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ABSTRACT 

The promotion of US energy efficiency policy is seen as a very important 
activity. Generally, the level of energy efficiency of a country or state is 
approximated by energy intensity, commonly calculated as the ratio of 
energy use to GDP. However, energy intensity is not an accurate proxy 
for energy efficiency given that changes in energy intensity are a function 
of changes in several factors including the structure of the economy, 
climate, efficiency in the use of resources, behaviour, and technical 
change. The aim of this paper is to measure persistent and transient 
underlying energy efficiency for the whole economy of 49 states in the 
US using a stochastic frontier energy demand approach. A total US 
energy demand frontier function is estimated using panel data for 49 
states over the period 1995 to 2009 using two panel data models: the 
Mundlak version of the random effects model (which estimates the 
persistent part of the underlying energy efficiency) and the true random 
effects model (which estimates the transient part of the underlying energy 
efficiency). The analysis confirms that energy intensity is not a good 
indicator of underlying energy efficiency whereas, by controlling for a 
range of economic and other factors, the measure of persistent underlying 
energy efficiency obtained via the approach adopted here is.  Moreover, 
the estimates show that although for some states EI might give a 
reasonable indication of a state’s relative UEE this is not the case for all 
states, California being a prime example. 
 

 

JEL Classifications: D, D2, Q, Q4, Q5. 

 

 

Key Words: US total energy demand; efficiency and frontier analysis; 
persistent and transient underlying energy efficiency. 
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1 Introduction 

The promotion of energy efficiency policies is seen as a major strand of energy policy, in 

the US and across the globe given the need to reduce greenhouse gas emissions and 

maintain security of energy supply.  It is therefore vital that in the US the true relative 

energy efficiency across the different states is clearly measured. However, generally a 

state’s energy efficiency is approximated by energy intensity – commonly calculated as the 

ratio of energy use to GDP (or approximated by energy productivity – the inverse of the 

energy intensity). 1   Nonetheless, these two indicators, energy intensity and energy 

productivity, are not good proxies for energy efficiency, because changes in both indicators 

are a function of changes in several factors including the structure of the economy, the level 

                                                 
 Acknowledgements 
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1 As discussed in Patterson (1996) and Bhattacharyya (2011), the energy economics literature generally uses 
definitions of energy efficiency based on the simple ratio of output to energy consumption, where the output 
and inputs can be measured in energy/thermodynamic units, physical units, or economic monetary units; 
although, generally the hybrid measure using the ratio of economic to thermodynamic units is favoured. 
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of production, climate, the level of efficiency in the use of resources and technical change.  

For example, EC (2000, p. 3) recognises that “Changes in energy intensity for final energy 

consumption are a first and rough estimate indicator for changes in energy efficiency” and 

the US Energy Information Agency come to a similar conclusion.2  Therefore, a decrease in 

energy intensity or an increase in energy productivity of a state does not necessarily imply 

that the efficiency in the use of energy in the state has increased. 

 

Given the problems with the proxy measures, different approaches have been proposed in 

the academic literature that attempt to identify the change in the true level of efficiency in 

the use of energy at the aggregate economy level.3 One approach, proposed by Bossanyi 

(1979) and Myers and Nakamura (1978) is based upon Index Decomposition Analysis 

(IDA). This makes use of several types of index numbers and is achieved by decomposing 

the changes in energy intensity into the change in fuel mix, the change in the structure of 

the economy and, what they regard as, the actual change in energy efficiency.4 Moreover, 

some studies using IDA, propose an additional step of the empirical analysis to identify, 

using an econometric approach, the determinants of the variation over time and across 

regions of energy intensity. For instance, Metcalf (2008) decomposed US state aggregate 

                                                 
2 This problem in the measurement of energy efficiency is discussed by the EIA at: 
www.eia.gov/emeu/efficiency/measure_discussion.htm. 

3 There are also bottom up approaches used by energy professionals to estimate the level of energy efficiency. 
For example, EPRI (2009) applies a bottom-up methodology that is based on equipment stock turnover and 
the adoption of efficiency measures for energy at the technology and end-use levels within different US 
sectors and McKinsey (2009) who undertook a detailed analysis of the potential for improved efficiency in 
energy use by the US non-transport sector. 

4 See Boyd and Roop (2004) and Ang (2006) for a general discussion and application of this method and 
www1.eere.energy.gov/ba/pba/intensityindicators/ for an example related to the introduction by the US 
Department of Energy of an Energy Intensive Index using the decomposition approach that attempts to 
separate the difference factors that affect energy efficiency from non-efficiency factors. 



