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tantamount to omitting TERM୧ from the usual estimating equations.  In other words, the key 

difference that arises from the consideration of energy services is this extra expression, 

TERM୧, which involves the ln	ε୯, terms that (in natural logarithms) reflect the energy 

efficiency of the various energy sources when used to produce particular energy services.15  

Under certain, though unlikely conditions, this omission will be unimportant.  These include 

when efficiency is equal to 1 for all energy services and for all observations (ln ε୲ ൌ 0), or 

when efficiency is the same for all energy services, even if the level of this efficiency differs 

over time, (ln ε୲ ൌ θ௧), in which case TERM୧ will disappear with the homogeneity 

conditions (39).  Even if efficiency differs for different energy services but is constant over 

time (ln ε୲ ൌ θ), TERM୧ will be absorbed into the intercept.  However, in any other 

circumstances, such as when there are differences in efficiency and variation over time, as 

would be expected, then estimation of (35) (incorporating (33)) without including the 

efficiency terms (TERM୧) will result in omitted variables bias.  As is well known, this has 

important implications for price elasticities and other measures that would be determined 

from the estimated parameters of such a system.   

With the LAIDS version of (35), the price elasticities for the various energy sources 

for the LAIDS model can be calculated from the estimated parameters using the relationship 

(Buse, 1994):   

ߟ (40) ൌ ሻݔೕሺߟ 	ൌ
ߛ

ൗݏ െ ߚ ൭
ݏ
ൗݏ ൱ െ    ,ߜ   ݅, ݆ ൌ 1,… , ݊. 

where ߜ ൌ 1	if	݅ ൌ ݆, and ൌ 0	otherwise.  Of course these price elasticities are only 

appropriate if energy efficiency is explicitly incorporated in the model (via TERM୧).   
                                                            
15 The analysis here has utilized the Linear AIDS model.  Deaton and Muellbauer (1980) also consider 
a nonlinear version of the AIDS where ݈݊ ܲ∗ in (32) is essentially a translog function of prices 
involving mostly the same unknown coefficients as appear in the rest of the model.  In this case, 
TERM୧ would also include the cross products of the efficiency measures with the prices of the energy 
sources, and the cross products of the efficiency measures.   
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5. Approaches to Modelling Unobserved Energy Efficiency 

As can be seen from the estimating equation for the energy demand function for the 

aggregate model, in (27), (28), or (29), as well as for the energy source expenditure share 

equations in (35), the key difference from the specifications that are typically estimated is the 

addition to these equations of a term involving the energy efficiency variables.  Of course if 

data were available directly on these efficiency variables, or could be used to construct an 

index of efficiency, such variables or indexes could be used directly in the energy demand 

equations.  This is the approach used by Haas and Schipper (1998) and in a different way by 

Walker and Wirl (1993).  However, in general, such data are not readily available, except for 

some specific applications, and any index that is constructed is unlikely to include all the 

characteristics that define energy efficiency.  Further, constructing such indexes and then 

including them in the model ignores the endogeneity of energy efficiency, including its 

possible dependence on the past movements in energy prices and/or other variables.   

Another issue concerns exactly what efficiency should capture.  In (2), efficiency is 

defined as the amount of energy services produced per unit of energy and although Walker 

and Wirl (1993) use this same definition, in constructing their efficiency measure for use in a 

transportation demand model, they take pains to exclude the reversible part, noting that:   

“The efficiency series … must measure the technological efficiencies and not 
the observed efficiencies which are affected by numerous car attributes that 
are reversible. … a low gasoline price (e.g. after 1985), may lead to a 
reduction in observable efficiencies due to the purchase of larger cars despite 
the improved efficiencies of new models.  Therefore, observed and published 
figures on actual efficiencies do not capture the technological efficiency and 
are not very useful for our purpose.” (p. 195). 

But arguably this entirely misses the point.  If consumers are purchasing less efficient 

equipment (larger cars, for example) even though more efficient equipment is available, then 

energy demand is affected.  Energy demand does not just respond to the highest level of 

efficiency that is available.  As energy prices fall, the efficiency knowledge that has been 
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accumulated does not decrease, but the use of it may.  In this sense, simply taking account of 

the irreversibility of efficiency knowledge in energy demand functions is not sufficient.  

