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I INTRODUCTION 

Estimation of Energy Demand functions has a long history with many different 

methodologies, sectors, and countries analysed.  This paper focuses on the 

modelling of technical progress and the modelling of seasonality.  The 

modelling of technical progress in energy demand functions has tended to be of 

a very simple nature with it ignored completely or, at best, proxied by a simple 

deterministic time trend.  Similarly, the modelling of seasonality in energy 

demand functions has traditionally adopted the simple deterministic dummy 

approach - despite energy being a product where there has been a clear change 

in the seasonal pattern over time. 

It is important to consider exactly what is meant by ‘technical progress’ when 

incorporated in energy demand functions.  Energy is a derived demand, not 

demanded for its own sake, but for the services it produces in combination with 

the capital and appliance stock in place at any particular point in time.  The 

challenge for energy demand modellers (and forecasters) is to attempt to 

distinguish between changes in energy demand that come about through 

changes in energy prices and income1, and the underlying changes that come 

about from ‘technical progress’.  Jones (1994) points out that ‘technical 

progress’ in energy demand, or the improvement in the ‘productivity’ of energy 

                                                 
1 Plus other important variables such as temperature. 
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use over time, will come about by the improved ‘efficiency’ of the appliance 

and capital stock, and hence shift the energy demand curve to the left.  Jones 

goes on, stating that “price increases, if sustained, can … provide the necessary 

incentive for energy users to find new ways to increase energy’s productivity” 

(p. 245).  However, as Jones also points out, many other non-price factors 

contribute to improvements in the technical progress of energy.  These include 

environmental pressures and regulations, energy efficiency standards, 

substitution of labour, capital or raw materials for energy inputs, and changes in 

tastes leading to a shift in consumption towards goods and services that are less 

energy intensive. 

Jones (1994) goes on to argue that the “reductions in aggregate energy demand 

due to technical progress are distinct from the standard long-run adjustments to 

price increases that energy consumers make as they gradually replace their 

energy using capital stock and slowly change their energy consumption habits 

and patterns” (p. 245).  It is important, therefore, to distinguish between the 

‘price’ effects and the ‘technical progress’ effects.  In the short-run, with a fixed 

appliance and capital stock, a rise in the energy price is likely to bring about a 

modest fall in energy consumption.  Energy consumption will fall further in the 

long-run as the price rise induces the installation of more energy efficient 

appliances and capital stock.  But, we would argue that this is a combination of 

the normal process of moving along the long-run demand curve (the long-run 
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price elasticity) and partly the movement to the left of the demand curve (the 

technical progress effect).  This could be thought of as the long-run price 

elasticity measuring changes within ‘normal bounds’ with the technical progress 

effect picking up price ‘shock’ effects.  Hence, ceteris paribus, a model that 

does not explicitly model technical progress will over-estimate the (absolute) 

long-run price elasticity since it will be forced to pick up both effects. 

In addition, contrary to the view of Kouris (1983), we agree with Beenstock and 

Willcocks (1983) and Welsch (1989), that there is a distinct role for the long-

run income elasticity of energy demand within this framework.  Increases in 

income or output will, in the short-run, bring about an increase in energy 

demand with the given appliance and capital stock (and could be quite 

significant before households and firms have time to adjust their stock of 

appliances).  Over time however, new and more efficient appliances will be 

installed and existing appliances replaced faster than would be otherwise.  

Hence, similar to the price effect a distinction needs to be made between the 

long-run income effect and the technical progress effect.  The increase in 

income will, in the long-run, bring about an increase in the demand for energy 

(as new appliances and stock are acquired) which represents the long-run 

income effect.  Furthermore, the increase in income may also induce the 

replacement of the existing stock of capital with ‘up-graded’ more efficient 

models and hence an improvement in energy ‘productivity’ (which is the 
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technical progress effect).  Here, however, ceteris paribus, a specification that 

that does not explicitly model technical progress might under-estimate the long-

run income elasticity since it will be forced to pick up both effects.2 

Whatever factors are driving technical progress it is unlikely that a simple 

deterministic time trend will adequately capture the underlying processes at 

play.  On this point we agree with Kouris (1983) who stated that a variable 

“which takes the clumsy values 1, 2, 3, …etc, over time will not do the trick” (p. 