Underlying Energy Efficiency in the US    Page 3 of 3 

energy intensity for the period 1970-2001 and attempted econometrically to identify the 

determinants of the changes in intensity, efficiency, and activity indexes.5 

 

Another approach is based on the concept of productive efficiency introduced by Farrell 

(1957) and used for estimating production, cost, distance or input demand frontier 

functions. From the economics point of view it is important to produce energy services in 

an efficient way; that is, by minimising the amount of inputs used in the production of a 

given energy service, by choosing the combination of inputs that minimise the production 

cost and by adopting the least cost technology. A reduction in energy consumption for the 

production of energy services can come about by an improvement of the level of the 

efficiency in the use of inputs (productive efficiency), by an adoption of a new energy 

saving technology or by both processes.  A theoretical explanation of this approach was 

originally introduced by Huntington (1994) and developed in Evans et al. (2013), with 

Zhou and Ang (2008) and Filippini and Hunt (2011) attempting empirical applications.  

These empirical applications use frontier analysis methods developed in applied production 

theory.  They recognise that, in order to analyse the level of (energy) efficiency, it is 

important to base the analysis on a theoretical framework that regards energy as an input 

into a production function for producing an energy service (such as heating and lighting). It 

is therefore believed that this latter approach, which is advocated in this paper, is more 

suitable for performing an economic analysis of energy efficiency given its theoretical 

foundation in the microeconomics of production, whereas arguably other approaches are 

regarded as being rather ad hoc. It is therefore believed that from the microeconomic point 

of view, the term energy efficiency (hereafter EE) is imprecise with energy intensity 

                                                 
5 Several papers have followed Metcalf (2008) in attempting to analyse the determinants of energy intensity, 
such as Jimenez and Mercado (2014). 
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(hereafter EI) a poor proxy; consequently, the term underlying energy efficiency (hereafter 

UEE) within the context of the production theory is introduced. 

 

Frontier analysis can be undertaken by estimating either a parametric or a non-parametric 

best practice frontier for the use of energy, where the level of EE is computed as the 

difference between the actual energy use and the predicted energy use at the frontier. Zhou 

and Ang (2008) is an example of the non-parametric approach, where the EE performance 

of 21 OECD countries over 5 years (1997-2001) is measured using a Data Envelopment 

Analysis (DEA) model. Alternatively, Filippini and Hunt (2011) is an example of the 

parametric approach,6 where they estimate a frontier whole economy aggregate energy 

demand function for 29 OECD countries over the period 1978 to 2006 using Stochastic 

Frontier Analysis (SFA).7 

 

This paper therefore builds on Filippini and Hunt (2011 and 2012) by attempting to 

measure the efficiency of energy use for the whole economy of 49 states in the US.8  An 

aggregate energy demand frontier function is estimated using a parametric approach in 

order to isolate a specific measure of EE by explicitly controlling for income and price 

effects, population, climate, household size, the structure of the economy and the 

                                                 
6 Examples of the use of parametric frontier analysis at the disaggregate level are Buck and Young (2007) 
who measured the level of EE of a sample of Canadian commercial buildings and Boyd (2008) who estimated 
an energy use frontier function for a sample of wet corn milling plants. 

7 Both approaches – parametric and non-parametric – have advantages and disadvantages but neither one has 
emerged as dominant, at least in the scientific community. In terms of the parametric approach adopted here, 
an important advantage is the possibility, using panel data, to use econometric methods that allow for the 
consideration of unobserved heterogeneity variables and allow, at the same time, for errors in the variables 
and outliers. 

8 The reason for the use of only 49 states is explained below. 
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underlying energy demand trend (UEDT).9  This is seen as important, given the need to 

isolate the true EE across the different states.  This paper attempts therefore to unpick 

exactly what is meant by the term EE and re-couch it in terms of productive economic 

efficiency and inefficiency.  The focus being on where consumers of energy and energy 

services are away from their economically optimal position on the isoquant (i.e. they are 

inefficient) and from this develop a measure of the UEE based on economic principles. 

Furthermore, using different frontier models for panel data enables the estimation of the 

persistent, as well the transient, UEE for the US states. 

 

The paper is organised as follows. The next section presents and discusses the rationale and 

specification of the energy demand frontier function. Section 3 illustrates the data and 

econometric specification. The results of the estimation are presented in Section 4, with a 

summary and conclusion in the final section. 

 

 

 

2 An aggregate frontier energy demand model 

Energy is a derived demand, emanating from the demand for an energy service.  A state’s 

total aggregate energy demand is therefore a demand derived from the demand for several 

energy services used in an economy, all of which are produced by combining capital, 

energy and labour. Consequently, in this context, aggregate total energy demand can be 

                                                 
9 The UEDT attempts to capture exogenous technical progress and other exogenous factors, such as changes 
in environmental pressures and regulations, changes in standards, and the general changes in tastes and 
behaviour (Hunt, et al. 2003a and 2003b).  Moreover, it could be argued that even though technologies are 
available to each state they are not necessarily installed at the same rate; however, it is assumed that this 
results from different behaviour across states and reflects inefficiency across states; hence, it is captured by 
the different (in)efficiency terms for all states.  