More importantly, it is necessary to take account of how consumers respond in terms of their 

energy purchases.  What is needed is not just a unidirectional, non-decreasing index or filter 

that reflects the state of technical efficiency knowledge, but rather a function that indicates 

how the factors that have induced that state of knowledge also affect the extent to which 

consumers make use of it in their purchases, that is, a function in which the determinants of 

observed efficiency are allowed to play their roles.   

In view of this feature, the approach we develop involves specifying the energy 

efficiency term ሺߝሻ	 or terms ሺߝ, ݍ ൌ 1,… , ݊∗ሻ to be functions of observed variables and 

unknown parameters.  Thus, data on energy efficiency itself is not required; all that is needed 

is information on the variables that affect energy efficiency.  Including an observation 

subscript, t, on the variables in the model, the efficiency terms are therefore specified as:  

(41) ݈݊ ௧ߝ ൌ ݂ሺܼଵ௧, ܼଶ௧,⋯ , ܼ௦௧	ሻ,   q = 1,...,݊∗, t=1, …, T, 

where the subscript ‘ݍ’ indicates that the function may differ for different energy services.  

Note that while the elasticities in (31) or (40), or those calculated using (27) or (28), do not 

depend explicitly on the particular variables included in these efficiency functions or their 

corresponding estimated coefficients, these aspects of the specifications will of course 

potentially affect the values of all the other estimated parameters in the model, as well as the 

estimated shares that appear in (31) and (40), and therefore the values of the elasticities.   

There are a number of possible types of explanatory variables that might determine 

(the natural logarithm of) energy efficiency for each energy service given in (41).  These 

could include:   
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Exogenous trends 

The simplest version allows energy efficiency to follow a simple deterministic trend 

  .and such an approach would implicitly be consistent with many previous studies ,(ݐ)

However, given some of the arguments against such a simplistic approach (summarized in 

Hunt et al., 2003a; 2003b), nonlinear trends are likely to be more appropriate.  Thus, an 

alternative approach would be to include ݐ and ݐଶ together, or a more general stochastic trend 

(or UEDT, as discussed in Hunt et al., 2003a; 2003b).   

 

Past energy prices 

An increase in the price of energy sources is likely to provide the motivation for 

technical change that improves the efficiency of the delivery of household energy services 

(such as heating using natural gas).  This suggests that energy efficiency will be a function of 

past prices of various energy sources, not necessarily just the one that is used to provide the 

energy services being considered, since substitution is possible.  Alternatives for the lagged 

energy source price terms include relative prices, real prices, or growth rates.  

 

Past Energy Price Components 

A number of authors (such as Gately and Huntington, 2002) have estimated energy 

demand models that allow for asymmetric responses to price changes based on the idea that 

when energy prices rise, households make irreversible energy efficiency investments that 

reduce their responsiveness to energy demand, even if energy prices were subsequently to 

decrease. Therefore, the types of terms used to allow for asymmetric effects, as considered by 

Gately and Huntington (2002) (among others), could be also be possible explanatory 

variables that determine (the natural logarithm of) energy efficiency.  
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6. Illustrative Empirical Example 

The main contribution of this paper is the introduction of an analytical model that 

takes account of how energy is demanded not for its own sake but for the services it provides.  

This was done at both a macro level (a single aggregate energy service) as well as a micro 

level (demands for various energy services), and various ways of empirically implementing 

both types of models were presented.  As was shown, demands for energy services can 

readily be converted and/or aggregated into demands for particular energy sources, or for 

aggregate energy.  However, the resultant energy demand functions differ from those that are 

typically estimated in that they involve additional terms that reflect the efficiency with which 

energy is converted into the energy services that are provided.  We have outlined various 

ways that this energy efficiency can be modelled in the case where data on efficiency are not 

readily available.  Such modelling is a rich area for future research, as is estimation of a 

variety of models based on the energy services specification, and we do not attempt to 

undertake such an ambitious exercise here.  Rather, in this section we provide an illustrative 

empirical example, using UK data, of just one particular formulation (the aggregate energy 

services model) using one possible type of specification for energy efficiency (the exogenous 

trends approach).   