207) and that “the issue of technical progress, in estimating energy demand 

functions, cannot really be tackled unless a satisfactory way of measuring this 

phenomenon can be found” (p. 210).  However, he further argues that when 

modelling energy demand for various sectors there might be certain engineering 

data 3 that could be considered as a proxy for technical progress, that would be 

better than a deterministic time trend but in the absence of these proxies  “it is 

probably preferable … to estimate the income and price effect without explicitly 

allowing for technical progress” (p. 210, our italics).  In their reply, Beenstock 

and Willcocks (1983) reject this stating that “time trends may be poor proxies 

for technical progress, but for the lack of anything better this is standard 

practice” (p. 212).  Thankfully, this argument is now redundant given the 

                                                 
2 In addition, we would expect, a priori, that a dynamic model that does not explicitly model 
technical progress will under-estimate the speed of adjustment towards equilibrium. 
3 For example ‘the ratio of miles per gallon over time for an average engine size’ for the 
transport sector, ‘the energy efficiency of a standard boiler’ for the industrial sector and ‘the 
energy needed to raise temperature to a given degree for a certain space’ for the household 
sector (p. 210). 
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advance in certain econometric techniques.  Although the engineering data that 

Kouris refers to are still not readily available, the Basic Structural Model 

developed by Harvey and his associates, see for example, Harvey et al. (1986), 

Harvey (1989), Harvey and Scott (1994) and Harvey (1997), allows for a non-

linear stochastic trend that, when used in estimates of energy demand functions, 

overcomes most, if not all, of the problems put forward by Kouris.  Moreover, 

the use of the simple deterministic time trend becomes a limiting case that is 

present only if statistically accepted by the data. 

In summary, we argue that there is a specific role for a general model of energy 

demand that allows for both short- and long-run price and income elasticities 

and the most ‘general’ or ‘flexible’ form of technical progress possible.  This 

will ensure that the model captures the underlying technical progress effects 

outlined above avoiding the upward-bias of the long-run price elasticity and the 

downward-bias of the long-run income elasticity4.  Moreover, the more flexible 

the trend is the smaller these biases are likely to be.  Any restriction on the 

general form, (such as a zero long-run income elasticity, or a deterministic 

trend) should, therefore, only be imposed if accepted by the data. 

                                                 
4 This discussion implicitly assumes that the ‘underlying’ trend is negative with 
improvements in energy ‘productivity’ and hence technical progress reduces energy 
consumption.  If however, the underlying trend is positive and therefore technical progress is 
negative (due, for example to a fundamental shift in tastes into a particular energy type, as we 
find with gas below) then the biases would be in the opposite directions. 
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Turning briefly to the issue of seasonality, Hunt and Judge (1996) explored the 

evolution of seasonal patterns in some UK energy series, but did not consider 

the technical progress issue.  Again, it is important to start with as general a 

model as possible with deterministic seasonal dummies as the limiting case.  

The model outlined in the next section therefore allows for an evolving seasonal 

pattern over time.  Hence, we attempt to explicitly model for both stochastic 

technical progress and stochastic seasonality for UK Final Consumption of 

Coal, Gas, Petroleum, Electricity and Total Energy.  The exact definitions and 

the sources of the data are given in the Data Appendix.  Section II, therefore, 

outlines the methodology employed in the estimation and Section III presents 

the results.  Section IV offers a brief summary and conclusion. 

 

II  METHODOLOGY 

Given the above discussion the framework adopted for this study combines 

Harvey’s Basic Structural Model (BSM) with the dynamic Error Correction 

Model (ECM).  The ECM is formulated as a BSM to estimate the stochastic 

trend and stochastic seasonal components in addition to the traditional estimates 

of short- and long-run price and income elasticities of energy demand as 

discussed above. 
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Basic Structural Model (BSM) 

The BSM allows for the unobservable trend and seasonal components which are 

permitted to vary stochastically over time.  Consider the following quarterly 

model: 

 et = μt + γt + Z′tδ + εt        (1) 

where et is the dependent variable in logs (energy), μt represents the trend 

component, γt  represents the seasonal component, εt represents the irregular 

component, Zt is a k × 1 vector of explanatory variables in logs (price, income 

and temperature) and δ  is a k × 1 vector of unknown parameters. 