Underlying Energy Efficiency in the US    Page 6 of 6 

interpreted as a state’s input demand function.  Therefore, following Filippini and Hunt 

(2011) it is assumed that there exists an aggregate energy demand relationship for a panel 

of states of the US, as follows:10 

 

Eit = E(Pit, , Yit ,POPit , HDDit , CDDit , HSit , SHIit , SHSt ,Ai , UEDTt, UEEit)            (1) 

 

where Eit is aggregate energy consumption, Yit is GDP, Pit is the real price of energy, POPit 

is population, HDDit are the heating degree days, CDDit are the cooling degree days, HSit is 

the household size, SHIit is the share of value added of the industrial sector, and SHSit is the 

share of value added for the service sector;11 all for state i in year t.  Ai is the geographical 

area size of each state, UEDTt reflects a common UEDT across states capturing both 

exogenous technical progress and other exogenous factors.  UEEit is the unobserved level 

of UEE for state i in year t.  Hence, a low level of UEE implies an inefficient use of energy 

(i.e. waste energy); so that in this situation, awareness for energy conservation could be 

increased in order to reach the optimal energy demand function. Of course, an inefficient 

use of energy implies productive inefficiency, i.e. a non-optimal use of all inputs, not only 

of the energy input. Nevertheless, from an empirical perspective, the aggregate level of 

UEE is not observed directly, but instead this indicator has to be estimated. Consequently, 

in order to estimate a state’s level of UEE and identify the best practice state in terms of 

                                                 
10 It is recognised that some analysts and researchers would prefer a more disaggregated approach.  
Nonetheless, the analysis of aggregate energy used here is consistent with numerous previous academic 
studies that have attempted to analyse aggregate energy consumption as well reports and studies by energy 
agencies and policy makers such as the International Energy Agency (see, for example, IEA, 2009). 

11 Although these two share variables vary both over time and across states, the variation over time is small 
relative to the variation across states, thus primarily controlling for the different economic structures across 
the states but with a small allowance for the change in these relativities over time.  
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energy utilization, the stochastic frontier function approach introduced by Aigner et al. 

(1977) is used. 

 

An aggregate input demand frontier function gives the minimum level of input used by an 

economy for any given level of output; hence, the difference between the observed input 

and the cost-minimizing input demand represents both technically as well as allocative 

inefficiency.12  In the case of an aggregate total energy demand function, used here, the 

frontier gives the minimum level of energy consumption necessary for a state to produce 

any given level of energy services. This frontier approach allows the possibility to identify 

if a state is, or is not, on the frontier. Moreover, if a state is not on the frontier, the distance 

from the frontier measures the level of energy consumption above the baseline demand, e.g. 

the level of underlying energy inefficiency.13 

 

The approach used in this study is therefore based on the assumption that the level of 

underlying energy inefficiency of the total sector can be approximated by a one-sided non-

negative term, so that a panel log-log functional form of Equation (1) adopting the 

stochastic frontier function approach proposed by Aigner et al. (1977) can be specified as 

follows: 

                                                                                                                                            (2) 

                                                 
12 Furthermore, it is worth noting that for input demand functions derived from a Cobb-Douglas production 
function that is homothetic, as discussed in Schmidt and Lovell (1979), a percentage increase of the level of 
the productive efficiency implies a reduction of the use of each input by the same percentage. For instance, 
given a production process that uses capital and energy, if the level of the productive efficiency increases by 
10% then the level of efficiency in the use of energy and in the use of capital will also increase by 10%. In 
this framework, the estimated UEE directly measures the energy saving due to an improvement of the level of 
the productive efficiency.  

13 As discussed in the context of an input demand function derived from a Cobb-Douglas production function 
as in the case here, the increase of the level of productive efficiency corresponds to the increase in the 
efficient the use of energy. 
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where eit is the natural logarithm of aggregate energy consumption (Eit), pit is the natural 

logarithm of the real price of energy (Pit), yit is the natural logarithm of GDP (Yit), popit is 

the natural logarithm of population (POPit), hddit is the natural logarithm of the heating 

degree days (HDDit), cddit is the natural logarithm of the cooling degree days (CDDit), hsit 

is the natural logarithm of the household size (HSit), ai is the natural logarithm of the area 

size (Ai), and t is a time trend that proxies the UEDT.14  SHIit, and SHSit are as defined 

above. Furthermore, the error term in Equation (2) is composed of two independent parts. 