6.1 Specifications 

The basis for our illustrative examination of how the explicit modelling of energy services 

impacts on estimated energy demand relationships is the simple aggregate model, equation 

(28), which is estimated for the UK whole economy.  We begin with a ‘base’ benchmark 

model (Base) that excludes any extra terms that result from explicitly incorporating energy 

services in the consumer utility maximizing framework (i.e. the ߚହ݈݊ߝ term in (28) is 

excluded).  This is then compared with two ‘augmented’ models that capture the effect of 

including efficiency using two forms of the exogenous trends approach discussed in the 
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previous section:16 Model A1 adds ݐ and ݐଶ, (where t is a time trend t=1, 2, 3, …); and Model 

A2 adds ߤ௧, a stochastic trend/UEDT, where:   

௧ߤ (43) ൌ ௧ିଵߤ  ௧ିଵߛ  ߮௧; ߮௧~݅݅݀	ܰሺ0,    జଶሻ, andߪ

(44) ߰௧ ൌ ߰௧ିଵ  ߱௧;  ߱௧~݅݅݀	ܰሺ0,    .ఠଶሻߪ

Consistent with typical energy demand equations, all models (Base, A1 and A2) include a 

weather-related (temperature) variable (ܶܬ௧).  In addition, to allow for the possibility of 

dynamics and to help ensure that the error terms are well behaved, the models are specified as 

ARDL(2) models in the energy (ܧ௧), real energy price ( ௧ܲ) and real income ( ௧ܻ) variables: 17   

௧ܧሻ݈݊ܮሺܣ (42) ൌ ሻ݈݊ܮሺܤ	 ௧ܲ  ሻ݈݊ܮሺܥ ௧ܻ  ௧ܬܶ	ߠ  ݁௧     t=1967, …, 2011,   

where ܣሺܮሻ, ܤሺܮሻ, and ܥሺܮሻ are polynomial lag operators ሺ1 െ ܽଵܮ െ ܽଶܮଶ), ሺ1  ܾଵܮ 

ܾଶܮଶሻ, and ሺ1  ܿଵܮ  ܿଶܮଶሻ, respectively, ܤሺܮሻ/ܣሺܮሻ and ܥሺܮሻ/ܣሺܮሻ represent the long run 

price and income elasticities respectively, and ݁௧ is a random error term.  Given that a 

stochastic trend is included in the second augmented model (A2), it is estimated using 

STAMP 8.10 (Koopman et al., 2007).  The base model (Base) and the first augmented model 

(A1) can be estimated using a more standard software package such as PcGive 12.10 

(Doornik and Hendry, 2007), which yields a richer set of diagnostics and has better testing 

procedures.  To facilitate comparisons of the diagnostics for the different model 

specifications, the Base and A1 models are estimated using both PcGive and STAMP.   

 

  

                                                            
16 At this stage these specifications are just meant to be illustrative; the energy services model 
developed earlier is sufficiently rich to allow many other possibilities as discussed in the previous 
section, and some others, particularly those where energy efficiency is dependent on past prices, may 
be preferable.   

17 Exact definitions of the variables used in the estimation are given in the following sub-section. 
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6.2 Data. 

The primary source of UK data is the International Energy Agency (IEA) database.  ܧ is 

whole-economy total energy consumption in thousand tonnes of oil equivalent (ktoe) and ܻ is 

GDP in billion 2005 US$ using PPPs (both from IEA, 2013a). The index of real energy prices 

(2005=100) is also taken from the IEA database (IEA, 2013b) but is only for the period 

1978–2011. This is therefore spliced with an aggregate real price index for each country 

derived from data in Baade (1981); calculated by weighting gas in households and industry, 

coal in households and industry, electricity in households and industry, gasoline, diesel fuel 

and kerosene by their fuel consumption shares.18 This produces a real aggregate energy price 

index for each country in 1972 prices (1972=100) over the period 1960 to 1980. The two 

series (1960–1980; 1972=100) and (1978–2006; 2000=100) are subsequently spliced using 

the ratio from the overlap year 1978 to obtain the real energy price index, denoted by P, over 

the period 1960 to 2011 at 2005 prices (2005=100).  The weather variable ܶܬ is the average 

January temperature in degrees Celsius for Great Britain, taken from various issues of the UK 

Digest of Energy Statistics (DUKES). 

6.3 Estimation Results 

Table 1 presents the estimation results for the base Model (Base) and the two 

augmented models (A1 and A2).19  This shows that all models pass an array of residual 

diagnostic tests, for A2 the auxiliary residuals for the hyper-parameters are normally 

distributed, and the temperature variable is significantly different from zero in all models.   