Trend Component 

The trend component μt is assumed to have the following stochastic process: 

tttt ηβμμ ++= −− 11          (2) 

ttt ξββ += −1           (3) 

where tη  ~ ),0( 2
ησNID  and tξ  ~ ),0( 2

ξσNID . 

Equations (2) and (3) represent the level and the slope of the trend respectively.  

This process can be interpreted as the trend today is the trend of yesterday plus 

some growth term plus some unpredictable noise, in which the growth term is 

the slope and is time-varying.  Table 1 illustrates the various models that can be 
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estimated from this process.  Cell (ix) of Table 1 represents the most general 

model when ση
2 ≠ 0 and σξ

2 ≠ 0 so that both the level and slope of the trend 

change stochastically over the sample period.  The remaining cells of Table 1 

represent possible restricted alternatives, depending upon the estimates of the 

level and slope of the trend and the hyperparameters, σξ
2 and ση

2. 5 

Cells (i), (ii) and (v) illustrate the conventional regression models (ignoring 

evolving seasonals) that are special cases of the general stochastic trend models.  

When both variances are zero, namely 2
ησ 0=  and 02 =ξσ , the model reverts to a 

conventional deterministic linear trend model, cell (v), as follows: 

ttt te εδβ α +′++= Z         (4) 

which can be estimated by OLS.  If, in addition, the slope is found to be zero, 

slp = 0, then the model reverts to a conventional regression model without a 

time trend, cell (ii).  And if the level is also found to be zero, lvl = 0, then the 

model reverts to a conventional regression with no time trend and no constant, 

cell (i). 

Cells (iii), (vi) and (viii) are restricted versions of the general stochastic trend 

model but still involve some form of stochastic trend in the level or slope.  If 

                                                 
5 Cells (iv) and (vii) are ignored since it is not possible to estimate models of this type. 
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TABLE 1:  CLASSIFICATION OF POSSIBLE STOCHASTIC TREND MODELS6 
 
   LEVEL 

 
SLOPE 

No Level  
Lvl = 0, ση

2 = 0 
Fixed Level 
Lvl ≠ 0, ση

2 = 0 
Stochastic Level 
Lvl ≠ 0, ση

2 ≠ 0 

No Slope 
Slp = 0, σξ

2 = 0 
(i) Conventional regression but 
with no constant and no time 
trend 

(ii) Conventional regression 
with a constant but no time 
trend. 

(iii) Local Level Model 
(random walk plus noise). 

Fixed Slope 
Slp ≠ 0, σξ

2 = 0 
(iv)  (v) Conventional regression 

with a constant and a time trend. 
(vi) Local Level Model with 
Drift. 

Stochastic Slope
Slp ≠ 0, σξ

2 ≠ 0 
(vii)  (viii) Smooth Trend Model. (ix) Local Trend Model. 

                                                 
6 The seasonal component is omitted at this stage for simplicity. 
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ση
2 ≠ 0 but σξ

2 = 0 the trend is the Local Level Model with Drift provided the 

slope is non-zero (slp ≠ 0), cell (vi) or the Local Level Model (random walk with  

drift) if the there is no slope (slp = 0), cell (iii).  If, however, ση
2 = 0 but σξ

2 ≠ 0 

it is the Smooth Trend Model, cell (viii).7 

Seasonal Component 

In addition, the ‘general’ seasonal model allows the component γt to have the 

following stochastic process: 

ttLS ωγ =)(           (5) 

where tω  ~ ),0( 2
ωσNID  and 321)( LLLLS +++= . 