The first part, vit, is a symmetric disturbance capturing the effect of noise and as usual is 

assumed to be normally distributed.  The second part, uit, which reflects the level of UEEit 

in Equation (1), is interpreted as an indicator of the inefficient use of energy, e.g. the waste 

energy.  It is a one-sided non-negative random disturbance term that can vary over time, 

assumed to follow a half-normal distribution.15   A more efficient use of energy will 

increase a state’s UEE. The impact of technological and organizational innovation in the 

production and consumption of energy services on energy demand is therefore captured in 

a number of ways, including though the price term and the time trend. For instance, a rise 

in energy prices with a negative price elasticity and a negative coefficient of the time trend 

both suggest that energy saving technologies would be adopted over time, thus allowing 

                                                 
14 Kumbhakar and Lovell (2000) note that the inclusion of a time trend as a regressor in a frontier model as a 
proxy for technical progress can frequently cause problems in estimation. One possible reason being the 
difficulty in disentangling the separate effects of technical change and productive efficiency change when 
both vary over time. An alternative approach is to include yearly time dummies or, if the number of years is 
high, time dummy variables that consist of two years rather than one.  Although ideally time dummies are 
preferred in order to capture any possible non-linearity of the UEDT, here in order to reduce the number of 
parameters to be estimated a time trend was chosen. However, as a robustness check, the models were also 
estimated with some time dummies and there were no discernible differences in the estimated parameters. 

15 It could be argued that this is a strong assumption for UEE, but it does allow the identification of the 
efficiency for each state separately. This is a standard assumption used in the production frontier literature; 
see Kumbhakar and Lovell (2000, p. 148) for a discussion. 
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states to decrease, ceteris paribus, their energy consumption. The model specification 

therefore allows on one side for states to modify their energy demand by adopting new 

energy saving technologies and on the other side by improving the level of efficiency in 

the use of energy (and the other inputs). 

 

In summary, Equation (2) is estimated in order to estimate UEE for each state in the 

sample.  The data and the econometric specification of the estimated equations are 

discussed in the next section. 

 

 

 

3. Data and econometric specification 

The study is based on a balanced US panel data set for a sample of 49 states (i = 1, …, 49) 

over the period 1995 to 2009. For the purposes of this paper attention is restricted to the 

contiguous states (i.e. Alaska and Hawaii are excluded), whereas the District of Columbia 

is included and considered as a separate ‘state’.  The data set is based on information from 

the US Energy Information Administration (EIA) database called States Energy Data 

System, from the US Department of Commerce, the US Census Bureau and the National 

Climatic Data Center at NOAA. 

 

Eit is each state’s aggregate total energy consumption for each year in trillion BTUs, Yit is 

each state’s real GDP for each year in thousand US 2010$, Pit is each state’s real energy 

price for each year in per million BTUs 2010$. Total energy consumption figures and 

prices are from the EIA. Population (POPit) and GDP are from the Bureau of Economic 

Analysis of the US Census Bureau. The heating and cooling degree days (HDDit and 
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CDDit) are obtained from the National Climatic Data Center at NOAA. 16 The data on area 

size (Ai) and household size, the number of people per household (HSit) is collected from 

the U.S. Census Bureau. Descriptive statistics of the key variables are presented in Table 1. 

 

There are a number of different SFA model specifications using panel data that could be 

considered suitable for the task at hand.17 These include the basic models for panel data: the 

pooled model (PM); the random effects model (REM); the true fixed effects model 

(TFEM); and the true random effects model (TREM). Furthermore, as shown by Farsi et al. 

(2005) and by Filippini and Hunt (2012) it is possible to estimate some of these models 

using an adjustment introduced by Mundlak (1978) in order to account for the econometric 

problem of unobserved heterogeneity bias; such as, the Mundlak adjusted pooled model 

(MPM) and the Mundlak adjusted random effects model (MREM).  This adjustment 

attempts to separate the unobserved variables from inefficiency.  Moreover, within this 

suite of models, some (such as the REM and the MREM) attempt to provide information on 

the persistent (time-invariant) part of inefficiency, whereas others (such as the TFEM and 

the TREM) attempt to provide information on the transient (time-varying) part of 

inefficiency.18 

  

                                                 
16 See http://www.ncdc.noaa.gov/. 

17 For a general presentation of these models, see Greene (2008) and Farsi and Filippini (2009). 

18 It is worth noting that some recently proposed complex econometric approaches attempt to control for 
unobserved heterogeneity bias in order to obtain, from the same model, information on persistent and 
transient inefficiency (see, for example, Tsionas and Kumbhakar, 2014 and Colombi et al., 2014).  There is 
also an approach proposed by Filippini and Greene (2014), which is relatively straightforward, but at the time 
of writing, it is still in an implementation and testing phase. 
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Table 1: Descriptive statistics 

Variable Mean Minimum Maximum 

Description Name 1995-
1999 

2000-
2004 

2005-
2009 

1995-
1999 

2000-
2004 

2005-
2009 

1995-
1999 

2000-
2004 

2005-
2009 

Energy 
consumption 
(Trillion Btu) 

E 1,407.59 1,448.07 1,451.07 97.82 100.57 91.53 9,681.71 9,682.49 9,304.70 

GDP 
(Million 2010US$) 

Y 227,075 257,897 285,964 19,878 21,946 24,469 1,545,226 1,753,963 1,924,790 

Real price of 
energy  
(per million Btus 
2010$) 

P 11.95 13.57 18.90 7.22 8.38 11.98 18.21 19.47 29.20 

Household size 
(number of 
people per 
house) 