                                                            
18 This source was used in a similar way by Prosser (1985), Adeyemi et al. (2010) and Adofo et al. 
(2013). 

19 An advantage of the specification in A2, where the structural time series model (STSM) is used 
with the stochastic trend, is that it is not necessary to consider issues of unit roots and cointegration 
(Harvey, 1997).  This is not formally the case with A1, but given that the results for both A1 and A2 
are reasonably similar, and since this example is just meant to be illustrative, we have not explicitly 
considered this issue.   
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Table 1: Estimation Results (Dependent Variable ࢚ࡱ) 

Model Base  A1  A2  
Estimated Long Run Elasticities    

Price -0.79 [0.05] -0.30 [0.00] -0.11# 
Income 0.18 [0.05] 0.69 [0.00] 0.56# 
    

Estimated Coefficients    
January Temperature -0.0050 [0.03] -0.0057 [0.01] -0.0058 [0.00] 
Trend  -0.0009 [0.75]  
Trend Squared  -0.0001 [0.00]  
    

Estimated Hyper-parameters    
Irregular   0.000230 
Level   ---------- 
Slope   0.000024 

PcGive Diagnostics    

S.E. 0.021 0.019  
ܴଶ 0.935 0.948  
AIC -7.5281 -7.6782  
SC -7.1457 -7.2193  
    

AR(1-2) 1.96 [0.16] 0.61 [0.55]  
ARCH(1-1) 0.04 [0.85] 0.44 [0.51]  
Normality 4.05 [0.13] 0.85 [0.65]  
Heteroscedasticity 1.26 [0.30] 1.08 [0.44]  
RESET 2.17 [0.15] 0.94 [0.34]  
    

Test Against Base  4.91 [0.01]  
STAMP Diagnostics    

r(1) -0.10 -0.13 -0.14 
Q  4.62 [0.46] 5.09 [0.40] 5.87 [0.32] 
Normality 2.15 [0.34] 1.00 [0.61] 2.57 [0.28] 
H(h) 1.20 [0.37] 0.99 [0.51] 1.28 [0.33] 
    

Auxiliary residuals:    
Normality – Irregular   1.39 [0.50] 
Normality – Level   ---------- 
Normality – Slope   3.30 [0.19] 

Notes. 
(i) The estimation period for all models is 1962-2011. 
(ii) [o.oo] represents probability levels (# denotes that the probabilities of the long-run elasticities 

cannot be extracted from STAMP). 
(iii) For the PcGive Diagnostics: 

 S.E. and ܴଶ refer to the estimated Standard Error and Coefficient of Determination 
respectively; 

 AIC, and SC refer to the Akaike Information Criterion and the Schwarz Criterion 
respectively; 

 AR(1-2) refers to the F-test test for 2nd order residual autocorrelation; 
 ARCH(1-1) refers to the F-test for 1st order AutoRegressive Conditional 

Heteroscedasticity; 
 Normality refers to the Doornik and Hansen ߯ଶ-test for normality; 
 Heteroscedasticity refers to the F-test for heteroscedasticity test using squares; 
 RESET refers to the F-test Regression Specification Test; and 
 Test Against Base refers to the exclusion F-Test for Trend and Trend Squared. 

(iv) For the STAMP Diagnostics: 
 r(1) is the residual autocorrelation at lag 1; 
 Q refers to the Box-Ljung ߯ଶ-test for 6th order residual autocorrelation; 
 Normality refers to the Bowman-Shenton ߯ଶ-test for normality; 
 H(h) refers to the F-test for heteroscedasticity; 
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When comparing A1 with Base it can be seen that ܴଶ and the information criteria 

(AIC and SC) all suggest that A1 is preferred.  Moreover, the test of A1 against Base 

suggests that the two extra variables ݐ and ݐଶ included in the augmented model to capture the 

impact of energy efficiency are jointly significantly different from zero; thus supporting the 

idea that these extra terms to represent the efficiency are required in the model.  While A2 

cannot be formally tested against Base, the comparable coefficient estimates are similar in A2 

and A1.  Figure 2 shows the similarity between the shapes of the estimated exogenous trend 

from A1 and the estimated stochastic trend from A2, with both suggesting that energy 

efficiency has, ceteris paribus, reduced aggregate energy demand over the estimation 

period.20   

 

Figure 1: Estimated Exogenous Trends to Capture Effects of Energy Efficiency 

 

 