The conventional case (ignoring the stochastic trend) is again a restricted 

version of this when σω
2 = 0  with γt reducing to the familiar deterministic 

seasonal dummy variable model.  If not, however, seasonal components are 

moving stochastically over time.8 

 

                                                 
7 Boone et al. (1995) and Smith et al.(1995) have attempted to estimate an aggregate UK 
primary energy demand function using a different form of stochastic trend model.  Their 
model treats the trend μt as an endogenous variable dependent upon exogenous factors such 
as the energy price and the share of manufacturing output in total GDP.  Consequently, only 
the slope, βt is considered as “pure” stochastic.  In addition, they implicitly impose a long-run 
income elasticity of unity. 
8 The irregular component εt reflects non-systematic movements and is assumed to be white 
noise 
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Dynamic (ECM) Models incorporating Stochastic Trend and Seasonals 

Harvey, et al. (1986) estimated an employment function (using seasonally 

adjusted data) but incorporating a stochastic trend that fitted well and 

encompassed rival formulations.  Harvey and Scott (1994) estimated an ECM 

for the UK consumption function that included stochastic seasonal variables and 

showed that it out performed the standard ECM consumption function with 

fixed seasonals.  Hunt and Judge (1996) found similar results for various energy 

consumers’ expenditure categories. 

Therefore, following from these previous works, we estimate an ECM version 

of equation (1) for UK energy demand as follows: 

A(L)Δet = μt + γt + B(L)Δyt + C(L)Δpt + λ(et-1 - α1yt-1 - α2pt-1) + ψTEMPt + εt 

                                                                                                               (6) 

where A(L) is the polynomial lag operator 1 - φ1L - φ2L2 - φ3L3 , B(L) the 

polynomial lag operator π0 + π1L + π2L2 + π3L3 , and, C(L) the polynomial lag 

operator ϕ0 +  ϕ1L + ϕ2L2 + ϕ3L 3.  et is the natural logarithm of the energy 

series, yt the natural logarithm of GDP, pt the natural logarithm of the real price 

of that form of energy, and  TEMPt the average temperature.  α1 and α2 

represent the long-run income and price elasticities respectively, ψ represents 

                                                                                                                                                        
i.e. εt ~ NID(0, σε

2 ) 
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the effect of a change in temperature on energy demand and λ the coefficient on 

the EC term.  μt, γt, and εt are as defined above. 

Estimation 

The estimated equation therefore consists of equation (6) with (2) (3) and (5).  

All the disturbance terms are assumed to be independent and mutually 

uncorrelated with each other.  As seen above, the hyperparameters ση
2, σξ

2, σω
2, 

and σε
2 have an important role to play and govern the basic properties of the 

model.  The hyperparameters, along with the other parameters of the model are 

estimated by maximum likelihood and from these the optimal estimates of βT, 

μT and γT are estimated by the Kalman filter which represent the latest estimates 

of the level and slope of the trend and the seasonal components.  The optimal 

estimates of the trend and seasonal components over the whole sample period 

are further calculated by a smoothing algorithm of the Kalman filter.  The 

software package STAMP 5.0 (Koopman et al., 1995) was used to estimate the 

models for each of the energy series, the results of which are given in the 

following section. 
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III RESULTS 

Equation (6) was estimated for Coal, Gas, Petroleum, Electricity, and Total 

Energy using quarterly data from 1972q1 to 1995q4 saving three years (12 

observations) for the post-sample prediction tests.  The preferred models for 

each fuel types are given in Table 2.  The methodology employed was to select 

a suitable restricted model by testing down from the over-parameterised model 

of equation (6) which satisfied parameter restrictions without violating the 

diagnostic tests detailed in Table 2.  The Likelihood Ratio (LR) test was 

normally used when choosing between different restrictions regarding the 

hyperparemeters.9  Finally the preferred model for each energy-type was re-

estimated and tested, via the LR test, for the following restrictions: 

(a) deterministic seasonal dummies; 

(b) a deterministic time trend; 

(c) a deterministic time trend with deterministic seasonal dummies; 

(d) no trend; 