HS 2.40 2.33 2.29 1.98 1.93 1.89 2.99 2.90 2.88 

Population 
(1000) 

POP 5,527 5,831 6,107 485 493 506 33,499 35,630 36,961 

Heating degree 
days 
(base: 65F) 

HDD 5,141 5,124 5,144 558 624 555 10,754 9,302 9,990 

Cooling degree 
days 
(base: 65F) 

CDD 1,102 1,113 1,141 156 128 173 3,870 3,668 3,650 

Share of 
industrial sector 
(%) 

SHI 17.77 14.83 14.49 0.41 0.35 0.22 34.96 31.16 40.99 

Share of service 
sector 
(%) 

SHS 80.28 83.62 83.90 62.86 66.87 57.79 99.59 99.65 99.78 

Area 
(square miles) 

A 63,717 61 268,820 

 

All these models have their relative advantages and disadvantages and the choice of model 

is not straightforward, it depends upon the goal of the exercise and the type of data and 

variables that are available. The PM is the SFA model in its original form proposed by 

Aigner, et al. (1977) and adapted for panel data by Pitt and Lee (1981). This model does 

not exploit the possibility given by panel data to control for unobserved heterogeneity 

variables that are constant over time. Therefore, the unobserved heterogeneity bias can be 

a serious problem in this model. On the contrary, the REM introduced by Pitt and Lee 

(1981) interprets the typical panel data individual random effects as inefficiency rather 

than unobserved heterogeneity as in the traditional literature on panel data econometric 
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methods.19 The level of efficiency estimated with the REM does not vary over time. 

Therefore, this model arguably provides information on the persistent part of efficiency in 

the use of energy. One problem with the REM is that any unobserved, time-invariant, 

group-specific heterogeneity is considered as inefficiency and the level of efficiency does 

not vary over time. However, as shown in Farsi et al. (2005), the application of Mundlak’s 

adjustment to the REM frontier framework decreases the bias in inefficiency estimates by 

separating inefficiency from unobserved heterogeneity. This separation of inefficiency 

from unobserved heterogeneity is based on the assumption that the effects of unobserved 

time invariant state characteristics are captured by the coefficients of the group mean of the 

explanatory variables of the Mundlak adjustment equation. 

 

Greene (2005a and 2005b) proposed the TFEM and the TREM whereby the PM is 

extended by adding fixed and random individual effects respectively.  The TFEM and the 

TREM are able to distinguish time invariant unobserved heterogeneity from the time 

varying level of efficiency component (the transient part). However, in these models any 

time-invariant or persistent component of inefficiency is completely absorbed in the state-

specific constant terms. Therefore, in contexts characterized by persistent inefficient use of 

energy determined for instance by the presence in a country of old houses or of an urban 

planning system that does not minimize the travel time, this provides relatively high levels 

of estimated transient part of the UEE.  

 

Given this discussion, the MREM is seen as the appropriate approach to estimate the 

persistent part of the level of UEE, and the TREM the appropriate approach to estimate the 

transient part of the level of UEE. Consequently, in order to obtain estimates of both the 

                                                 
19 Schmidt and Sickles (1984) and Battese and Coelli (1992) presented variations of this model.  
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persistent and transient parts of the inefficiency for the 49 states in the US these two 

separate models the MREM and the TREM are estimated here and the two estimated 

values of inefficiency are interpreted accordingly.20 Of course, because the two models are 

measuring a different component of the level of energy efficiency, it is not expected to 

obtain similar rankings from these models. Table 2 summarizes the two models.  

 

Table 2: Econometric specifications of the stochastic cost frontier 

 MREM TREM 

State effects 
i 

i i iX     

1

1 T

i it
t

X X
T 

   

 

iid (0, 
2) 

Random error 
it 


it=i +vit 

i~N+(0,2) 
vit~N(0,u

2) 


it=uit+vit 

uit~N+(0,u
2) 

vit~N(0,u
2) 

Inefficiency E(i Ivit) E(uitIvit) 

 

After Equation (2) is estimated, it is possible to estimate a state’s efficiency using the 

conditional mean of the efficiency term  ititit vuuE  , proposed by Jondrow et al. (1982) and 

the level of UEE can be expressed by:  

)ˆexp( it
it

F
it

it u
E

E
UEE        (3) 

where Eit is the observed energy consumption and F
itE  is the frontier or minimum demand 

of the ith state in time t. An UEE score of one indicates a state on the frontier (100% 

efficient), while non-frontier states, e.g. states characterized by a level of UEE lower than 

                                                 
20 The TFEM is also an appropriate approach to measure the level of transient inefficiency, thus as a 
robustness check this model was also estimated and the results are highly correlated with the results obtained 
with the TREM. Therefore, to avoid confusion by presenting several similar models, it was decided to restrict 
the analysis to the TREM. 
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100%, receive scores below one.  This therefore gives the measures of UEE estimated 

below.21 In summary, Equation (2) is estimated using the MREM and TREM and for each 

of these, Equation (3) is used to estimate the respective persistent and transient UEE for 

each state for each year.  Moreover, as previously discussed, it is expected that, compared 

to the estimated persistent UEE, the level of the transient UEE would be relatively high but 

with a lower variation.  The results from the estimation are given in the next section. 