                                                            
20 The estimated long run elasticities from A2 and the shape of the trend are similar to those obtained 

by Dimitropoulos et al. (2005) who use a different data source and data period and test down from an 

ARDL(4) model to a preferred specification.   
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Table 2 summarizes the estimated long run price and income elasticities from the 

different models.  This shows that the estimated long run income elasticity is somewhat 

higher in the augmented models than in the base model, whereas the estimated long run price 

elasticity is somewhat lower (in absolute terms).  This illustrates that the explicit modelling 

of energy services impacts the estimated own-price and income elasticities, indicating that 

results obtained from estimation of standard ‘energy demand’ relationships that do not 

consider energy service demand are likely to result in biased elasticity estimates. 

 

Table 2 Estimated Price and Income Elasticities  

Models 
Long Run Elasticities 
Price Income 

Base -0.79 0.18 
A1 -0.30 0.69 
A2 -0.11 0.56 

 

7. Summary and Conclusions  

Although energy is typically demanded for the services it provides rather than for its 

own sake, this feature is rarely considered explicitly in empirical energy demand analysis.  

We demonstrate here how this oversight results in typical energy demand equations being 

misspecified, likely resulting in biased estimates of price and income elasticities and other 

measures that are obtained using the parameter estimates.  We do this by developing a model 

of consumer behaviour in which utility derives from consumption of energy services rather 

than from the energy sources that are used to produce them.  We consider both a formulation 

that yields an aggregate demand equation for energy services as well as one that yields a 

system of demand equations for particular types of energy services.  In both cases, we show 

how, for empirical implementation, these can be readily converted, without added 

complexity, into the standard type of energy demand equation(s) that is (are) typically 

estimated.  However, compared to these typical energy demand equations, those that we 
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obtain here include additional terms that reflect the efficiency with which energy is converted 

into various energy services.  This highlights the misspecification that is implicit when 

typical energy demand equations are estimated, although some existing empirical work could 

be interpreted as being consistent with our new specifications.  Although information on 

energy efficiency may not be directly observed, we outline various ways that this energy 

efficiency can be modelled, such as by including exogenous trends and/or including its 

possible dependence on past energy prices.  One simple version of our new approach is 

illustrated using an empirical example that involves estimation of an aggregate energy 

demand function for the UK with data over the period 1960 – 2011.   

We argued at the outset that our new approach has the potential for re-examining, and 

providing insights into, a number of issues in energy economics that have previously been 

approached in a somewhat unsatisfactory, and in some cases potentially misleading, ad hoc 

fashion.  We discuss three possibilities here, although there are potentially many more.  First, 

there is literature that argues how energy efficiency is dependent on, among other factors, 

past energy prices (see, for example, Gillingham et al., 2009).  Our model, with its explicit 

inclusion of energy efficiency, justifies incorporation of various factors such as these directly 

in the energy demand equations, so that the role and relative importance of such factors can 

be ascertained empirically.  Second, there is an extensive literature on the existence of 

asymmetric demand responses to energy price changes (see, for example, Gately and 

Huntington, 2002).  Interestingly, the justification for the typical approach that is used usually 

entails an argument about how, as energy prices rise, energy-saving investments are made, 

and these are not undone should energy prices fall.  But this is just an argument about how 

energy price rises induce increased energy efficiency (more energy services are provided with 

less energy – see, for example, Griffin and Schulman, 2005), which is clearly an issue that 

can be examined in our new model formulation where energy efficiency is explicitly included 
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in the energy demand equations.  Finally, a third issue that can perhaps be more appropriately 

addressed in our model concerns the empirical measurement of rebound effects in energy 

economics.  This concept refers to the observation that with increased energy efficiency for 

various products, the savings in energy consumption that products embodying this higher 

level of energy efficiency are expected to elicit is typically, or at least frequently, not 

observed.  These effects are often estimated in what might be regarded as a somewhat 

contrived way, using price elasticities obtained from energy demand equations (see, for 

example, Sorrell and Dimitropoulos, 2008).  Yet rebound effects refer to the effect on 

demand for energy services of a change in the efficiency with which those services are 

provided (see, for example Sorrell, 2009).  Thus, they are likely better examined in a model, 

such as the one introduced here, that explicitly accounts for demand for these services, and in 

such a setting their relationship to price elasticities obtained using typical energy demand 

equations might be better ascertained.   
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