(e) no trend with deterministic seasonal dummies.10 

                                                 
9 Testing for zero restrictions on various hyperparameters occasionally resulted in an increase 
in the Log-Likelihood value, which rendered the LR test invalid.  However, Harvey (1985) 
states that these kinds of tests are subject to some statistical problems (p. 220).  Therefore, 
goodness of fit measures, diagnostic tests, etc were used as a guide. 
10 Although not all tests were feasible for all energy types given they were non-nested. 
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Table 2:  Estimated Elasticities, Hyperparemeters and Diagnostics from the 
ECM/BSM models, 1972q1 - 1995q4 

 COAL GAS ELECTRICITY PETROLEUM TOTAL 
ENERGY 

Elasticity Estimates      

   Long-Run Income  1.688  0.675 0.817  0.835  0.534 

   Short-Run Income  0.950  0.526 0.672  0.583  0.645 

   Long-run Price  0  0 0 -0.150 -0.182 

   Short-Run Price  0  0 -0.286 -0.101 -0.158 

Estimated Coefficients      

   Temperature -0.018 -0.043 -0.021 -0.011 -0.023 

   EC -0.665 -0.932 -0.919 -0.659 -0.868 

Estimated Hyperparemeters      

    σε
2 × 10- 4 23.117 3.846 0.551 2.151 2.000 

    ση
2 × 10- 4 1.297 0 1.062  0 0.647 

    σξ
2 × 10- 4 0 0.059 0 0.017 0 

    σω
2 × 10- 4 0.640 3.398 0.491 1.296 0.110 

Nature of Trend Local level 
Model 

with Drift 

Smooth 
Trend 
Model 

Local 
Level 
Model 

Smooth 
Trend 
Model 

Local 
Level 
Model 

Diagnostics      

Standard Error 5.59% 4.03% 2.03% 2.63% 2.02% 

Normality 0.51 0.76 1.05 0.15 0.18 

H(30) 0.65 1.46 1.22 0.65 0.46 

r(1) 0.01 -0.06 0.00 0.06 -0.12 

r(8) 0.21 0.01 -0.03 -0.01 0.05 

DW 1.91 2.09 1.99 1.88 2.09 

Q(8,6) 7.72 4.97 2.27 4.11 5.93 

Rs
2  0.85 0.94 0.92 0.93 0.92 

Predictive Tests (96q1-
98q4) 

     

   χ2
(12) 8.02 41.02** 9.99 3.82 8.77 

   Cusum t -0.82 0.25 -0.63 0.44 0.47 

LR tests      
   Test a) χ2

(1) 6.59* 105.68** 69.39** 111.20** 5.86* 

   Test b) χ2
(1) 5.45* 58.30** n/a 22.38** n/a 

   Test c) χ2
(2) 11.48** 134.57** n/a 132.60** n/a 

   Test d) χ2
(2) 19.42** 44.09** 63.19** 6.29* 30.11** 

   Test e) χ2
(3) 24.87** 122.79** 100.05** 119.90** 36.10** 
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Notes: 1. H(30) is the test for heteroscedasticity, approximately distributed as F(30, 30); 
  r(1) and r(8) are the serial correlation coefficients at the 1st and 9th lag respectively; 
  DW is the Durbin Watson Statistic; 
  Q(8,6) is the Box-Ljung Q-statistics based on the first 8 residuals autocorrelations and distributed 
  as χ2

(6) ; 
  Rs

2 is the coefficient of determination based on the differences around the seasonal mean; 
  χ2

(12)  is the post-sample prediction failure test; 
  The Cusum t is the test of parameter consistency, approximately distributed as the t-distribution.  

2. The restrictions imposed for the LR tests are explained in the text (** indicates significant at the 
1% level and * indicates significance at the 5% level). 

3. The coal equation included impulse dummies for 1974q1, 1980q1, 1984q2.  The Petroleum 
equation included an impulse dummy for 1981q1.  These, were included to ensure the residuals 
were white noise, in particular to ensure normality. 

This acted as a final check to ensure that the stochastic versions were always 

accepted by the data and allowed for a comparison of the estimated long-run 

price and income elasticities. 