 

 

 

4. Estimation results 

The estimation results of the frontier energy demand models using the two models 

discussed above are given in Table 3. Most of the estimated coefficients22 and lambda23 

have the expected signs and are statistically significant at the 10% level and generally, the 

results obtained in the two models are relatively similar.  

 

The results suggest that US total energy demand is price-inelastic, with the estimated 

elasticities being statistically significant from zero but relatively low at about -0.1. The 

results also suggest that US total energy demand is income-inelastic, with an estimated 

elasticity of about 0.5.  For the weather variables, the estimated heating degree day 

elasticity has the expected sign and is significant, whereas the coefficient of the CDD 

variable is not significantly different from zero; similarly the AREA coefficient is not 
                                                 
21 This is in contrast to the alternative indicator of energy inefficiency given by the exponential of uit. In this 
case, a value of 0.2 indicates a level of energy inefficiency of 20%. 

22 Note, most of the estimated coefficients can be regarded as estimated elasticities given the variables are in 
logarithmic form (the coefficients on the industrial and service share being the exceptions).   

23 Lambda (λ) gives information on the relative contribution of uit and vit on the decomposed error term εit 

and shows that in this case, the one-sided error component is relatively large. 



Underlying Energy Efficiency in the US    Page 15 of 15 

significant in the MREM.  The estimated household size elasticities are significant however 

and, as expected, are negative (both being close to -1) suggesting that an increase of 10% in 

the household size decreases energy consumption by approximately 10%. This decrease is 

probably due to economies of scale in the production of some residential energy services; 

for instance, the size of a fridge is unlikely to vary proportionally with the number of 

household members. 

 

The estimated coefficient of the share of the industrial sector and of the service sector 

suggest a negative impact of these two variables on US total energy demand (noting that the 

reference sector is agricultural and mining). The coefficient of the time trend variable is 

negative and significant in both models suggesting energy saving technical progress 

dominates other exogenous factors with an inward shift of the energy demand function over 

time. Finally, in the MREM half of the included Mundlak terms are significant, (note, that 

in order to avoid multicollinearity between these mean variables and the original variables, 

a subset only of the variables are introduced for the Mundlak adjustment).24 

 

Table 4 provides descriptive statistics for the overall US UEE estimates for the 49 states 

obtained from the econometric estimation. As discussed previously, the MREM provides 

information on the persistent level of inefficiency, whereas the TREM provides information 

on the transient part of efficiency. Nevertheless, it should be noted that although the 

persistent UEE estimated by the MREM is time invariant, it does not mean that the model 

constrains states from using less energy by adopting new technologies over time given the 

inclusion of the UEDT in the form of a time trend with an estimated negative coefficient. 

                                                 
24 For the selection of the variables to consider in the Mundlak adjustment equation, a regular fixed and 
random effects model was estimated and the model specification used in the estimation of the MREM is 
supported by the results of a Hausman test. 
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Table 3: Estimated coefficients (t-ratios in parentheses) 
 

*** Significant at 0.01 level. **Significant at 0.05 level. 
*Significant at 0.10 level. 

 

 

  

 MREM TREM 
Constant 24.3170*** 

(13.19) 
14.4881***

(74.89) 
y 0.4808*** 

(10.54) 
0.4860*** 

(46.35) 
p -0.0695*** 

(-2.70) 
-0.0693*** 

(-4.78) 
pop 0.3701*** 

(9.45) 
0.5168*** 

(46.58) 
hdd 0.1155** 

(2.56) 
0.0536*** 

(7.90) 
cdd 0.0096 

(0.47) 
-0.0019 
(-0.43) 

hs -1.0116*** 
(-11.10) 

-1.0169*** 
(-33.08) 

SHI -0.5501** 
(-2.40) 

-0.5599*** 
(-4.60) 

SHS -0.5900** 
(-2.47) 

-0.5850*** 
(-4.75) 

a -0.0300 
(-1.07) 

0.0825*** 
(37.91) 

t -0.0112*** 
(-6.58) 

-0.0129*** 
(-17.36) 

Av-y -0.2722 
(-1.55) 

 

Av-p -1.7467*** 
(-6.40) 

 

Av-pop 0.4057** 
(2.21) 

 

Av-hdd -0.1525*** 
(-2.60) 

 

Av-hs 0.4278 
(0.76) 

 

Av-SHS -0.6784 
(-1.21) 

 

State effects no yes 
Lamda () 4.5506** 

(2.53) 
1.5460*** 

(9.69) 
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Table 4: Summary of UEE estimates across all states, 1995-2009 