Overall the models appear to fit the data very well with almost all diagnostic 

tests passed.  The LR tests clearly indicate that the stochastic seasonal 

specifications are superior to deterministic seasonal dummies11, hence further 

discussion will be limited given the space constraint.12  The LR tests also 

indicate that in all cases some form of stochastic specification for technical 

progress is preferred to the deterministic time trend or no trend at all.  It is also 

clear that various types of stochastic processes are found for the different energy 

types which are discussed in more detail below.  

 

 

                                                 
11 This is despite the temperature variable being consistently significant. 
 
12 However, the evolving seasonals for each energy type are presented in Figures 1 – 5 as an 
illustration. 



 16 
 
 

Coal  

The preferred specification for coal finds no role for price in either the short and 

the long run.  The estimated income elasticities of 0.95 and 1.69 in the short- 

and long-run respectively are surprisingly high.  The estimated trend is the 

Local Level Model with Drift and is illustrated in the top left hand chart of 

Figure 1.  This clearly indicates a long term underlying fall in the demand for 

coal of about -5.3% per year and although the hyperparemeter ση
2 is non-zero, 

there is little variation around this trend.  Interestingly, when the trend is 

omitted completely, tests (d) and (e), the long-run income elasticity is negative 

and significant suggesting that Coal is an inferior good similar to the results of 

Fouquet, et al. (1993 and 1997).  This is clearly due to the omission of any 

‘technical progress’ term to model the long term decline of coal and hence an 

under-estimate of the long-run income elasticity.  It is appropriate, therefore, to 

include a measure of technical progress in the coal demand model to separate 

out the ‘exogenous’ effect from the (positive) income effect.  That said 

however, the high income elasticity estimates obtained here are difficult to 

justify intuitively.13 

                                                 
13 It should be emphasised that this is final consumption and therefore excludes the electricity 
generation sector where the majority of coal is consumed.  



 17 
 
 

Figure 1: Coal 
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Gas 

When estimating the gas demand function it did not prove possible to produce 

an equation that passed all diagnostic tests.  The preferred equation therefore 

suffers from some slight instability since it fails one of the predictive failure 

tests.  The preferred specification, similar to coal, does not include a role for 

price.  The long-run and short-run income elasticities are 0.67 and 0.53 

respectively being generally lower than those obtained by Fouquet, et al. (1993 

& 1997) although their specifications included prices but no trend.  Here the 

Smooth Trend Model was preferred, but gives ‘negative’ technical progress 

during the 1970s but flattens out in the 1980s and 1990s (as illustrated by the 

top left hand chart of Figure 2).  This probably reflects the ‘exogenous’ shift in 

tastes away from town gas and solid fuel during the 1970s.  However, the shape 

of the slope (illustrated in the top right hand chart of Figure 2) would suggest 

that there were changes (albeit small relative to the 1970s) about the mid 1980s 

and early 1990s. 
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Figure 2: Gas 
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Electricity 

The preferred specification finds only a short-run role for prices with an 

estimated elasticity of -0.29, with short- and long-run income elasticities of 0.67 

and 0.82 respectively.  Again these are generally higher than those obtained by 

Fouquet, et al. (1993 & 1997).  The Trend is found to be the Local Level Model 

(as illustrated in the top right hand chart of Figure 3) where there is no slope 

term but the variation in the trend comes through via the level.  Despite there 

being no slope the shape of the trend shows an interesting pattern, reflecting 

different phases of technical progress: approximating to the 1970s, the early 

1980s, the late 1980s/early 1990s and the mid 1990s.  When comparing the 

electricity trend with the price series (top right hand chart of Figure 6) there 

would appear to be a close (inverse) relationship. 
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Figure 3: Electricity 
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Petroleum 

The preferred specification gives estimates of 0.84 and -0.15 for the long-run 

income and price elasticities respectively with the Smooth Trend Model.  The 

trend is illustrated in the top left hand chart of Figure 4 and again produces clear 

phases of technical progress.  There appears to have been a distinct slow down 

in technical progress in the late 1970s followed by a resumption of a rapid 

decline during the early 1980s.  This decline halted about 1986/7 when there 

was a distinct slowdown that continued until about 1993 when the progress 

continued again.14  The top right hand chart of figure 4 illustrates that this is 

driven by the stochastic slope which would appear to be inversely linked to real 

energy price index used for petroleum (see the bottom left hand chart in Figure 

6).

                                                 
14 In fact technical progress became ‘negative’ for a period during the very late 1980s early 1990s as the UK 
economy moved onto recession. 
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Figure 4: Petroleum 
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Total Energy 

The estimated equation for total energy gives a long-run income elasticity of 

0.53 with a larger short run figure of 0.65.  Although the elasticities are a little 

larger (probably due to the inclusion of technical progress terms) this 

differential of the short to the long run is similar to the annual studies by Hunt 

and Manning (1989) and Hunt and Witt (1995).  The long- and short-run price 

elasticities are  -0.18 and -0.16 respectively.  These estimates are in contrast to 

the recent results by Clements and Madlener (1999) who estimated a range of 

annual and quarterly models for UK residential aggregate energy demand.15  

They conclude by stating that they were “unable to reject a zero price elasticity” 

(p. 185).  Returning to our results the preferred trend is the Local Level Model 

and, as with Electricity, despite the slope being zero, the trend still exhibits 

aninteresting shape as illustrated in the top right hand chart of Figure 5.  

Although it is not as smooth, since the source of the stochastic trend is different, 

the general pattern is very similar to that found for petroleum, and appears to be 

(inversely) related to the price series (and possibly income during the recession 

of the early 1990s). 

                                                 
15 Clements and Madlener (1999) do specify a deterministic time trend but no results are presented in the paper 
for the trend. 
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Figure 5: Total Energy 
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IV  SUMMARY AND CONCLUSION 

In this paper we have discussed the importance of, not only modelling technical 

progress when estimating energy demand functions, but also modelling it in a 

non-linear flexible way.  We argue that technical progress comes about from a 

number of exogenous factors but could also be induced by price and income 

‘shocks’.  It is important, therefore, to incorporate the most flexible possible 

specification and test down for the most appropriate specification that best fits 

the data. 

We have found for all UK energy types that a specification including some form 

of technical progress is preferred to one where it is omitted.  Moreover, 

specifications that incorporate a non-linear trend term for technical progress are 

preferred to the traditional assumption of a deterministic linear time trend.  The 

results suggest that in the UK there have been distinct phases in the process of 

technical progress as illustrated above.  At present it is not possible to determine 

when these phases are driven by exogenous factors or when they are driven by 

endogenous factors such as changes in price (and possibly income) as inspection 

of the charts suggest.  A full explanation is hopefully the basis of future 

research. 
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Figure  6: Prices 
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DATA APPENDIX 

The data set is quarterly seasonally unadjusted for the period 1971q1 to 1998q4.  

Energy Consumption 

The energy consumption data (Et) refers to UK Final Consumption of ‘coal’, 

‘gas’, ‘petroleum’, electricity’ and ‘total energy’ in million tonnes of oil 

equivalent (mtoe) from various issues of the UK Energy Trends up to June 

1999.  Data before 1992 have been converted to mtoe from millions of therms.  

The ‘coal’ series refers to coal and other solid fuels and ‘gas’ includes town and 

natural gas. 

Gross Domestic Product 

The nominal and constant prices expenditure estimates of UK Gross Domestic 

Product GDP(E) at market prices were kindly supplied by the Office of National 

Statistics (ONS) since the seasonally unadjusted data are not published.  Yt is 

the constant GDP(E) series re-based and indexed to 1990 = 100.  The implicit 

GDP(E) price deflator at 1990=100 was calculated from the nominal and 

constant price series. 

Energy Prices 

The nominal price index for each energy type were derived by weighting the 

appropriate GB Domestic and Industrial Fuel Price Indices from various issues 

of the UK Energy Trends up to June 1999.  The real index of energy prices (Pt) 

for each energy type was found by deflating the nominal index by the implicit 

GDP(E) deflator.  The ‘total energy’ price was derived as a weighted average of 

the individual energy types. 

Temperature 
TEMPt refers to the average GB quarterly temperature in degrees Celsius taken from various 

issues of the UK Digest of Energy Statistics (DUKES). 
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