 
MREM:

Persistent UEE
TREM: 

Transient UEE 
Minimum 0.57 0.81 
Maximum 0.99 0.99 
Mean 0.86 0.96 
Median 0.87 0.97 
Standard deviation 0.10 0.02 
Coefficient of variation 12% 2% 

 

Table 4 shows that, as expected, the estimated persistent part of UEE is greater than the 

transient part, but the variation in the estimated transient UEE is somewhat lower than the 

variation in the estimated persistent UEE.  This is also highlighted by Table 5, which gives 

the average estimated UEE from the two models as well as the average energy intensity 

over the estimation period (along with the state rankings).  Hence, for the remainder of this 

paper the focus is more on the estimated persistent UEE from the MREM. 

 

As discussed in Filippini and Hunt (2011 and 2012) it is expected that estimated UEE 

would be negatively correlated with EI; thus for most states it is expected that the level of 

EI decreases with an increase of the estimated level of UEE. However, as Filippini and 

Hunt (2011) argue, if this technique were to be a useful tool for teasing out the true EE then 

a perfect, or even near perfect, negative correlation would not be expected since all the 

useful information would be contained in standard EI measures.  This proves to be the case 

with the estimates here, as illustrated in Figure 1 and Table 5; moreover, the correlation 

coefficients between EI and the estimated average UEE measure from the MREM and the 

TREM are -0.46 and -0.21 respectively. In addition, there is not a strong correlation 

between the rankings, with the Spearman rank correlation coefficients between EI and the 

average UEE measure from the MREM and the TREM being 0.18 and 0.21 respectively. 
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This is further highlighted in Figure 2 that ranks the states in terms of the estimated 

persistent UEE and EI and classifies the states into three groups: relatively efficient states; 

relatively inefficient states; and relatively moderately efficient states.  This shows that EI 

would appear to be a good predictor of a state’s relative UEE for some states but a very 

poor indicator for others. For example, Kansas, Louisiana, Maine, Mississippi, Montana, 

New Mexico, North Dakota, Ohio, Oklahoma, South Dakota, Texas, and Wyoming are 

classified as being relatively inefficient states according to the estimated UEE and are states 

with relatively high levels of EI.  At the other end of the spectrum, the District of Columbia 

and Florida are classified as being relatively efficient states according to the estimated UEE 

and are states with relatively low levels of EI. However, California, Connecticut, Delaware, 

Massachusetts, Maryland, New Hampshire, New York and Nevada are classified as being 

relatively inefficient states according to the estimated UEE but are states with relatively low 

high levels of EI.  And Idaho, Indiana, Michigan, Utah and Wisconsin are classified as 

being relatively efficient states according to the estimated UEE but are states with relatively 

low levels of EI. 
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Figure 1: Scatter diagram of average EI and estimated persistent UEE (1995-2009) 

 
Note: State codes are given in Table 5. 
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Table 5: Average EI and UEE Estimates with rankings (1995-2009) 

States State 
Code 

EI Persistent Transient 
(1000 Btu per  

2010US$) 
UEE UEE 

(The MREM) (The TREM) 
Ratio Rank Score Rank Score Rank 

Alabama AL 9.3703 42 0.8820 22 0.9606 29 
Arizona AZ 4.2060 11 0.8819 23 0.9643 6 
Arkansas AR 8.9912 40 0.8947 20 0.9601 30 
California CA 3.7948 5 0.8119 34 0.9630 20 
Colorado CO 4.5277 14 0.9728 8 0.9552 41 
Connecticut CT 3.0392 3 0.7537 44 0.9571 36 
Delaware DE 3.9069 6 0.8497 29 0.9545 44 
District of Columbia DC 1.2381 1 0.9815 6 0.9556 40 
Florida FL 4.1475 9 0.9831 3 0.9660 1 
Georgia GA 5.5524 21 0.9447 12 0.9632 17 
Idaho ID 7.3925 33 0.9896 1 0.9589 32 
Illinois IL 4.9752 17 0.8713 26 0.9639 11 
Indiana IN 8.4436 37 0.9822 4 0.9634 15 
Iowa IA 7.6024 36 0.8729 25 0.9486 48 
Kansas KS 7.5059 34 0.7698 42 0.9621 26 
Kentucky KY 8.6784 39 0.9143 17 0.9631 18 
Louisiana LA 17.6273 49 0.6052 48 0.9501 47 
Maine ME 8.4777 38 0.7838 37 0.9559 39 
Maryland MD 4.0256 8 0.8488 30 0.9643 6 
Massachusetts MA 3.2785 4 0.7839 36 0.9652 2 
Michigan MI 5.7431 25 0.9817 5 0.9646 3 
Minnesota MN 5.6063 22 0.8847 21 0.9641 9 
Mississippi MS 9.9221 44 0.7771 39 0.9634 15 
Missouri MO 5.6639 24 0.9239 16 0.9616 27 
Montana MT 9.9843 45 0.6750 46 0.9563 37 
Nebraska NE 6.5370 30 0.8776 24 0.9560 38 
Nevada NV 4.1976 10 0.7700 41 0.9646 3 
New Hampshire NH 4.2293 12 0.7748 40 0.9584 33 
New Jersey NJ 4.5209 13 0.7815 38 0.9628 23 
New Mexico NM 7.5718 35 0.6866 45 0.9643 6 
New York NY 3.0104 2 0.8245 33 0.9631 18 
North Carolina NC 4.8089 16 0.9724 9 0.9599 31 
North Dakota ND 12.5702 47 0.8565 27 0.9547 43 
Ohio OH 6.1371 27 0.8445 31 0.9644 5 
Oklahoma OK 9.2295 41 0.7847 35 0.9639 11 
Oregon OR 5.0781 19 0.9893 2 0.9613 28 
Pennsylvania PA 5.6407 23 0.8377 32 0.9638 14 
Rhode Island RI 3.9827 7 0.9401 13 0.9506 46 
South Carolina SC 7.1011 32 0.9386 14 0.9630 20 
South Dakota SD 6.6852 31 0.8547 28 0.9386 49 
Tennessee TN 6.4742 29 0.9059 19 0.9639 11 
Texas TX 9.7816 43 0.6373 47 0.9549 42 
Utah UT 6.1701 28 0.9623 11 0.9583 34 
Vermont VT 5.0922 20 0.7597 43 0.9625 24 
Virginia VA 4.7593 15 0.9104 18 0.9629 22 
Washington WA 5.0563 18 0.9774 7 0.9522 45 
West Virginia WV 10.3221 46 0.9350 15 0.9583 34 
Wisconsin WI 5.9417 26 0.9686 10 0.9641 9 
Wyoming WY 13.7955 48 0.5659 49 0.9625 24 

 



Underlying Energy Efficiency in the US    Page 21 of 21 

Figure 2: Average EI and estimated persistent UEE (1995-2009) 
A: EI (1000 Btu per 2010US$) 

B: Estimated Persistent UEE (From the MREM) 
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Within these results, it is worth highlighting California, which is found to be relatively 

inefficient being ranked 34th according to the estimated persistent UEE estimates.  This 

would appear to be at odds with the conventional wisdom of energy efficiency 

policymakers and professionals who generally regard California as being a highly energy 

efficient state as well as a number of research papers such as Howrowitz (2007) and 

Sudarsham (2013).  However, the view is normally based on EI or electricity intensity so a 

direct comparison with the analysis here is difficult if not impossible given the whole 

premise of the UEE measure estimated here is that analysis based on EI is potentially 

biased and misleading for policymakers.  Thus, the research presented here does not 

implicitly disagree with some of the previous research such as Howrowitz (2007, p. 93) 

who argues that “California’s energy efficiency programs … have dramatically reduced 

state electricity intensity” just that there is still more to be done in order for California to 

increase its UEE and move closer to the energy demand efficient frontier. 25 Moreover, the 

work here supports the conclusion by Sudarshan (2013, p. 207) who contends that “while 

indices such as energy intensities … can provide a great deal of insight, they also hide as 

much as they reveal”.   

 

 

  

                                                 
25 The results presented here would also appear, at first site, to be in disagreement with the rankings provided 
by ACEEE (2103). However, the ACEEE rankings refer to the degree or intensity of policy makers to 
promote EE not the actual EE.  Therefore, although California is ranked highly by ACEEE but is classified as 
being relatively inefficient according to the estimates here it suggests that despite the promotion of such 
policies California still has some way to go in order to increase its relative UEE.  
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5. Summary and Conclusion  

Building on Filippini and Hunt (2011 and 2012) this research attempts to define and 

estimate the UEE for 49 US states by combining energy demand modelling and frontier 

analysis.  The energy demand specification controls for income, price, population, 

household size heating degree days, cooling degree days, the area, the share of the 

industrial sector, the share of the service sector and a UEDT and is estimated using the 

MREM and the TREM. These two models are seen as the most appropriate techniques for 

attempting to uncover the true EE of the 49 states; they are seen as superior to the range of 

other techniques available; moreover, they avoid the problem of unobserved heterogeneity. 

Therefore, the MREM and the TREM arguably provide robust estimates of each states’ 

persistent and transient UEE respectively. 

 

The estimates show that for some states the simple measure of EI might give a reasonable 

indication of a state’s relative UEE but this is not so for others states, California being a 

good example.  Therefore, unless the analysis advocated here is undertaken, US policy 

makers are likely to have a misleading picture of the true relative EE across the states and 

thus might make misguided decisions when allocating funds to various states in order to 

implement EE and conservation measures.  Hence, it is argued that this analysis should be 

undertaken in order to give US policy makers an additional indicator other than the rather 

naïve measure of EI in order to try to avoid potentially misleading policy conclusions. 
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